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ABSTRACT 
An implementation for the classification of remote sensing images with support vector machines 
(SVM) is introduced. This tool, called imageSVM, allows a user-friendly work, especially with large, 
highly-resolved data sets in the ENVI/IDL environment. imageSVM uses LIBSVM for the training of 
the SVM in combination with a user-defined grid search. Parameter settings can be set flexibly 
during the entire workflow and a time-efficient processing becomes possible. First tests underline 
the high-accuracy of SVM classification using heterogeneous hyperspectral data and the good 
performance of SVM in the context of multi-sensoral studies.  

INTRODUCTION 
Over the past two decades, a variety of non-parametric classifiers has been introduced into remote 
sensing image analysis, e.g. artificial neural networks (i), decision tree classifiers (ii), and support 
vector machines (iii,iv). SVM do not assume specific class distributions and are well suited for 
complex hyperspectral data sets (v). They are one of the more recent developments in the field of 
machine learning and outperformed other approaches under varying conditions in the very most 
cases or performed at least equally well (vi,vii), especially when small numbers of training samples 
were used. However, the processing of image data with latest machine learning developments for 
the SVM classification is often complicated due to missing user interfaces and inappropriate data 
formats like ASCII. In addition, the processing of large, highly resolved data sets often leads to 
long processing times. Furthermore, the classification of remote sensing images usually includes 
more than two classes and strategies for the originally binary SVM have to be applied to solve 
multi-class problems (iv,viii). First implementations of SVM in commercial image processing soft-
ware packages are rather limited in performance, especially in the context of searching ideal SVM 
parameters or optimized training and classification procedures. 

This work aimed at developing a flexible SVM implementation for remote sensing image analysis 
called imageSVM. Objectives for the design were (1) offering the full flexibility of state-of-the-art 
algorithms for the training of the SVM, (2) the possibility to use standard remote sensing formats, 
(3) a semi-automized and time-saving search for optimal training parameters, (4) the possibility for 
a quick validation of the classification accuracy for methodological studies, and (5) SVM models 
and the intermediate results of the classification have to be flexibly accessible, e.g. for data fusion 
or classifier ensemble approaches. 

METHODS AND IMPLEMENTATION 
SVM delineate two classes by fitting an optimal separating hyperplane to the training data in the 
multi-dimensional feature space (ix). For linearly not separable classes, the input data are mapped 
into a higher dimensional space by a kernel function, wherein the new data distribution enables the 
fitting of a linear hyperplane. A detailed description on the concept of SVM is given in (x), compre-
hensive introductions in a remote sensing context in (iii,iv). Two parameters need to be set for the 
training of SVM with Gaussian kernels: the parameter γ that controls the width of the kernel and a 
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regularization parameter, either C or ν, depending on the preferred SVM formulation. The regulari-
zation parameter C controls the trade-off between maximizing the margin and the penalization of 
training errors (more precisely margin errors). ν is an upper bound on the fraction of training errors 
and a lower bound of the fraction of support vectors (xi). Besides the Gaussian kernel, any kernel 
function that meets the Mercer condition (ix) can be used with SVM, e.g. polynomials or sigmoidal 
functions. Since Gaussian kernels are most frequently used, only these were implemented in 
imageSVM. 

The widely accepted LIBSVM approach by (xii) was integrated in the ENVI/IDL Environment for the 
training of the SVM. This way the training and classification can be performed on common image 
file formats. Samples for training and validation are taken from ROIs. Both SVM-types, C- or 
ν-SVM, and the two common multi-class strategies one-against-all and one-against-one can be 
selected (Fig. 1, left). 

 

   
Figure 1: dialogue for SVM formulation and multi-class strategy (left) and for grid search and cross 
validation settings (right). 

To determine an optimal set of the parameters γ and C or ν a grid search with internal cross valida-
tion is performed. Besides the ranges and step-size of the parameter search the user can define 
the number of folds for the cross validation (CV) and the tolerance for the termination criterion of 
the quadratic optimization during the cross-validation trainings (Fig. 1, right). All parameters have 
great influence on the time needed for the calculation of the grid search and thus the determination 
of appropriate parameters is very important. 

The CV results for all parameter combinations during the grid search are saved as images. These 
so-called CV images can be used to assess the quality of the grid search and to identify the ideal 
parameters for the training of the final SVM (Fig. 2). The user can choose, whether the best pa-
rameters shall be selected individually for each binary SVM or if one best overall parameter set 
from a mean CV error image shall be used for the final training of all binary classifiers. This final 
training is independent from the previous grid search and the number of features, samples or the 
termination criterion can be changed compared to the grid search. This way, a time saving calcula-
tion during grid search is performed while equal final accuracy is achieved. 

The results from the final training with the best parameter settings are saved as so-called SVM 
models. These can be viewed in the imageSVM model viewer, which shows the training parame-
ters and gives information on the data used during the training (Fig. 3). From the model viewer the 
user can choose between the classification of entire images or a quick validation, where only ref-
erence pixels from an ROI are classified and used for an accuracy assessment. 
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Figure 2: example of cross validation images for ν- (top) and C-SVM (bottom) grid search using a 
one-against-all approach with five classes. 

 
Figure 3: imageSVM model viewer. 

RESULTS AND DISCUSSION 
imageSVM proved successful in various case studies. By using the implemented grid search an 
accuracy of >86% was achieved for the classification of a large HyMap data set from a heteroge-
neous urban environment (v). In a different study, imageSVM was used for the combined classifi-
cation of hyperspectral data and surface information from LiDAR measurements (xiii). Rule or dis-
tance images that are calculated and stored as intermediate results in imageSVM were success-
fully used for SVM-based multi-sensor fusion (xiv). 

In general, the existence of the cross validation surfaces allows for user-defined more sophisti-
cated approaches to identify ideal parameters besides the ones already implemented. The option 
to use different numbers of features and training samples, and varying values for the termination 
criterion tolerance during grid search and final training reduces processing times significantly. This 
could be shown in a study using different sets of principal components and termination criterions 
for the grid search to reduce processing time (Tab. 1). The final training was then performed with 
more features and more calculation accuracy, i.e. lower termination criterion tolerance, to optimize 
results. 
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Table 1: Time [s] needed for grid search using varying cross validation termination criterion toler-
ances and different numbers of principal components (PC). Using the parameters identified by the 
grid search a final training was performed with e=0.00001 and all PCs. The accuracy achieved by 
this final SVM is displayed in brackets. 

 CV termination criterion tolerance 
number of PCs e=0.1 e=0.001 e=0.00001 
5 1360 (86.7%) 1727 (86.7%) 1948 (86.7%) 
10 1921 (87.8%) 2429 (87.8%) 2607 (87.8%) 
20 2819 (87.9%) 3392 (87.9%) 3665 (87.9%) 
all 12272 (87.6%) 13804 (87.6%) 14012 (87.6%) 

CONCLUSIONS & OUTLOOK 

imageSVM is a user-oriented implementation of LIBSVM into the ENVI/IDL environment. It could 
be shown, that high quality results can be achieved in different remote sensing analyses, while 
workflow and processing are optimized for large image data. No additional data transformations 
are necessary and SVM can be used as any other supervised classifier in the software environ-
ment. 

The structure of imageSVM is flexible and open, i.e. intermediate results can be used for additional 
investigations and more complex approaches or be re-used for future work. To further optimize 
processing, future versions will include features like directed acyclic graphs, support vector reduc-
tion by regression (xv) and advanced strategies for the selection of parameters from the cross vali-
dation images. 

imageSVM is freely available from the Geomatics Department of Humboldt-Universität zu Berlin, 
www.hu-geomatics.de. 
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