
Points, Lines and Planes
and their Optimal Estimation

(slightly corrected version, 26.09.2001)

Stephan Heuel

Institut für Photogrammetrie, Universität Bonn
Nussallee 15, D-53115 Bonn
heuel@ipb.uni-bonn.de

Abstract. We present a method for estimating unknown geometric enti-
ties based on identical, incident, parallel or orthogonal observed entities.
These entities can be points and lines in 2D and points, lines and planes
in 3D. We don’t need any approximate values for the unknowns. The
entities are represented as homogeneous vectors or matrices, which leads
to an easy formulation for a linear estimation model. Applications of the
estimation method are manifold, ranging from 2D corner detection to
3D grouping.

1 Introduction

Constructing geometric entities such as points, lines and planes from given en-
tities is a frequent task in Computer Vision. For example, in an image we may
want to construct a junction point from a set of intersecting line segments (cor-
ner detection) or construct a line from a set of collinear points and line segments
(grouping). In 3D, a space point can be reconstructed by a set of image points
(forward intersection); as a last example, one may want to construct a polyhedral
line given incident, parallel or orthogonal lines and planes (3D-grouping).

These geometric constructions can be described as an estimation task, where
an unknown entity has to be fitted to a set of given observations in the least-
squares sense. Unfortunately the underlying equations are nonlinear and quite
difficult to handle in the Euclidean case. Because of the non-linearity, one needs
approximate values for the unknowns, which are not always obvious to obtain.

This article presents a general model for estimating points, lines and planes
without knowing approximate values. We propose to use algebraic projective
geometry in 2D and 3D together with standard estimation methods. We first
explore possible representations for geometric entities, obtaining a vector and a
matrix for each entity. Then we express relations between the entities by simple,
bilinear functions using the derived vectors and matrices. These relations can be
directly used in a parameter estimation procedure, where the initial value can be
obtained easily. We show possible applications and some test results validating
the performance of the proposed method.

The proposed estimation model is based on (i) algebraic projective geometry,
which has been has been extensively promoted in Computer Vision in the last
decade (cf. [2],[6]) and (ii) integration of statistical information to the projective
entities. Kanatani [7] presented a similar approach though he does not make full
use of the elegant projective formulations, leading to complex expressions.



2 Representation of Geometric Entities

Assuming that both our observations and unknowns could be points, lines and
planes in 2D and 3D, we first want to explore possible representations for these
entities.

2.1 Vector Representation

Following the conventions in [4], points and lines in 2D are represented as ho-
mogeneous vectors x, y and l, m; in 3D we have X, Y for points, L, M for lines
and A, B for planes. Euclidean vectors will be denoted with italic bold letters
like x for a Euclidean 2D point, cf. the first column in table 1. Furthermore we
will use the canonical basis vectors ei,Ei = (0, ..., 1

i
, ..., 0) for points, lines or

planes depending on the context.
For the geometric entities, each homogeneous vector contains a Euclidean

part, indexed with a zero, and a homogeneous part, indexed with an h. This
is chosen such that the distance of an element to the origin can be expressed
as the norm of the Euclidean part divided by the norm of the homogeneous
part, e.g. the distance of a plane to the origin is given by dA,0 = |A0|/|Ah|.
The uncertainty of an entity can be described by the covariance matrix of this
vector. Note that a line L = (LT

h ,L
T
0 ) is a 6-vector which has to fulfill the Plücker

condition L
T
L = 0 with the dual line L = (LT

0 ,L
T
h).
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Fig. 1. (a) A line l and the three common points xi(l) with the three lines ei.
(b) A point x and the three lines li(x) incident to x and the points ei. (c) A line
L and the four common points Xi(L) with the four lines Ei. (d) A point X and
the four lines Li(X) incident to X and the points Ei.

2.2 Matrix Representation

An entity is represented by a vector using its coordinates, but one can also use
another representation: for example, a 2D line can be represented by its three
homogeneous coordinates (a, b, c), or implicitly by two points x1(l) and x2(l) on
the x- resp. y-axis, see fig. 1(a). Additionally, one can choose the infinite point
x3(l), which lies in the direction of the line and is undefined, thus (0, 0, 0)T, if the
line is at infinity. These three points can be constructed by x1...3(l) = l ∩ e1...3.
Writing x1...3(l) in a 3 × 3 matrix yields the skew-symmetric matrix S(l) as
defined in the second row of the table 1.

The same argument can be used to derive a skew-symmetric matrix S(x),
which contains three lines l1...3(x) incident to the point x, see fig. 1(b). These



2D vector matrix

point
xT = (xT

0 , xh) =
(u, v;w)

S(x) =

 0 −w v
w 0 −u
−v u 0

 =

 l1(x)T

l2(x)T

l3(x)T

 =

 (x ∧ e1)T

(x ∧ e2)T

(x ∧ e3)T


line lT = (lTh, l0) = (a, b; c) S(l) =

 0 −c b
c 0 −a
−b a 0

 =

x1(l)T

x2(l)T

x3(l)T

 =

 (l ∩ e1)T

(l ∩ e2)T

(l ∩ e3)T


3D vector matrix

point
XT = (XT

0 , Xh) =
(U, V,W ;T )

TTT(X) =

(
XhI S(X0)

−XT
0 0T

)
=

(
T 0 0 0 W −V
0 T 0 −W 0 U
0 0 T V −U 0
−U −V −W 0 0 0

)

line
LT = (LT

h,L
T
0 ) =

(L1, L2, L3;L4, L5, L6)

I (L) =

(
−S(Lh) −L0

LT
0 0

)
=

(
0 L3 −L2 −L4
−L3 0 L1 −L5
L2 −L1 0 −L6
L4 L5 L6 0

)

I (L)=I (L) =

(
−S(L0) −Lh
LT
h 0

)
=

(
0 L6 −L5 −L1
−L6 0 L4 −L2
L5 −L4 0 −L3
L1 L2 L3 0

)

plane
AT = (AT

h, A0) =
(A,B,C;D)

TT
T
(A) =

(
−S(Ah) A0I

−AT
h 0T

)
=

(
0 C −B D 0 0
−C 0 A 0 D 0
B −A 0 0 0 D
0 0 0 −A −B −C

)
Table 1. Points, lines and planes in 2D and 3D represented as homogeneous
vectors x, l and matrices S(x), S(l), resp in 3D represented as homogeneous
vectors X, L, A and matrices TTT(X), I (L),TT

T
(A). Each row of a homogeneous

matrix represents a vector of the other entity. All three row entities of a matrix
in turn define the given entity, see text for details.

matrices have rank 2, because only two rows in the matrix S(•) are needed to
construct the third one.

In a similar manner we can define matrices for points, lines and planes in 3D:
for example, a point X can be defined by a set of four intersecting lines L1...4(X),
where three lines are each parallel to one axis and the fourth line intersects the
origin, see fig. 1(d). Since a line is represented by a 6-vector, we obtain a 4× 6
matrix TTT(X) = (L1(X) . . .L4(X))T as a representation of a point X. Note that
the six columns of TTT(X) can be interpreted as six planes, which are incident
to the point X and to the six space lines Ei.

A space line can be determined by four points X1...4(L), three of them are
on the axis-planes E1...3, the fourth one lies on the infinite plane E4 in direction
of the line, see fig. 1(c). These four points define 4 × 4 skew-symmetric matrix
I (L). Only two rows of the matrix I (L) are linearly independent, the selection
of the rows depend on the position and direction of the line. As a space line can
also be represented by four planes A1...4(L), we can define a line matrix based
on these for planes, yielding I (L), cf. table 1. In the literature, I (L) and I (L)
are referred as Plückermatrices, e.g. in [6].

The matrix of a plane can be defined dually to the matrix of a point by
TT

T
(A), as in table 1, right column, last row. Note that S(x), S(l), TT(X), I (L),

TT(A) are not only representations of points, lines and planes, but also the
Jacobians for constructing elements by join ∧ and intersection ∩, see [4].



3 Relations between Unknown and Observed Entities

When estimating an unknown entity, all the observations are related to the un-
known in some way. In this work we assume the relations to be either incidence,
equality, parallelity and orthogonality ; for example an unknown space line M
may have a list of incident points Xi, incident lines Li and parallel planes Ai

as observed entities. In this section we want to derive algebraic expressions for
a relation between two entities.

First we want to focus on incidence and equality relations in 3D: the simplest
incidence relation is a point-plane incidence, since it is only the dot product of
the two vectors: XTA = 0. Furthermore, the incident relation of two lines can be
expressed by a dot product: M

T
L = 0. From XTA and M

T
L we can derive all

other possible incidence and equality relations: for example, if two lines L and
M are equal, each of the four points X1...4(M) must be incident to each of the
four planes A1...4(L). Therefore the matrix product of I (L) I (M) = 0 must be
zero. Another example is a line L which is incident to plane A if the four lines
L1...4(A) are incident to the line L. All possible incidence and equality relations
between unknowns and observations are listed in table 3.

obs.→ xi li
↓ unk. relation constraint relation constraint

y xi ≡ y S(xi) y = 0 li 3 xi lT
i y = 0

m xi 3m xT
i m = 0 li ≡m S(li)m = 0

li ‖m (l⊥)m = 0
li ⊥m lti m = 0

Table 2. Possible incidence, equality, parallelity and orthogonality relations be-
tween lists of observed points xi and of lines li and unknown points y and lines
m.

o.→ Xi Li Ai

↓u. relation constraint relation constraint relation constraint

Y Xi ≡ Y TT(Xi) Y = 0 Li 3 Y I (Li) Y = 0 Ai 3 Y AT
i Y = 0

M Xi ∈M TT
T
(Xi) M = 0 Li ≡M I (Li) I (M) = 0 Ai 3M TTT(Ai) M = 0

Li ∩Mi 6= ∅ Li
T

M = 0

B Xi ∈ B XT
i B = 0 Li ∈ B −I (Li) B = 0 Ai ≡ B TT(Ai)B = 0

Table 3. Possible incidence and equality relations ∈,≡ between lists of observed
space points Xi, lines Li, and planes Ai and unknown space points Yi, lines Mi

and planes Bi and their corresponding algebraic constraint.

Parallelity and orthogonality relations refer to the homogeneous parts of the
vectors: in 3D we have to test whether the (Euclidean) direction Lh of the line L
is perpendicular resp. parallel to the plane normal Ah. In general, these relations
can be expressed by the dot product or by the cross product of the two vectors,
where the cross product can be written using the skew-symmetric matrix S; the
relations are listed in table 4.



Two things are important to note: (i) all algebraic constraints for the re-
lations and 2D and 3D (for 2D, see table 2) are bilinear with respect to each
entity, cf. [4]. (ii) We do not have to compute every dot product relevant for a
specific relation. It is sufficient to select as many as the degree of freedoms of the
relation: for example, the incidence of a point X and a line L has two degrees
of freedom, therefore we can select two rows AT

j,k(L) out of I (L) and compute
the dot product AT

j (L) X = 0 and AT
k (L) X = 0. The selection depends on the

coordinates Lj of line L, it is numerically safe to take the two rows with the
largest |Lj,k|.

obs.→ Li Ai

↓ unk. relation constraint relation constraint

M Li ‖M S(Lih)Mh = 0 Ai ‖M AT
ih
Mh = 0

Li ⊥M LT
ih
Mh = 0 Ai ⊥M S(Aih)Mh = 0

B Li ‖ B LT
ih
Bh = 0 Ai ‖ B S(Aih)Bh = 0

Li ⊥ B S(Lih)Bh = 0 Ai ⊥ B AT
ih
Bh = 0

Table 4. Possible orthogonality and parallelity relations ⊥, ‖ between observed
list of lines Li and list of planes Ai and unknown lines M and A. The lower
index h indicates the use of the homogeneous part of an entity, cf. table 1.

4 Estimation of an Unknown Entity

We now have the relations between an unknown entity β and a list of observation
entities γi expressed as an implicit form gi(β;γi) = 0.

Taking this equation, we can use the Gauss-Helmert model for estimating the
unknown β, cf. [8] or [9]. Since the Gauss-Helmert model is a linear estimation
model, we need the Jacobians ∂gi(β;γi)/∂γi and ∂gi(β;γi)/∂β. We already
have given them in sec. 3 because all our expressions were bilinear: in the ta-
bles 2,3 and 4 the Jacobians ∂gi(β;γi)/∂β are given for each combination of
unknown β and observation γi1.

As the estimation is iterative, we need an initial value for the unknown β.
Since we do not need the observations, we can minimize the algebraic distance
Ω (cf. [1], p. 332 & 377):

Ω =
∑
i

gT
i gi = βT

(∑
i

AiA
T
i

)
β with Ai =

∂gi(β;γi)
∂β

This leads to an eigenvector problem for the matrix
∑
i AiAi: the smallest

normalized eigenvector gives the approximate value for the unknown β.
In section 3 we have seen that the Jacobians Ai may not have full rank, which

leads to a singular covariance matrix Σgg inside the Gauss-Helmert model. One
can either compute the pseudoinverse as in [4], or select the rows of the Jacobians,
so that the Jacobian has the same rank number as the number of degrees of
freedom for the relation.
1 for equality relations, one can also use a different Jacobian as proposed in [4]



5 Example Tasks

We have implemented the proposed estimation as a unique generic algorithm
with all 2D and 3D entities and all proposed onstraints. The input of the al-
gorithm is the type of the unknown and an arbitrary set of observations . We
will denote observations with their corresponding constraint types ∈,≡, ‖,⊥ as
upper index; e.g. if an unknown point y should lie on a set of lines observation,
we have g(y; l3i ) = 0⇔ l3i 3 y, denoting the observed lines l3i with upper index
3, since they are incident to the point y.

Using the same estimation algorithm, we can e.g. solve the following tasks
among many others (the third and the fourth task will be evaluated in sec. 6):

– Corner detection in 2D. We have an unknown point y and a set of observed
lines l3i for which the unknown is incident, l3i 3 y. The implicit functional
model is g(y; l3i ) = 0, the Jacobians are S(y) and S(l3i ).

– Grouping in 2D. We have an unknown line m and the following lists of
observations: (1) incident points x∈i , (2) collinear (i.e. equal) lines l≡i , (3)
parallel lines l‖i , (4) orthogonal lines l⊥i . The implicit functional model is
g(y; x∈i , l

≡
i , l
‖
i , l
⊥
i ) = 0. The Jacobians for ∂g(m;γi)/∂m are listed in table 2.

– Forward intersection. We want to construct a 3D point Y out of a set of
points xj and lines li,j in n images j ∈ {1 . . . n}. Inverting the projections
Pj , we can obtain 3D lines L(xj) and planes A(li,j), see [2]. and [3]. We
can now estimate the unknown 3D point M: the implicit functional model
is g(Y; L(xj),A(li,j)) = 0. The Jacobians used here are I (L(xj)), TT

T
(Y),

A(li,j)T and YT. Note that we can also construct 3D lines from sets of 2D
points and lines by forward intersection, see also sec. 6.

– Grouping in 3D. A 3D line representing one edge of a cube is unknown,
the observed entities are: (1) incident points X∈i , (2) incident lines L∩i , (3)
collinear (i.e. equal) lines L≡i , (4) parallel lines L‖i , (5) orthogonal lines L⊥i ,
(6) incident planes A3i , (7) parallel planes A‖i and (8) orthogonal planes
A⊥i . All observed entities can be derived by the other 9 edges, 8 corners and
6 surfaces of the cube. We have g(M; X∈i ,L

∩
i ,L

≡
i ,L

‖
i ,L

⊥
i A3i ,A

‖
i ,A

⊥
i ) = 0

and the Jacobians listed in table 3 and 4. In the same manner we can also
construct a point representing a cube corner or a plane representing a cube
surface.

6 Experimental Results

Artificial Data. To validate our algorithm, we have tested it for the previously
described 3D grouping task in section 5 using artificial data and applying all
proposed constraints. Artificial data provides ground-truth which is necessary
for validating an estimation method. We estimated a 3D point, line and plane
being part of translated and rotated cubes of size 1. For each of the 6 corners, 12
edges and 6 surfaces of the cube, 5 observations have been generated randomly
with a Gaussian error of 0.1% and 1%. When taking into account all possible
constraints, the redundancy of the estimations are 57 for the unknown point,



176 for the unknown line and 162 for the unknown plane. We drew 1000 sample
cubes and then estimated 1000 points, lines and planes. In fig. 2, the first row
shows the cumulative histogram for the estimated σ̂2

0 for the points Ŷ, M̂ and
planes B̂, over all estimates we get an average of σ̂2

0 = 0.988. The second row
depicts the scatter diagram for the estimated point Ŷ, projected onto the three
principal planes. Furthermore, the χ2–test on bias was not rejected.

For the given datasets, all estimations converged within 3 to 4 iterations.
The stopping criteria for the iteration was defined as follows: the corrections to
the values of β should be less than 1% with respect to its standard deviation.
The algorithm was implemented in the scripting language Perl and takes about
1 [sec] for 50 point resp. plane observations with a factor 1.5 slower for lines.

Real Data. We have tested the task of forward intersection of 3D lines using
corresponding points and lines from four overlapping aerial images. Interactively
we specified sets of 2D points and line segments which correspond to the same
3D edges. The 2D features were automatically extracted by a polymorphic point-
feature extraction method called FEX, cf. [5]. FEX also gives covariance matrices
for the extracted points and lines. The projection matrices were fixed though
one can include statistical information here, too. For one scene we estimated 16
3D-lines corresponding to object edges, on average we used 4 point- and 4 line
observation for each 3D line. The endpoints of the 2D line segments defined the
endpoints of the 3D line segments. The length of the line segments were between
2 [m] and 12 [m], the average standard deviation at the line endpoints orthogonal
to the 3D line segments were between 0.02 [m] and 0.16 [m], cf. fig. 3.
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Fig. 2. First row: this is the cumulative histogram of the estimated σ̂2
0 for the es-

timated point, line and plane resp. Second row: scatter diagram of the estimated
point Ŷ projected on the xy−, xz−, yz–planes. The inner confidence ellipse is av-
eraged over all 1000 estimated ellipses, the outer one is the empirical confidence
ellipse based on all estimated points and is approx. larger by a factor 1.2

7 Conclusions

We proposed a generic estimation method for estimating points, lines and planes
from identical,incident, parallel or equal points, lines and planes. It can be used



Fig. 3. From four aerial image patches (left) we manually matched 2D features of
16 roof edges (middle). The average cross error σc at the endpoints of estimated
3D line segment doesn’t exceed 0.17 [m], the length l of the line segments varied
between 2 and 14 [m], see text for details.

in a wide variety of applications and does not need any approximate values for
the unknowns. The implementation has been tested on a large artificial dataset
to validate its correctness. Future work includes among other topics: (i) The
estimation of polyhedral structures like polygons on a plane or cuboid elements.
(ii) Additional constraints like metric constraints, e.g. fixed distance between
entities. (iii) The estimation method could be embedded in a robust estimation
scheme like RANSAC.
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