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Abstract

We present a geometric method for (i) matching 2D line seg-
ments from multiple oriented images, (ii) optimally recon-
structing 3D line segments and (iii) grouping 3D line seg-
ments to corners.
The proposed algorithm uses two developments in combin-
ing projective geometry and statistics, which are described
in this article: (i) the geometric entities points, lines and
planes in 2D and 3D and their uncertainty are represented
in homogeneous coordinates and new entities may be con-
structed including their propagated uncertainty. The con-
struction can be performed directly or as an estimation. (ii)
relations such as incidence, equality, parallelity and orthog-
onality between points, lines and planes can be tested sta-
tistically based on a given significance level.
Using these tools, the resulting algorithm is straight-
forward and gives reasonable results. It is only based on
geometric information and does not use any image intensi-
ties, though it can be extended to use other information. The
matching of 3D lines does not need any thresholds other
than a significance value for the hypotheses tests.

1. Introduction
Reconstructing polyhedral objects from multiple views is
an on-going task in computer vision with numerous applica-
tions, e.g. in building extraction, cf. [15]. The computation
of straight 3D line segments has been shown to be a success-
ful approach to the reconstruction of polyhedral objects, for
example in [17] or [1]. Line matching is the first step to ob-
tain 3D line segments by establishing correspondences of
features between multiple images of a scene. In general it
is a difficult problem because of cluttered and noisy image
features and weaker geometric constraints compared to the
task of point matching. Therefore in addition to the geo-
metric constraints between views, additional informations
such as length or orientation of the 2D lines segment and/or
intensity based cues are used to compute similarity scores
between matching hypotheses.

On the other hand, algebraic projective geometry has
been extensively promoted in Computer Vision in the last
decade (cf. [4],[9]), simplifying the representation of ge-

ometric entities. Using the consistent representation, it is
possible to do geometric reasoning: (i) constructing new
entities by intersecting or joining given entities and (ii) test-
ing spatial relationships between geometric entities. How-
ever, to our knowledge, statistical spatial reasoning based
on algebraic projective geometry covering construction, es-
timation and testing has not been presented up to now.

In this paper we first present a calculus of projective ge-
ometric entities containing (a) representations of projective
entities with its uncertainties, (b) rules of construcing enti-
ties both non-redundant and redundant and (c) hypothesis
tests of relations between projective entities. We then intro-
duce an algorithm, which exploits only the geometric con-
straints in multiple views to solve the following tasks: (i)
matching 2D line segments across multiple views, (ii) opti-
mally reconstructing 3D lines from matched 2D lines, (iii)
grouping 3D line segments to higher aggregates, in our case
3D corners consisting of a corner point and two 3D line seg-
ments.

The work closest to ours is the monograph by Kanatani,
cf. [13] who presents techniques for statistical geometric
reasoning using homogeneous representations, but does not
make full use of the elegant projective formulations, leading
to complex expressions. Also Clarke [2] and Criminisi [3]
use covariance matrices of homogeneous entities and ana-
lyze the neglible effects of second order terms for mean and
variance. The implicit representation with singular inverse
covariance matrices given by Seitz [18] is only useful for
intersection of points, lines and planes, not for the join.

The paper is organized as follows: section 2 introduces
the homogeneous representation of points, lines and planes
and their uncertainty. Section 3 shows how to construct new
entities taking the uncertainty into account. The construc-
tion can be done either directly or by an iterative estimation.
Both sections are based on our previous work [7], [11].

Section 4 shows how to test relations such as incidence
or equality between geometric entities, section 5 describes
the matching and reconstruction algorithm which we devel-
oped using the tools from the previous sections. Next, we
demonstrate how to use these tools for grouping 3D line
segments to corners. We give first results, summarize our
approach and list some future work.
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2. Uncertain Geometric Entities
We want to extend projective geometry in a manner which
allows to reason with unertain geometric entities. Based
on homogeneous vectors and matrices (sec. 2.1) we show
how to represent uncertain homogeneous entities (sec.2.2).
This will allow simple construction of uncertain projective
entities (sec. 3.1) and direct estimation in case of redundant
measurements (sec. 3.2).

2.1. Homogeneous Entities
We represent points, lines and planes in 2D and 3D with
homogeneous vectors, cf. [9]. As listed in table 1, 3D points
are denoted withX, Y, 3D lines withL, M and planes with
A, B. Points and lines in 2D are written in homogeneous
vectorsxT = (xT

0 , xh) = (u, v; w) resp. lT = (lTh , l0) =
(a, b; c). Euclidean vectors will be denoted with italic bold
letters likex for a Euclidean 2D point.

3D vector/matrix

point XT = (XT
0 , Xh) = (U, V,W ; T )

TTT(X)︸ ︷︷ ︸
4×6

=
(

XhI S(X0)
−XT

0 0T

)
line LT = (LT

h , L
T
0 ) = (L1, L2, L3; L4, L5, L6)

I (L)︸ ︷︷ ︸
4×4

=
(
−S(Lh) −L0

LT
0 0

)
; I (L) = I (L)

plane AT = (AT
h , A0) = (A,B,C; D)

TT
T

(A)︸ ︷︷ ︸
4×6

=
(
−S(Ah) A0I
−AT

h 0T

)

Table 1: 3D Points, lines, and planes represented
as homogeneous vectorsX, L, A (top) and matrices

TTT(X), I (L),TT
T

(A) (bottom). The skew-symmetric ma-
trix S(X0) = [X0]× is the Jacobian of the vector prod-
uct. The Plücker coordinatesLi are chosen such that
for two Euclidean pointsX and Y the line is given as
L = (Y − X; X × Y )T. The matrixI (L) is the so-
called Plückermatrix of a lineL; for points and planes we

have the matricesTTT(X) andTT
T

(A)
.

Each homogeneous vector contains a Euclidean part, in-
dexed with a zero, and a homogeneous part, indexed with
h. The indexing is chosen such that the distance of an ele-
ment to the origin can be expressed as the norm of the Eu-
clidean part divided by the norm of the homogeneous part,
e.g. the distance of a plane to the origin is given by the ratio
of dA,0 = |A0|/|Ah|. Note that a lineLT = (LT

h ,L
T
0 ) is a

6-vector which has to fulfill the Plücker conditionL
T
L = 0

with the dual lineL
T

= (LT
0 ,L

T
h). The dual of a point is a

plane and vice versa. In addition to the homogeneous vec-

tors we also use homogeneous matricesTT(X), I (L) and
TT(A). Note that the matricesTT(X) andTT(A) play the
same role for points and planes as the Plücker-matrixI (L)
for lines.

2.2. Uncertain Homogeneous Entities
We now want to extend the representation to be able to deal
with uncertain geometric entities. In order to clarify our
idea we first describe spatial reasoning with homogeneous
vectors or matrices:

We argue that using homogeneous coordinates is just us-
ing theideaof projective geometry to be able to take advan-
tage of the simple, mostly multilinear relations for spatial
reasoning: we practically only usesingle representatives of
the equivalence classes of homogneous vectorsfor spatial
reasoning, derived from the Euclidean representation of the
geometric entity. This allows to represent uncertain geomet-
ric entities as uncertain vectors in someIRk. Going back to
a Euclidean representation requires at least some nomaliza-
tion to get rid of the unknown scale of the homogeneous
vector, cf. fig. 1.

homogeneous
coordinates

R

coordinates
homogeneous

R

entity
euclidean

euclidean
entity

R

R

projective
entity

projective
entity

P

Pm m m+1

n+1nn

simple / rigorous

simple / approximate

hard /  approximate approximate
simple /

Figure 1: Different ways of spatial reasoning using Eu-
clidean or homogeneous coordinates. The reasoning us-
ing homogeneous coordinates can performed in projective
space, e. g.leading from a set of entities inIPn to an entity in
IPm. The actual reasoning (1) starts from coordinate vec-
tors, say inIRn, (2) transfers them to single homogeneous
vectors inIRn+1, (3) yields a single homogeneous vector in
IRm+1 and (4) goes back to a Euclidean coordinate vector
in IRm by normalization. The calculations can be either
hard or simple; handling uncertainty can be either rigorous
or approximate, see text for details.

Formally we represent uncertain vectors by the pair
(x,Σxx), whereΣxx denotes the covariance matrix of the
vectorx. This is a valid approximation as long the direc-
tional uncertainty of the homogeneous vector is small. Thus
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the uncertainty of the direction of the spherically normal-
ized vectorxs = x/|x| should be small.

This leads to the following validequivalence relations:
two uncertain homogeneous vectors(x,Σxx) and(y,Σyy)
are equivalent if their spherically normalized versions are
identical:

(x,Σxx) ≡ (y,Σyy) :⇔ xs = ys and Σxsxs = Σysys

The covariance matricesΣxsxs and Σysys can be de-
rived by error propagation. Because of the normaliza-
tion these covariance matrices are singular. On the other
hand, the covariance matrix of an non-normalized uncer-
tain homogeneous vector may in general have full rank, cf.
fig. 2. As an example the 2D line(l,Σll) joining two points
(x,Σxx), (y,Σyy) is given by, cf. eq. (1)

(l,Σll) =
(
x× y, S(y)ΣxxST(y) + S(x)ΣyyST(x)

)
with the skew-symmetric matrixS(x) = [x]×, cf.[13], eq.
(4.18). The covariance matrixΣll is regular unless the two
points are identical.

Now we can apply spatial reasoning not to homogeneous
vectorsx, but to vector-covariance matrix pairs(x,Σxx).
According to figure 1, spatial reasoning with homogeneous
vectors requires two types of operations: (1) operations
on homogeneous vectors such as join, intersection or im-
age projection, and (2) normalization to euclidean entities.
Due to the non-linearity of these operations, error propa-
gation with covariance matrices is only an approximation
compared to rigorous propagation with probability density
functions (pdf). As spatial reasoning with homogeneous co-
ordinates is based on bilinear forms (cf. table 2) and as nor-
malization of homogeneous coordinates is a division, the
analysis of the degree of approximation using homogeneous
entities is much simpler than using only Euclidean entities,
cf. [3] and [2].

Remarks. •We use the classical representation of uncer-
tainty with Gaussian distributions as assumption for repre-
senting original measurement errors. This assumption in
general is reasonable due to the central limit theorem. In
certain cases one needs to analyze the degree of approxi-
mation based on the pdf, e.g. when using small distances
between two Gaussian-distributed points.
• Rigorous uncertainy propagation of homogeneous enti-
ties using pdfs would require to handle generalized func-
tions, because of the redundant representation of the ho-
mogeneous vectors. E. g. we have the classical repre-
sentativexT = (λxT, λ),with λ = 1. We now inter-
preteλ = 1 as a stochastical variable withE(λ) = 1 and
V (λ) = 0, leading to the delta functionδ(λ − 1) as the
pdf of λ. This is a generalized function. The distribution
of λ is the step function being a proper function. Finally,

xe
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x

Figure 2: Equivalence class of homogeneous covariance
matrices for a projective point. Observe that the covariance
matrices may be regular as for the arbitrary pointxa or sin-
gular, especially for the vectorx = (u, v, w)T andxs and
the vectorxe = (x, y, 1)T with Euclidean normalization.

the distribution of the homogeneous vector(x, 1) is given
by Px(x) = Px(x)·s(λ − 1). In case we can assume the
Euclidean vectorx to be Gaussian distributed with covari-
ance matrixΣxx the homogeneous vectorxT = (xT, 1) has

covariance matrixΣxx =
(

Σxx 0
0T 0

)
which is singular

allowing simple error propagation.
• We use the Laplacian approximation by cutting off the
Taylor series after the linear term. This causes systematic
errors (bias) in mean and variance. However one can show
that for bilinear constructions and for normalizations this
bias is small, namely much smaller than the standard devia-
tion of the mean or the standard deviation of the variance, if
the relative accuracy is better than 5 % which will be nearly
always the case, see also [13],[3],[2]. For bilinear forms
only in case the standard deviation of both entities is larger
than their mean, one has to expect significant errors, cf. [8].

3. Construction of Uncertain Entities
3.1. Direct Construction
First we show how to construct points, lines and planes di-
rectly using intersection and join of given entities, the four
combinations with two given entities are listed in table 2 or
cf. [7]. Using homogeneous vectors, these constructions are
a matter of a matrix-vector multiplication. Furthermore we
can back-project 2D points and lines from the image to ob-
ject space: given an image linel′ and a projection matrix
P, one can construct the projecting planeA′(l′) = PTl′, cf.
fig. 3. Similarly, back-projecting an image pointx′ yields
the projecting lineL′(x′) = QTx′, where the3×6 line pro-
jection matrixQ can be computed directly fromP, cf. [9].

All constructions listed in table 2 are bilinear functions
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Figure 3:shows the ideal geometric situation, where a 3D
line LM can be constructed by a set of matched image fea-
turesM = {x′1,x′2, l′1, l′2}. For each image point, we can
define a projecting lineL′(l′1/2) and for each image line
segment a projecting planeA′(x′1/2). A 3D line segment
S is defined by the pair of points(Xs,Xe) on the lineLM
with the largest distance to each other.

on its given entities, i.e. in generalz = U(y)x = V(x)y,
whereU(y) andV(x) are matrices with entries linearly de-
pending ony andx. Assuming thatx andy are uncorre-
lated, we can use the standard error propagation to obtain
the uncertainty ofz:

Σzz = U(y)ΣxxUT(y) + V(x)ΣyyVT(x) (1)

Therefore by having the covariances of the given entities,
we can easily do error propagation to obtain the uncertainty
of the newly constructed entity.

3.2. Estimation
In the previous section we presented direct constructions of
uncertain points, lines and planes, but in general we might
have a large number of observed entities being either inci-
dent (∈) or identical (≡) to the unknown entity. For ex-
ample, in fig. 3, there are four cameras with two project-
ing lines and two projecting planes incident to the unknown
space line.

Gauß-Helmert model. To estimate the unknown entity,
we use an iterative, linear estimation model, the so-called
Gauß-Helmert model (cf. [10],[16]) which is summarized as
follows (cf. [6]): the constraints between the true unknown

entities construction expression
X,Y L = X ∧Y L = TT(X)Y = −TT(Y)X
A,B L = A ∩B L = TT(A)B = −TT(B)A
X, L A = X ∧ L A = TT

T
(X)L = −I (L)X

A,L X = A ∩ L X = TTT(A)L = −I (L)A
l′, P A′(l′,P) A′ = PTl′ = (l′T⊗ I4)vec(PT)
x′, Q L′(x′,Q) L′ = QTx′ = (x′T⊗ I6)vec(QT)

Table 2:Direct construction of new pointsX,Y, linesL,M
or planesA,B using join∧ and intersection∩. The matri-
cesTT, TT, I and I are given in table 1.P and Q are the
projection matrices for points resp. lines. With image points
x′ and image linesl′ we can construct the projecting lineL′

and the projecting planeA′. The symbol⊗ denotes the Kro-
necker product, the operatorvecappends the columns of a
matrix to a vector. All forms are linear in the coordinates of
the given entities allowing rigorous error propagation.

entity β̃ and a list of ideal observed entities̃γi expressed as
an implicit formgi(β̃; γ̃i) = 0, with constraintsh(β̃) = 0
on the unknown. The actual observationsγ

i
are random

perturbations of the ideal observationsγ̃i: γi = γ̃i + ei,
wheree is assumed to be normally distributed with mean
0 and covariance matrixΣee = σ2Σi

ee. Minimizing the
weighted sum of the residuals of the constraints we obtain
an estimation(γ̂i, β̂). Furthermore we obtain a covariance
matrix Σ̂β̂β̂ = σ̂2Σi

β̂β̂
of the unknown entity with the esti-

mated initial covariance matrixΣi
β̂β̂

and the estimated vari-

ance factor̂σ2. which is an indication how well the estimate
fits to the given data and its covariances.

Application. In our case we need an implicit algebraic
expression of the formgi(β; γi) = 0 for expressing in-
cidence and equality of points, lines and planes, all alge-
braic expressions can be found in table 3. For example, if
an unknown lineM should be incident to observed planes
Ai, then the following constraint holds:g(M; Ai) =
TTT(Ai)M = −I (M)Ai = 0. Since all constraints in
table 3 are bilinear in both the observations and unknowns,
we already have the Jacobians necessary for the estimation
procedure.

Using these equations, the estimation of points, lines and
planes from incident and identical entities can be performed
with the previously described Gauss-Helmert model. Since
we use an iterative estimation procedure, we need approxi-
mate values, which can be obtained directly using eigenvec-
tor or SVD solutions. In [11], it is shown how to extend this
estimation scheme with parallelity and orthogonality con-
straints for 2D and 3D objects yielding good results within
a few iterations. For an alternative formulation of the fitting
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observations→ pointsXi linesLi planesAi

↓ unknown relation constraint relation constraint relation constraint

pointY Xi ≡ Y TT(Xi) Y = 0 Li 3 Y I (Li) Y = 0 Ai 3 Y AT
i Y = 0

line M Xi ∈M TT
T

(Xi) M = 0 Li ≡M I (Li) I (M) = 0 Ai 3M TTT(Ai) M = 0
Li ∩Mi 6= ∅ Li

T
M = 0

planeB Xi ∈ B XT
i B = 0 Li ∈ B −I (Li) B = 0 Ai ≡ B TT(Ai)B = 0

Table 3: Possible equality and incidence relations≡,∈,∩ 6= ∅ between lists of observed space pointsXi, linesLi, and
planesAi (top column) and unknown space pointsYi, linesMi and planesBi (left row). The algebraic formulation of the
constraints are bilinear with respect to the unknowns and observations. The matricesTT, TT, I andI are given in table 1.

problem, see e.g. [19].

4. Testing Geometric Relations

Testing whether two points are identical or whether a line is
incident to another line can be formulated as an hypothesis
test; in fact, all relations between points, lines and planes
given in table 4 can be used. In the following we assume all
variables to be normally distributed. We use the following
theorem from statistical testing theory (cf. [14]):
Test of d = 0: Given ann-vectord with normal distribu-
tion d ∼ N(0,Σ), rkΣ = r ≤ n, and known null-space
N (Σ) = H, being an × (n − r)-matrix, the the optimal
test statistic for the hypothesisHo : x = 0 is given by

T = (x− µ)TΣ+(x− µ) ∼ χ2
r (2)

whereχ2
r denotes theχ2

r-distribution withr degrees of free-
dom. For the pseudo inverseΣ+ we use the null-spaceH,
which can be determined algebraically for our cases, cf. [7].
Therefore we choose a significance numberα and compare
T with the critical valueχ2

r,α. If T > χ2
r,α then the hypoth-

esis that the spatial relation holds can be rejected.
In table 3, the expressions for computing the homoge-

neous vectord are given:d is supposed to be zero if the
incidence or equality relation for two entities is fulfilled.
Note that for testing two elements it is advantageous to
scale down the Euclidean part w.r.t. the homogeneous part
to minimize linearization errors of the covariance matrices.
Including parallelity and orthogonality relations we can for-
mulate 13 relationships for 3D entities and therefore 13 dif-
ferent hypotheses tests, cf. table 4 and [7].

5. Matching and Reconstruction

We now describe the approach to match 2D line segments
and reconstruct 3D lines based on the previously described
tools for geometric reasoning and construction taking the
uncertainties of the observations into account.

PointX Line L PlaneA
PointY ∈ ∈ ∈
Line A ∩ 6= ∅,≡, ‖,⊥ ∈, ‖,⊥
PlaneB ≡, ‖,⊥

Table 4: 13 relationships between points, lines and planes
in 3D: incidence (denoted by∈,∩ 6= ∅), equality (≡), or-
thogonality (⊥) and parallelity relations (‖). Our system
can perform hypotheses tests on these relations based on
covariances, cf. [7]. The bilinear algebraic expressions for
incidence and equality constraints used in this work are
listed in table 3.

Input data. For our task, the observations are pointsx
and line segmentss, found by a point and line segment ex-
tractor, collected inN sets of featuresF i for i = 1, . . . , N
images. We use the polymorphic feature extractor, cf. [5],
which gives - in addition to the geometric position - covari-
ance matrices as uncertainty measures. From a 2D line seg-
ments one can derive the (infinite) 2D linel(s) with Σll.
We assume that the feature extraction yields realistic esti-
mates forΣxx andΣll. If not, one has to calibrate the vari-
ance factors, for example with manual matches in a bundle
adjustment.

Furthermore the projection matrices of the images are
given, possibly with their covariances.

Epipolar Beam. The matching algorithm uses only geo-
metric constraints, starting with a constraint from epipolar
geometry, cf. [20]: given a line segments with start- end
endpointxs,xe, the epipolar lines ofxs andxe define a re-
gion (“epipolar beam”) in the other images. Therefore we
define a setE(s) for each line segments, which contains all
line segmentsand points being in the epipolar beam. For
the epipolar beam, the uncertainty ofxs,xe has a small,
negligible influence on the result and safely can be ignored.
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Matching Algorithm. The main matching algorithm is
outlined as follows, cf. pseudo-code below. For a pair of 2D
lines l1, l2 we compute the 3D lineL12 by intersecting the
projecting planesA′(l1),A′(l2) and match all features in
the other image withL12 by incidence tests with the back-
projected image features (lines 4-10). We did the tests in
3D, but it is equivalent to projectL12 into the images and
test on collinearity in 2D.

Then we test the consistency of the matched features in
each image separately, (lines 12-16): all matched 2D points
and 2D line segments in one image should be collinear to
each other. We pairwise test collinearity between the image
features, and remove a feature if the collinearity test was not
successful and the feature has a larger test-statistic (eq. (2))
for the incidence withL12 than its counterpart.

Now a 3D lineL̂M is estimated from all point and line
segment matches and check the estimated variance factorσ̂
(lines 19-20). If the feature extraction was calibrated cor-
rectly, this factor should be equal to 1. The variance factor
is fisher distributed; we allow a factor of up to 2, which
basically is equivalent to an hypotheses test with a suffi-
ciently large significance level. We finally check again if all
matches inM are still incident tôLM (line 22).

The last part of the algorithm is the computation of the
endpoints(Xs,Xe) of the 3D line segment̂S which lie on
the estimated 3D line (line 24). This can be done by com-
puting the projecting lines for all points and endpoints of the
matched featuresM and collect the intersections with the
estimated linêLM. The two most distant intersection points
are the endpoints of the new 3D line segmentŜ(M, L̂M),
also cf. fig. 3.

It is possible that multiple 3D line segmentŝSj have
been extracted for the same true line segmentS̃. Then all
Ŝj should be equivalent to each other, which again is tested
statistically. Currently we delete all identical 3D line seg-
ments except of one, but we can also unify them to a possi-
ble longer line segment.

1 for s1 ∈ F1 ∪ · · · ∪ FN do
2 for s2 ∈ E(s1) do l1 := l(s1), l2 := l(s2)
3 // direct construction using first two lines
4 (L12,ΣL12L12) := A′(l1) ∩A′(l2)
5 M := ∅ // init match-setM
6 // search projections ofL12 in other image
7 for x,m ∈ E(l1) \ (F(l1) ∪ F(l2)) do
8 if L′(x) ∩ L12 6= ∅ then x ∈M fi
9 if A′(m) 3 L12 then m ∈M fi

10 od
11 // pairwise collinearity check of matched features
12 for i := 1, . . . , N ; x,m1/2 ∈M∩F i do
13 if (x /∈m1/2 or ¬(m1 ≡m2))
14 thenM :=M\ {x or m1 or m2}
15 fi

16 od
17 skipM if ∃i : F i ∩M = ∅
18 // estimate 3D line by incident matchesM
19 (L̂M, Σ̂LL, σ̂) := Estimate_Incident(M)
20 skipM if σ̂ > Tσ // check estimation
21 // final check of matches with estimatedL̂M
22 if (∀x,m ∈M :
23 A′(m) ∈ L̂M and L′(x) ∩ L̂M 6= ∅)
24 then compute 3D line segment̂S(M, L̂M)
25 fi
26 od
27 od

Algorithm 1 to compute 3D line segmentsŜj from feature
setsF i,i = 1, . . . , N for N images. A feature set consists
of image line segmentss1,2,m1,2 and pointsx. The set
E(s) is the set for a line segments, which contains all line
segments and points being in the epiploar beam ofs. The
thresholdTσ is chosen according to an hypothesis test, see
text for details. All tests and computation are done using
the uncertainty of the entities.

Remarks. The sketched algorithm is a first proposal for
the extensive use of uncertain projective geometry for
matching algorithm and has some interesting properties.
• Note that there are no parameters to be set other than sig-
nificance levels for the hypotheses tests, which was fixed to
95%.
• The step of optimal reconstruction of a 3D line segments
with respect to the observations is an essential part of the
matching algorithm.
• Image points are integrated into the matching and con-
tribute to the final 3D line segment.
• We currently do not use the trifocal tensor for finding
matches in other images, but it is possible to integrate it
into the search.
• Theoretically three images are enough to use our ap-
proach, but one can expect that having four or more images
greatly improves the performance of the algorithm.
• The algorithm was tested using known camera matrices;
but since all relations that are tested are invariant under pro-
jective transformation, one can use any set of projectively
equivalent camera matrices.

6. Grouping
Being able to do statistically uncertain geometric reasoning
not only enables us to perform matching of 2D line seg-
ments: we can also use the hypotheses tests of sec. 4 to
group the computed 3D line segments to more complex ag-
gregates. To do reasonable grouping we assume our object
model to be polyhedral, consisting of straight lines, corner-
points and planar surfaces. Here we introduce the first step
of detecting 3D corners, i.e. corner-points associated with
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Figure 4:Upper two rows: extracted line segments superim-
posed on four images; lower two rows: back-projected 3D
line segments computed with the proposed algorithm using
only line segments and no points.

two 3D line segments. This means we have to find line
segment pairsS1,S2 in object spaceO such that the lines
L(S1),L(S2) are incident and non-parallel, which can be
tested statistically, as seen above. Furthermore we do not
want to group line segments, that are too far away. If we
know the units in object space, setting a thresholdTd is easy.
The resulting grouping algorithm for finding a setC of 3D
corners is given as:

1 for S1,S2 ∈ O do L1 := L(S1),L2 := L(S2)
2 if L1 ∩ L2 6= ∅ and¬(L1 ‖ L2)
3 then Xc := Estimate_Incident(L1,L2)
4 skip if distance(Xc,S1,S2) > Td
5 C := C ∪ {(Xc,S1,S2)}
6 fi
7 od

In a more general grouping approach for 3D entities
(cf. [12]), the same geometrical reasoning was used, but the
distance criterion above was replaced with topological anal-
ysis of the features in image space. The resulting algorithm
continued the outlined grouping step to polyhedral surfaces
using coplanarity tests (cf. sec. 4) for corners.

7. Results
We tested the algorithm described in sec. 5 on aerial im-
agery, though there is no reason that the same algorithm

Figure 5:first row: extracted line segments and points su-
perimposed on three out of four images; second row: back-
projected 3D line segments computed with the proposed al-
gorithm using line segments and points; third row: two new
views of the new 3D line segments, fourth rows two views
with grouped corners.

works on close range scenes and we will test this in the
near future. We included two example results, see figure 4
and 5; the first one only uses 2D line segments, the sec-
ond one uses both line segments and points extracted by the
local implementation of the feature extraction, cf.[5]. Ex-
ample 1 contains 583 image lines and we obtained 15 3D
line segments. Example 2 contains 181 2D segments and
443 points resulting in 23 3D line segments. On average,
each estimated 3D line had about two point observations
and four line observations.

The algorithm was implemented in the scripting lan-
guage Perl; on a Pentium III it takes roughly 1 minute or
less to compute 10 iterations in the outer loop of the algo-
rithm in sec. 5, that means computing at best up to 10 3D
line segments per minute. It appears to be sufficient to use
only 50% or less of all existing image line segments as a
starting segments1, so that for the example in figure 4 we
need between 15 minutes and half an hour to compute the
3D line segments. One may pre-sort the set of image line
segments by their length so that more significant lines are
used at the beginning.
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8. Summary and Conclusions
We have presented a method for matching 2D line seg-
ments in multiple views and optimally reconstruct 3D line
segments from these matches using an ML-type estimation
scheme. The method only used geometrical constraints with
error propagation and statistical tests, driven by the esti-
mated precision of the image features. No data-dependent
thresholds were used other than significance levels for hy-
potheses tests. Though it is desirable to use as many cues as
possible, it has been shown that the geometric cue is quite
strong and can be used if four images are given.

Furthermore it is possible to use the tools for estimation
of geometric entities and testing its geometrical relations for
grouping 3D elements. As an example we have grouped the
3D line segments to 3D corners.

Future work includes among other topics: (i) extending
the estimation described in sec. 3.2 to a robust estimation,
such that a feature within a match can be identified as an
outlier. (ii) including other cues for matching and grouping
of 3D lines which would stabilize the solution. Addition-
ally, other cues would also improve the speed of the pro-
gram, since a good match hypotheses is found earlier than
with only geometric cues. As an example, one can use the
2D neighborhood relationship of points, lines and image re-
gions to infer a 3D neighborhood relationship of 3D line
segments, cf [12]. Other cues such as image intensities may
also be used, cf. [17].
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