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Abstract

We propose a new representation for segmented images useful for Perceptual Or-
ganization. The representation has four distinct properties: (1) It is topologically
consistent, i.e. the image plane is completely described; (2) the representation treats
fore- and background symmetrically, a change of fore- and background has a well-
defined and transparent impact on the representation; (3) the hierarchical structure of
the representation explicitly reflects the aggregation of parts and objects; (4) finally
the representation has an associated scale, which refers to the significance of image
parts and of their relationships.

We present an example for such a representation, where the images consist of area
type features and the significance of the relationships of the blobs are based on their

proximity.



1 Introduction

1.1 Motivation

In their overview paper, SARKAR AND BOYER 1993B define the term perceptual organiza-
tion “[...] as the ability to impose structural organization on sensory data, so as to group
sensory primitives arising from a common underlying cause”. Numerous examples of this
ability have been demonstrated by artificial imagery following the widely known Gestalt laws
of proximity, similarity, closure, continuation and symmetry, see LOWE 1985 and figures 1(a)
and (b). Researchers have proposed computational models for one of these aspects, like the
detection of illusory or subjective contours, see HEITGER AND VON DER HEYDT 1993 or
Guy AND MEDIONI 1996, but also for a number of different grouping principles like Mc-

CAFFERTY 1990. Besides the theoretical and psychological interest in perceptual grouping,
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Figure 1: Proximity criterion (a), Kanizsa triangle, see KANIZSA 1979 (b) and faces—vase
illusion (c)

the work on this topic is motivated by the fact, that every feature extraction method like
edge detection produces cluttered image descriptions with qualitative and quantitative er-
rors. The goal of most computational methods of perceptual organization is to overcome
some of these problems in order to provide an improved description to subsequent vision
modules. But the structure and the quality of the description depends on the application:

for example, if we know that the object in the image is an industrial building, we probably



only want to extract straight lines and group them to a polygon, e.g. see LIN et al. 1994; if
the object is a coffee mug, we need to find and group curved lines. In both cases the group-
ing process uses this specific knowledge in order to find an appropriate group of lines. The
decision whether we look for curved or linear lines belongs to a top-down process as opposed
to the bottom-up process of edge detection and grouping. SARKAR AND BOYER 1993A
introduced a (modified) Bayesian network to guide the grouping of straight and curved lines
to parallelograms, triangles, circles, etc. They restrict the complexity of a Bayesian network
by using the local neighborhood dependencies of the features and structural similarities of
features in different locations. The advantage of this approach is the flexibility with respect
to other applications since they are able to explicitly model specific scene knowledge. The
construction of the network and the choice of algorithms however,may not be obvious and
is (currently) the task of the system user. CASTANO AND HUTCHINSON 1996 also use a
probabilistic approach to find a most likely set of groupings which are ordered by their as-
sociated probability. Therefore a user can choose between several possibilities to find the
grouping which fits best to his or her application. They implemented straight line and sym-
metry grouping as examples of geometric structures and computed probabilities that a set

of features is to be grouped together for a given image.

1.2 The Task

A module for perceptual organization in general requires the following decisions made by

the calling routine:
1. the selection of the basic features and the type of tokens to be organized.
2. the organization criteria, evaluation or optimization functions or constraints.

In this way it is possible to specify the needs of the user. The complexity of the organization
process results from the variety of links between features and the evaluation criteria for these

links which depend not only on the attributes of the features but also on the density of the



Figure 2: Examples of blob extraction. On the left blobs are extracted by thresholding, the
right shows homogeneous blobs of an aerial image, labeled by grey value.

linking network. As perceptual organization is a repeated aggregation process the ease of
specification and the efficiency of the realization heavily depends on the representation of
the features and their links.

This paper presents a new representation for segmented images useful for perceptual orga-

nization. It starts from

1. spatial features which may be the result of some segmentation procedure, in general
yielding attributed point type, line type and area type features together with their
relations. We assume the figure ground separation has been made, see for example

figure 2.
This covers a large class of classical tasks. In this paper we concentrate on binary
images only. However, generalization of the type of imagery is straight forward.

2. a significance measure for the features themselves as well as for their relations.

This gives enough freedom for specification. In this paper we restrict the significance
measure to a size and a proximity measure, establishing close links to published ap-
proaches. However, taking other attributes of the features and their relations into

account is easy.

The envisaged representation should fulfill the following properties:



e The representation should be topologically consistent. The complete image plane
should be represented. Features to be grouped may be typed and are assumed to
not overlap. Neighborhood relations should not lead to inconsistencies as e.g. in case
one uses the N4-neighborhood for fore- and background of a binary image. We achieve

this by explicitly representing the background, especially holes.

e The representation should treat fore- and background symmetrically. Changing fore-
and background should change the representation in a transparent way. This goal
follows from the observation, that both fore- and background contain important infor-

mation, e.g. see the faces-vase illusion in figure 1(c).

The proposed representation consists of two interleaved attributed trees, one for the
foreground and one for the background which are exchanged. Especially grouping and
partitioning and generation and deletion of features are explicitly represented as dual

operations.

e The representation should be hierarchical. The tree structure explicitly represents
the aggregation hierarchy identifying significant parts of the foreground and the back-

ground.

e The hierarchical representation should be scalable, i. e. depending on—a user specified—
scaling measure. This measure is defined by the significance of the individual features
as well as by the significance of the relations between the features, The significance
depend on the attributes of the features and their relations. This gives enough freedom

for specification (cf. the approach of MCCAFFERTY 1990).

In this work the used features and tokens are just area type features, also called blobs; our
goal is to correct for spatial uncertainty of the blobs. We are only interested in topological
errors (sec. 3) and do not model geometric errors. In the next sections we will see that we

can choose the principle of proximity between blobs as the grouping criteria for our task.
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Figure 3: Four types of qualitative or topological errors for blob extractors. Z denotes the
ideal image and & the observed image.

1.3 Related Work

The idea of representing a blob process in a tree was already described by LINDEBERG 1993:
he investigated grey scale blobs defined by specific properties in the grey value surface of the
image and depend on a scale parameter. He observed that four events can happen: creation,
deletion, splitting and merging. The “scale of the events” were defined similar to our critical
points. KOENDERINK AND VAN DOORN 1997 also noticed an hierarchy structure when
analyzing the qualitative structure of images. He referred to the so-called Morse-points,
which are singularities in a landscape namely summits, immits and saddle points. Looking
at the level curves of the landscape one can define a nested qualitative description. The close
connection between our representation and this nesting will become clear in the subsequent
sections.

Our grouping and partitioning method uses the proximity of blobs to merge features. This is
similar to a neighborhood grouping as in FucHs 1998 (cf. FUCHS AND FORSTNER 1995):
she uses the neighborhood relations to correct topological inconsistent situations of blobs,
lines and point features. These neighborhood relations are obtained using a skeleton of

the non-feature regions, which is similar to AHUJA AND TUCERYAN 1989, who computed



regions and curves from a dot pattern using the properties of the Voronoi-neighborhoods of
the dots.

KiMIA et al. 1995 developed a method for describing two-dimensional shapes by analyzing
the evolution of shape boundaries under the process of constant and curvature deformation.
They categorized four singular events called shocks. In a subsequent work SIDDIQI et al.
1998 use the shocks to define a graph describing a shape.

In this work we use the following notations: given the set A € R?, we denote the interior of
A as ;l and the boundary as d.A. The closure of a set is the unification of boundary and

interior: A :;l UOA. The complement is given by A°.

2 Complete Partitioning and Tide Partitioning

2.1 Complete Partitioning

We define a partitioning as the splitting of regions into two or more disjunct subregions,
based on SIDDIQI AND KIMIA 1995: they define a partitioning with part—lines, which are
curves that connect two boundary points, lie within the interior and divide the region in two
connected components. Because the definition can not deal with holes, we will extend this
notion of partitioning.

First we give a set-oriented definition of a region image. Let Wy,... , W, C R? be a set
of connected regions and W; disjunct. Then we call X = Lnj W; a binary figure with n
components W;. A binary image consists of two elements, thez_l;inary figure X' (foreground)
and its dual figure, the complement X (background) of X'. Components of the foreground
will be denoted by letters W and background components with V. Now we can define
a part-line similar to SIDDIQI AND KimIA 1995 as a regular curve « : [0,1] — X with
a(]0,1[) cx , which divides a component W; of X in two disjunct subsets W;, and W,. Let

L ={ay,...,a,} be aset of part-lines L for a figure X'. We denote a partitioning of a figure

as the difference X"\ L.



Figure 4: Examples of part-lines

But this scheme is not general enough, if we a allow “holes” in the components, the compo-
nent is not simply connected. One example can be seen in figure 4: the curves a; and ay are
not part-lines on their own, but together they divide the component in two parts. If we look
only at one of the above part-lines, we see that this line actually merges two background
components, namely V; and V,. This observation suggests a more general definition of part—
lines: either the number of components increases (first case) or the number of holes decrease
(new case). We can use the genus (also called Euler number ¢(X) ) of a binary figure X,
which denotes the difference between the number of components x(X) and the number of
holes A\(X): a general part-line is a regular curve « : [0,1] — X, which increases the Euler
number €(X’) by one, i.e. e(X \ a) = €(X)+ 1. A partitioning is now the difference between
X and a set of general part-lines. We call this partitioning complete, if the Euler number

equals the number of components, i.e. no holes exist.

2.2 The Geometry of Part-lines

Up to now we have not described how the part-lines are computed. Since our task is to correct
for the spatial uncertainty of blobs, we look again at figure 3(a). If one component in the
observed image refers to two components in the ideal image, one apparently divides the one
component at an “obvious” location. What does “obvious” mean in this context? Apparently

two ideal components can not have an arbitrary distance such that they are observed as one



component in the real image. The smaller the distance the larger the probability that they
are mistakenly merged. WINTER 1995 distinguishes between a strong and a weak overlap
of two sets. If one has two disjunct sets, an uncertain observation results only in a weak
overlap. This means in our case that the connection between the ideal components only
cover a small area compared to the real objects. This argumentation corresponds to the

proximity criterion when grouping features.
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Figure 5: Artificial example of the impact of spatial uncertainty of blobs. The left shows the
grey scale image from figure 2 with additional blurred Gaussian noise. The middle binary
image is computed by thresholding the grey scale image. The right shows a magnified patch
of the binary image.

An artificial example stresses the last argumentation: we add noise to the grey-scale image
with the two boxes from figure 2 and smooth it thereafter, see figure 5. If we threshold the
processed image, we get a noisy binary image with cluttered boundaries of the rectangles,
which are now merged to one connected component. But the connections on which the two
rectangles merge, are relatively thin depending on the strength of the noise. For our purposes,
it seems to be sufficient to draw a part-line at the thinnest location of the connection.

For a mathematical definition of part-lines we need the distance transformation dx(z) : X —
R? of a binary figure X', which assigns every point of X the minimal distance to the boundary
OX of X, see also SERRA 1982. As one can see in figure 6(a) and (b), a saddle point p of dx
defines a part-line a(p) by connecting p with its nearest boundary points. TARI et al. 1997

used this criterion for segmenting shapes and defines a limb part-line in the sense of SIDDIQI



AND KiMIA 1995. Unfortunately the distance transformation of the shape in figure 6(c)

does not have a saddle point, but for our problem we still want to draw a partitioning line.
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Figure 6: Tide-partitioning. Figure (a) shows a schematic drawing of a thin connection
between two regions p(«) is a part-point, which defines the part-line . In (b) we have a
unique splitting-point, whereas in (c) we have a set M of possible part-points. The part-line
can be defined with any of the points in M. In (d) we have again a set of splitting-points,
the part-line can be anywhere within the torus.

2.3 Tide Partitioning

We therefore introduce another definition which is based on the morphological operation
erosion X © pyB, where B is the unit disc and py € R*. It can be shown that X © pyB =
{z € R? | dx(z) > po} (for dilation, we have X & poB = {z € R? | dye(z) > po}). We
can clarify an erosion (and later on a dilation) by the following analogy: imagine that the
binary image is a simple cartography map where the foreground corresponds to land areas
and the background to water areas. An erosion X © pyB can now be expressed by an increase

of the water-level by po. If we regard the increase as a process, we are interested in those

10



events at which an island is split into two parts or a lake merges with another lake or seal.
Such a critical event defines a point or a set of points of the original land areas at which
the splitting of an island or merging of two seas happen. If seas merge, we also regard this
event as a splitting event because it splits an area of an island. Therefore we call the points
splitting points. Note that in figure 6(d) the set of splitting points has the shape of a circle;
a part-line a(p;) is be defined by an arbitrary splitting point p, € M.

Mathematically, a splitting event py and the set of splitting points M, can be defined as
follows:

po is a splitting event <=  JeVp € [po—€,00): KX SpB)=r(X S psB)—1V
MX epB)=ANX6EpB)+1

M, = (1 (X Spo B) — (X Spo B) © pB)
p>0

where M), is defined as in SERRA 1982, page 376 as the subset s, (X) of the skeleton
S(X), k(X) denotes the number of components of a binary figure X and A(X) the number
of holes. Note that the splitting events are shape shocks of second and third order in the
sense of KIMIA et al. 1995.

We can now introduce a new partitioning scheme: let M, ,... , M, be the sets of splitting
points for all possible splitting events pi, ..., p,. Assuming that M, are connected?, we
choose for every M, an arbitrary point p,, € M, which defines a general part-line a(p,,)
by connecting its nearest boundary points of X'. Because of the above analogy we call the
partitioning X' \ L; with L, = UO‘(Ppi) the tide-partitioning of a binary figure X'. It can be
shown that the tide-partitionir:g is complete, i.e. there are no holes in X \ L; (cf. HEUEL
1997). Note that the tide-partitioning is invariant under translation, rotation and scaling.
An example for a tide-partitioning is shown in figure 7.

The arbitrariness if the partitioning point p,, € M,, does not effect our partitioning scheme,
as all partitionings with p,, € M), are seen to be equivalent. In this case one would indicate

Dp; to be uncertain to some degree.

1'We assume that the ground-water-level is at any time equal to the sea-level.
2i.e. the critical events are unique

11
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Figure 7: Tide-partitioning for the artificial example in figure 5. On the left is the original
binary image. The middle shows the same image where blobs with size smaller than 9 pixels
are removed. The right shows the connected components of the tide-partitioned image.

3 Scaled Partitioning

3.1 Significance as Scale

Like many other segmentation methods the tide-partitioning may result in an over-segmen-
tation. The decision whether a segmentation is over-, under- or correctly segmented depends
on the vision task; only with high-level knowledge one is able to make this decision. For this
reason we want to provide a number of partitionings from which one can choose the best
related to the task. We can obtain the partitionings by assigning every part-line o; with a
significance measure o(a;): the larger the similarity the more important is the part-line; the
significance measures the so-called Pragnanz of the split. With this measure we not only
obtain an order of the part-lines but we can also determine the relative significance of two
part-lines by their difference of significance. Applying the part-lines subsequently according
to their order, one get an list of partitionings with size n, if n is the number of part-lines.

For our special tide-partitioning we suggest that the significance of a part-line a;(p) should
be anti-proportional to a function of its length. In the analogy the length corresponds to
the water-level of the critical event or the height of the splitting point and we can define:
o(a;(p)) ~ m where p is the splitting point and f is some monotonous increasing
function, the simplest case would be f = id, or f = exp(dy(p)). Observe that any sim-

ilarity measure can be used for scaling, which gives freedom to the user. Also combined

12



measures, e.g. depending on distance and spectral similarity of blobs can be used.

3.2 Scaled Deletion

In our opinion a partitioning should not only break objects into parts, but also delete those
parts that are not important to the task. Looking back to the analogy: when raising the
water-level we not only have splitting and merging as topological events, also islands can
disappear if the water-level is increased sufficiently. In this sense we now include the deletion
of parts in the tide-partitioning scheme: we define a significance measure of the parts which
can again be based on the distance transformation dy: let YW; be a component in the complete
partitioned figure X' \ Ly, then: o(W;) ~ m where p € W; has the largest distance
transformation value in the component, which refers to the top of the mountain of the island
W;. The function f is not necessarily the same function as above. This significance can
be related to a topological event called the deletion event, which is similar to a shock of
fourth or third order in KiMIA et al. 1995. Using the deletion of parts, the ordered list of

partitionings grows by the number of these parts in the complete tide-partitioning.

3.3 Formal Definition of Scaled Partitioning

For a mathematical formulation of a scaled partitioning, we need three requirements for the
significance measures o(q;) and o(W;). First they have to be consistent: a part W; should
not be deleted if not previously all its neighbor parts were split from W;, or expressed with
part-lines: for all a; is neighbored to W; : o(c;) > o(W;). This means that for an island with
two mountains, first the mountains are split before they disappear. The second requirement
is that the significance measures of the part-lines are completely ordered®. This ensures a
unique identification of splitting events and will be needed later on for the hierarchy. Third,

the significance measures must not be zero, which would mean that a split or a deletion would

3You can transform every semi-order to a complete order by randomly sort equal elements.
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never occur, and they must not be equal to infinity, which would mean that the events would
always appear.

Definition 1 (Scaled Partitioning)

Let X \ L be a complete partitioning of a binary figure X with L = {ay,... ,a,} a set of
general part-lines and K = {W,... ,W,,} the connected components of X \ L. For every
part-line a; we have a significance measure o(q;) and for every part W; we have o(W;),
where o(e) are consistent, completely ordered and positive real numbers. Then we call the

mapping X : Ry — &,

X(—0)=(X\L*(0))\ K*(0) witho € R{ and

L*(oc) ={a;| @; € Land o(a;) > o}, K*(0) = {W;| W; € K and c(W;) > o}
a scaled partitioning of the binary figure X . [

A scaled partitioning results in an ordered list of images X (Iy),...,X(I,), where I; =
[04,0441) with 09 = 0,0,,1 = c0 and n = |L| + |K|.*

Note that the definition holds for any algorithm which produces complete partitionings, not
only for the tide-partitioning scheme. Extremely scaled partitionings are X'(—oc0) = & and
X(0) = 0. An example of a scaled partitioning is shown in figure 8. One can think of
part-lines as channels which are built through an island and the significance measures as
cost-functions for building a channel or flattening parts of the land areas. The higher the

costs the less will be built resp. flattened.

4 Scaled Grouping

4.1 Merging Events

In the previous section we have concentrated on the foreground X of the binary image and

used the erosion to define splitting and deletion operations. Now we are interested in merging

4The lower index of ¢ and I indicates that the significance and the intervals refer to partitioning. Later
on in section 4 we will use upper indices for significance measures and intervals to denote grouping.
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(a) X([—00,—39.16)) (b) X([~39.16, —27.29)) (¢) X([~27.29, —16.57))

(d) X([-16.57, —14.61)) (e) X([—14.61,—6.02)) (f) X([-6.02,6.74))

Figure 8: A binary figure X' (f) and its scaled partitionings using the tide-partitioning. The
intervals are given for distance d, not for significance . For an explanation of the interval
of figure (f), see section 4.4

and creating blobs. Since we want to correct for the spatial uncertainty of blobs we can argue
that the smaller the minimal distance between two feature blobs in the observed image, the
larger is the probability that they are connected in the ideal image, cf. figure 3. Note that
we do not include knowledge about the shape of blobs. For example for the Kanizsa triangle
in figure 1(b), it would be better to incorporate linear boundary information for merging
blobs.

So again we concentrate on the proximity criterion, but this time for merging instead of
splitting blobs. For computing the merge operation we extend the definition of the distance

transformation for the whole image:

dy(z) ifze X,
—dyc(z) otherwise

Dale) = {

In our analogy this means that we can decrease the water-level which corresponds to the
dilation of the figure (see page 10). If we have two separated islands a constant decrease of

the water-level will eventually result in the connection of the two islands—we call this event

15



merging event. Another possible merging event would be the connection of two coast lines

so that a bay becomes a lake. We can define a merging event similar to a splitting event:

po is a merging event & JeVp € [pg —€,p0) : K(X @ pB) = k(X @ poB) +1 V

MX @ pB)=ANX @ pyB) -1
Using the duality of erosion and dilation X @ pB = (X¢© pB)¢ we obtain:

po is a merging event & JeVp € [pg — €, p0) : (XS pB) = AN X°S pyB)+1 V

k(XS pB) = k(X°S pyB) — 1

Comparing the above to the definition of a splitting event in the previous section it can
be seen that merging two blobs means splitting a background blob! So we can apply the
methods for partitioning a binary figure to group components: let 3; be a part-line for the

background X’¢; its significance measure can be related to the distance transformation with

o(Bi(P) ~ Ty
4.2 Creation of Blobs

As we stated in the beginning of the section we also look for an event of creating blobs.
Complementary to the blob deletion this means to fill holes of a binary figure; using the

analogy we dry out lakes as opposed to flood a part of an island. Again we assign a signifi-

1

cance measure for this event: let V; be the background component, then o(V;) ~ Tl )

where p is the point with the lowest distance transformation value in V;.

P = O U=

Figure 9: Examples for the shape of the connection of two blobs.
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4.3 Shape of the Connections

The geometric shape of a connection of two blobs has not been discussed yet; it is not obvious,
examples for possible connections can be seen in figure 9. One can interpret the gap between
the blobs as a lack of information in the observed image. To connect the blobs one needs to
extrapolate the blob shapes. Without any knowledge about the shape of the blobs we can not
infer a specific shape of the connection. Therefore we suggest to include as low information
to the image as possible. If we use the perimeter as a measure for the information of the
figure, the minimal connection is the shortest line between the two components. In this way

we can justify that the part-line of the background is the connection of two blobs.

4.4 Formal Definition of Scaled Grouping

The three requirements for significance measures also hold for merging and creation so we
define a scaled grouping of blobs:
Definition 2 (Scaled Grouping)

Let X \ L. be a complete partitioning of the complement X¢ of a binary figure with L. =
{ai,...,a,} a set of general part-lines and K, = {Vi,...,V,,} the connected components
of X¢\ L. For every part-line 3; we have a significance measure o(f;) and for every part
V; we have o(V;), where o(e) are consistent, completely ordered and positive real numbers.

Then we call the mapping X : Ry — X,
X(0) =X ULo)UK}(o)with o € Rj and
Le(o) = {Bil Bi € Le and 0(8;) = 0}, Kl(0) = {Vi| Vi € K. and 0(V}) = 0}
a scaled grouping of the binary figure X. [

Like the partitioning, the scaled grouping results in an ordered list of grouped images
X(I%,...,X(I™), where I' = [0%, 0"™) with ¢° = 00, 0™ =0 and m = |L | + | K,|.
The completeness of the background partitioning ensures that all components of X are

eventually connected to each other, because (X \ L.)¢ D X is connected. For every scaled
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grouping we have X(oo0) = X and X(0) = R?. A connection line between two blobs can be
regarded as a dam between two islands or two coast lines; closing a hole is similar to drying
out a lake. Again the significance measure is a cost-function for building dams resp. drying
out lakes. An example can be seen in figure 10, which shows the three possible groupings of

the image in 8(f).

(a) X([—6.02,6.74)) (b) X([6.74,10.70)) (¢) X([10.7,w — dx (C(X))

Figure 10: These three images are possible groupings of the image in figure 8(f) using the
tide-partitioning. Again, the intervals are given for distance d, not for significance o. For an
explanation of the interval of figure (c), see section 4.5.

4.5 Infinite components

As a side remark we want to examine what happens with infinite components in the scaled
grouping using the tide-partitioning. The question whether an infinite component has a
significance measure equal to zero is only of theoretical interest but it can clarify the notion
of duality used in this work.

Not every infinite component has an infinite distance transformation, for example an infinite
ribbon of the width b has a distance transformation dy < b. But the background components
are usually infinite and the maximal distance transformation, which is equal to the maximal
radius of an inscribed circle.

Let us assume that all the previous definitions were made on the projective plane P? =
(RU {—00,00})? instead of the Euclidean plane by unifying points at infinity with opposite
direction. To make it simple, we first look at the one dimensional case: components are

intervals I C P!, the maximal distance transformation of an interval is equal to half of its
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Figure 11: Mapping of P! onto a sphere S*.

length. We can identify P! with a unit circle S! by mapping every point z € P! onto a
point z, € S' as depicted in figure 11. The points —oo, 00 € P! refer to the north pole of
S1. Furthermore we introduce a metric since the Euclidean distance is not sufficient: let
op1(x,y) be the arclength between x, and y, on the sphere S'. We get gpi(—00,00) = 27
and a length gpi(I) of an interval I C P! is finite.

Returning to the projective plane this means that for the metric opz we do not have infinite
components, thus every component has a distance transformation which is finite. Transfer-
ring the Euclidean plane to the projective plane, the sphere S? has to be large enough so
that the set of topological events described so far remains invariant.

For notation purposes we use the following convention: if a component W is infinite in
the above sense, the distance transformation of its complement W¢ is used: dy(p(W)) :=
w — dwe(p(C(W°))) where C'(W°) is the convex hull of W*¢ and w denotes the distance of

the origin to infinity, for example w = 7w for pp2.

4.6 Duality Theorem

We now observe the duality of fore- and background. Part-lines of the background correspond
to connection-lines for foreground components. Similar, the deletion of a background blob is
a creation of a foreground blob. We can summarize this statement in the following theorem:
partitioning of a figure X means grouping the dual figure X° and vice versa grouping X is

equal to partitioning X°.
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Theorem 1 (Duality of Grouping and Partitioning)
Given an algorithm to compute complete partitionings of binary figures and consistent sig-

nificance measures for part-lines and parts. If o € R then

X(+0)¢ = X(—0) ; X(—0)¢ = X(+0)
Proof: We only proof the first equation, the second follows because of the duality.

X(0)° = (X UL0) UK (0))"
= X°N (L2 (0)° N (KX (o))"

C

= (X°\ Lg(0)) \ K2 (o)
= X°(—o) 0O

5 Hierarchy

In the previous sections we have introduced a method for partitioning and grouping binary
figures by proximity, where the output is an ordered list of scaled partitionings resp. group-
ings. In this section we show that we can enrich this representation using a causality-relation

between the components of each scaled image.

5.1 The Partition Graph

First we define a hierarchy for scaled partitionings. For every transition X' (I;) ~» X (I;41)
we have exactly one topological event, this is ensured by the consistency requirement in the

definition of scaled partitionings. Theoretically this event could be one of the four types:

(r(X:) = £(Xip1) = 1) V (MX) = A(Xipa) = 1) V (5(X) = K(Xip2) +1)

V A) = A(Xi) + 1)

The latter case does not occur: it would mean that there is a hole in a high scaled partitioning
which does not exist in a lower scaled partitioning, or dually: for the background it would
mean that a component is created on a high-scaled grouping. But in our definition of

scaled grouping only hole areas or part-lines are added, see definition 1; both could not be a
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separated component in the grouping image. Returning to the scaled partitioning, the event
AMAX;) = M A1) + 1 is impossible for scaled partitionings.

Looking at the other three events, either a component is split into two components (k(X;) =
k(Xiy1) — 1), a component is transformed to another by removing a part-line (A(X;) =
A(Xi11) — 1) or a component is completely removed (k(X;) = k(X;11) +1). Seeing the events
as relations between components of different scale, we can use them to define a graph, where
the nodes are sets of possible components:

Definition 3 (Partition Graph)

Let X be a binary figure with a scaled partitioning X \ L with L a set of general part-lines,
K the set of parts and n = |L| + |K|. We call the (directed) graph G~ = (V, R) with

V ={U| U is a component in X(I;),i =0,...,n}

R ={(v1,ve)| vi,mp € Vand Ja e L: ((vz=v1\a)V(FvseV:ivg=0v\a\vs))}
a partition graph of X. We call R the causality relation of a scaled partitioning. [ |

The structure of the graph is hierarchical: the partition graph is a tree, if X consists of one
connected component, see HEUEL 1997. For other X’ the graph is a set of trees.

We can identify every event with a node in the graph: if the node has two children, two blobs
are split; if a node has one child, a hole is connected to another hole or to the background;

if anode has no children, a blob is deleted.

5.2 Grouping Graph

For creating the grouping graph, we again look at the possible topological events that can
happen between X(I;) and X([;,1): as above we have three types of events: either two
components are connected (k(X*) = k(X"™) + 1), a component is transformed to another
component by adding a part-line of the background (A(X?) = A(X*1) —1) or a hole is added
to an existing component (A(X?) = A(X*™!) + 1). For the partition graph, the third event

was the deletion of a component, this had no effect on the causality relation. Here we have
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a deletion of a hole which results in a larger component. This has to be taken into account
by the causality relation, since a component is transformed into another component.
Definition 4 (Grouping Graph)

Let X be a binary figure with a scaled partitioning X\ L. with L. a set of general part-lines,
K the set of background parts and m = |L.|+|K.|. We call the (directed) graph Gt = (V| R)

with

= {U| U is a component of X (I?),i=0,...,m}

R= {(v1,v2)| v1,v2 €V and FBe€L,: ((vy=v2UB)V(Fvs €V vy =v3ULUus))
or IAVeEK.:(v=vUV)}

a grouping graph of X. [

This graph is always a tree since the maximal grouping is one component, namely the image
plane R?. Note that for a grouping graph, the number of nodes is not equal to the number
of critical events because the grouping X° = X consists of the components of X which are
the leaves of the tree. It is to be investigated how this representation relates to a region
adjacency graph, PAVLIDIS 1977.

Now we can combine the grouping and partition graph by identifying the nodes of X(1,,) =
X = X(I°), see definitions in sec. 3 and 4. The leaves of the grouping tree are the roots of
the trees in the partition graph. For a binary figure X we call the fusion of the two graphs
a foreground tree. Dually, the background tree is the fusion of the graphs of A’°.

A binary image can be described by two trees. Using the analogy, the trees represent all
topological events when having low- or high-tide: either islands sink (leaves),they are merged
(nodes with two children), a lake is created (node with one child) or dries out (node with one
child). The distinction between the last two events can be done in the dual tree. Therefore
we have a close relationship between the background and the foreground tree. An example

for both trees is shown in figure 12.
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Figure 12: Example for fore- and background tree for the image in figure §(f)

Remark. With the above causality, we can relate a hierarchical grouping to a simple
morphological scale-space, see for example JACKWAY AND DERICHE 1996, for a binary
image. The dilation scale space DR(X, p) := X @ p with gravity-points as features fulfills the
requirements of a scale-space (smoothing, detectable features, causality relation). Because of

the duality of erosion and dilation, we have a scale space both for grouping and partitioning.
5.3 Digitization

Up to now we assumed to have the Euclidean plane R? (resp. the projective plane P?). Two
main steps are necessary for computing fore- and background trees in digital images. First
the Euclidean topology has to be preserved for the raster image, since we extensively used
topological terms for partitioning and grouping. Based on ideas of KOVALEVSKY 1989,

WINTER 1995 introduced the hyperraster, for which a discrete set can be open and closed,
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there also exist zero- and one dimensional elements (0— and 1—cells), that enable to represent
points and lines. In the conventional raster format the crack edge between to pixels or the
common point of four pixel are not represented explicitly. A hyperraster consists of a set
of 2—cells f (faces), 1—cells e (edges) and O-cells n (nodes). In figure 13 are two discretized

components of a binary figure with their part-line depicted.
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Figure 13: A discretized binary figure with two parts H(W;) and H(W,) and a part-line
H(a).

To compute the critical events and their associated points one could use the distance trans-
formation, for which good approximations exist (BORGEFORS 1991), and detect topological
events as it was defined in the previous sections. This results in a very inefficient algorithm
and thus we used the skeleton and exoskeleton of the binary image: defining the three di-
mensional curve ['(X) := {(z,dx(z))|z € S(X)}, we search for relative minima and maxima
of I'(X) and T'(X¢) which are the wanted critical points. In our implementation we used the
Voronoi-skeleton of OGNIEWICZ AND KUBLER 1995, which can be computed fast and gives

real-valued coordinates of the skeleton line.

6 Examples

The first example makes the dual nature of the two trees clear: switching fore- and back-
ground means switching fore- and background tree. First, assume a binary figure with a

single disc as the foreground. In the projective plane P?, the background is finite and can
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also be interpreted as a disc: imagine that the sphere S? is turned around and the colors
black and white are switched, mapped back to P? results in a very large disc.

Now we analyze the dual figure Xy, depicted in figure 14, where both Xgua and (Xgua)©
have two components. A combination of grouping and partitioning results in six events: two
blob deletions, two hole creations and two splits. The resulting trees have the same structure,
only the intervals differ, because the two large components of fore- and background differ in

size.

original image distance transformation 1} :
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Figure 14: Xjya1, distance transformation Dy, , and foreground- and background tree. Ob-
serve the topology of the corresponding images in the foreground and the background tree
to be identical.

The second example in figure 15 shows an artificial image (a), where two discs are visible, one

in the foreground and the other one in the background. Note that usually the surrounding
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box of the right disc is not immediately perceived. To this example noise was added (b) in
the same way as in figure 5. Figures 15(c) and (d) show the parts of the tide-partitioning for
fore- and background labeled by grey value. Analyzing the trees of the noisy image one can
find nodes which approximately show the black and white disc, to find the discs one only
has to look at the partitioning trees, since both discs have to be separated from other blobs
resp. the background: figure 15(e) is a component referring to a foreground node which is
valid within a distance scale of [-19.5,-2.06). To find the white disc one has to look at the
background tree: the node depicted in (f) is valid within a scale of [1.12,1.58). The length of
the latter interval is much smaller, because of the large amount of spurious elements within

the circle, but up to a scale of d = 8.2 the disc keeps its rough shape.

(a) Two discs. (b) Noisy version of (a) (c) Tide-partitioning of the
foreground

(d) Tide-partitioning of the (e) Image of a node in the fore- (f) Image of a node in the back-
background ground tree ground tree

Figure 15: Example of the simultaneous representation of foreground and background ob-
jects, see text for details.

Figure 16 depicts an aerial grey scale image (a) and the homogeneous regions (b) according

to the grey level. The tide-partitioning results are shown in (c) and (d). There are 19
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blobs in figure 16(b), the total number of nodes of the foreground tree is 136, from which
the partitioning graph has 61 and the grouping graph has 94 nodes. A clipping of the
partitioning tree, in which the right part of the roof is correctly split from the ground blob
is shown in figure (e). Because the connection between these two blobs is relatively large,
the split applies on a low significance resp. large distance. The connection of the two blobs
of the upper roof part is very significant and already appears for a distance d = 1.5, see (f).
However a grouping of roof blobs using the tide-partitioning is not always successful: here the
average distance between two blobs depends on the filter size used in the feature extraction,
but it does not reflect whether a separating edge between two blobs has a strong image
support. This information has to be included to the significance measure in order to obtain

a more intuitive grouping of the parts.

7 Summary and Conclusions

Perceptual organization relies on basic image features, their relations and the evaluation of
their attributes with respect to a specified aggregation to higher level primitives. We have
proposed a rich representation of image features for supporting perceptual organization. It
starts from a partitioning of the image into foreground and background, and a set of image
primitives and their relations, describing the foreground. The representation consists of a
pair of trees dually treating foreground and background allowing to represent objects with
holes and composed of non connected parts. The tree establishes a hierarchy with a scale
parameter depending on the significance of parts or holes and links or partitionings.

The representation has been realized for binary images on a topologically consistent cell
structure. The results show promising features of the representation, which result from its
close link to morphological scale space, however, keeping the detailedness of the original
resolution of the image.

The representation can be generalized in several ways:
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Figure 16: Figure (a) shows a aerial grey scale image, figure (b) is the result of the extraction
of homogeneous image regions, see FORSTNER 1994. The tide-partitioning for (b) is depicted
in (c) and (d). Figures (e), (f) and (g) show parts of the foreground tree: (e) partitions the
roof with the lawn area, (f) and (g) shows the connection of two roof parts.
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e The significance measure for the partitioning and grouping can be based on all at-
tributes of the relation, not only the minimum distance. This would allow to include
e. g. the strength of the geometric link, derived from the length of the common bound-

ary of the Voronoi diagram, or the geometric or radiometric attributes of the features.

e The significance measure may be related to some probability measure, indicating the
likelihood of the basic processes of grouping, partitioning, generation and deletion and

at the same time take the attributes of the features into account.

e The primitives of the grouping process may be easily generalized to points or lines,
not only blobs. This would enable to unify several grouping techniques in a common
system. In the case of linear features on could use directional information for measuring
the significance of features or their relation, as has been proposed in earlier work on
grouping of straight line segments. The hierarchical structure would allow to perform

the grouping more specifically.

Quite some image analysis tasks may take advantage of the proposed representation: Match-
ing algorithms and object recognition could attack the problem of occlusion more efficiently
by exploiting the hierarchical structure and the scaling parameter. An interesting and open
question is how the representation generalizes from binary images with two groups of features

to images with three or four groups of features which will interact in a more complex way.
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