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ABSTRACT

A Semi-Automatic Building Extraction system using two or more digitized overlapping aerial images has been enhanced by
increased automation for the measurement of saddle-back-roof buildings, hip-roof buildings and boxes. All newly developed
modules have been incorporated in the object oriented design of the system. The new methods consist of a ground-point
and roof-top matching tool and a robust determination of shape parameters, like e.g. gutter length and width. The current
performance of building extraction is quantitatively and qualitatively evaluated. We examine the increased efficiency using
the automated tools, the success rate of individual modules and the overall success rate using a combination of methods.
A methodology for quantitative comparison is tested on footprints of buildings from classical stereo measurements and
from semi-automatic measurements. A qualitative comparison in 3D of multiple measurements of complete buildings is

performed on three different datasets.

1 INTRODUCTION

We describe our experiences with a Semiautomatic Build-
ing Extraction System which has been developed since
1993 at the Institute for Photogrammetry, University of
Bonn. This system was presented in several publications
since 1993 (Lang and Schickler, 1993, Englert and Giilch,
1996, Glch, 1996, Gulch and Mdller, 1997, Glch, 1997,
Muller, 1997, Miller, 1998).

The original system had been extended to the measure-
ment of volumetric primitives (Englert and Glch, 1996),
migrated to an object oriented design (Gllch and Miller,
1997), and enhanced by various automation tools and
tested on large datasets (Gulch, 1997, Mller, 1997, Mdller,
1998). A primitive can be a complete building model, like
a saddleback-roof or hip-roof building or a part of a build-
ing, depending on the image scale and the required level of
detail. Since several years, we do have methods to mea-
sure the height of single primitives which require an already
form adjusted model in one image, or methods to perform
a final fine-tuning adjustment which requires very good ap-
proximate values. Having observed also difficulties on mea-
suring the ground height (we currently assume a horizontal
ground plane) caused by disturbances in the close vicinity
of the buildings we had to develop new methods to over-
come those problems. We have decided to automatically
determine height and form parameters of the primitives, re-
quiring only very few operations by the user, and adopted
the classical way of measuring ground heights in the neigh-
borhood (if not inherited). Both methods are described in
detail in (Muller, 1997) and (Labe and Giilch, 1998). The al-
gorithms have to be fast enough (some seconds) to be ap-
plicable in this prototype system for on-line measurements.
We can accept that time, if we otherwise need less manual
operations. The goal for the newly developed automation is
first of all directed to speed up the measurement process
with a high success rate in sub-urban areas, with not too

dense structures and an image scale in the order of 1:5000
to 1:15000. We focus right now on basic building types, like
saddleback-roof or flat-roof buildings representing a large
percentage of buildings or building aggregates. However,
other primitives can be handled in exactly the same way. In
chapter 2 we describe the current status of the system and
the actual work flow.

One task of evaluation of performance is to monitor the in-
creased efficiency of new tools in terms of time and the
success or failure rate of the automated parts themselves.
These internal checks are needed to identify remaining
problem areas. The external performance, checked against
classical measurements is needed for acceptance in prac-
tice. We have started to develop methodologies for quanti-
tative comparison, right now focused on 2D footprints and
qualitative comparisons in 2D and 3D based on visual in-
spection.

In chapter 3 we will present the tests for the individual au-
tomated modules and the monitoring of increased perfor-
mance. In chapter 4 we present first results of a quantita-
tive comparison of ground plans measured by two different
methods and qualitative comparisons of 3D models from
three different periods. We conclude with an outlook on
further investigations and developments.

2 THE SEMI-AUTOMATIC SYSTEM

The acquisition process is controlled by a human operator,
who interprets the image contents and measures the 3D-
shape. Automated tools assist the operator. In the following
we discuss the currently implemented tools with emphasis
on the automated parameter estimation.
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Figure 1: Use Cases of the Semiautomatic System.

2.1 Software Design

Developing a semiautomatic system is a complex process,
that requires constant integration and updating of software
modules and user interfaces. It requires a management of
complex tasks and objects and of huge amounts of data.
It is a long term process, which should make reuse of well
established existing modules possible and allow for full ex-
tensibility. Maintenance and portability are of utmost im-
portance for future applications. To facilitate these pro-
cesses we apply an object-oriented design for the software
involved. Figure 1 shows the implemented use cases. The
system can now be used as a executable Program or as an
Application Programming Interface (API). In the first case,
the operator acquires data using the Graphical User Inter-
face (GUI) of the system (cf. Fig. 2), in the second case,
the programmer is able to extend the system or to integrate
the system in own software, using the object-oriented class
structure of the API (Gulch and Muller, 1997).

2.2 Navigation

The input data of the system is a set of aerial images, from
which an image pyramid was processed and their orien-
tation data. Patches from two of these aerial images are
simultaneously visualized in the workspace of the opera-
tor. The operator is able to change between the resolution
steps of the pyramid and the position of the image patch
with some mouse clicks.

2.3 Modeling tools

Automatic as well as interactive systems need an internal
model of the objects to be acquired. Buildings show an
amazingly high diversity in structure which is increasing
due to new styles being developed or invented. However, a
large percentage of buildings show regularities which allow
to describe them using a small set of rules. A Constructive
Solid Geometry (CSG) representation of parametric mod-
els has been proved as a practical internal model (Miller,
1998).

2.3.1 Selection of Primitives. In our model representa-
tion CSG-primitives are parametric models which are clas-
sified into several types. These types differ in their geom-
etry and set of parameters. Examples of the currently im-
plemented ten types are saddleback-roof or hip-roof. The
first interaction step of modeling is to select one of these
types. After this selection a projection of the parametric
models into the screen windows takes place. The models
are shown as wire-frames. For this process previously pro-
cessed orientation data of the images is used. Each para-
metric model is specified by a set of parameters. Values
of these parameters have to be adapted either manually or
automatically.

2.3.2 Parameter Adaptation - Manually. The interac-
tive adaptation of the form and pose parameters is per-
formed in monocular mode. Stereo display is not neces-
sary. The adaptation of the parameters is done in a se-
quence of steps, each specifying one or two parameters of
the model. The parameters are changed in dependence of
the sequence of two points specified by mouse clicks and in
dependence of the type of primitive. Therefore the number
of interaction steps is between 50 % and 100 % of the num-
ber of parameters. The interactive height adaption is per-
formed by dragging a slider that moves the defined model
in one image, along the rays defined by the model points
and the projection center until the model fits in the other
image(s). In this way, not only a single point is measured,
but all visible model lines are used to adjust the height, by
adapting them in the other image(s). This method is faster
and more reliable than measuring homologous points. We
can reach a gross time of about 70 sec per primitive using
this slider compared to 86 sec by measuring homologous
points.

2.3.3 Parameter Adaptation - Automatically. The dif-
ference between an Interactive and a Semiautomatic Sys-
tem is given by the automated tools integrated in the Semi-
automatic System. These automated tools support the in-
teraction process and accelerate the acquisition of data.
The automation processes run online and should not block
the operators interaction. Therefore runtime behavior of
these tools is a critical property.
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Figure 2: Graphical User Interface (GUI) of the Semiautomatic System.

The line segments in each image are computed off-line and
are loaded during the interaction for the part of the images
where the actual measurement takes place. These line
segments are used by some automated tools.

Following automated tools are actually integrated:

Ground point and roof top matching. To automatically
compute the absolute height of the top of a roof or of the
ground we use cross-correlation on the grey values of the
images with an epipolar search strategy (Mdller, 1997).
This can be compared to classical point-transfer in Pho-
togrammetry.

RANSAC. The RANdom SAmple Consensus principle
can be used as a powerful technique to determine a best fit
of building parameters from a given set of image edges. An
activity diagram of the RANSAC procedure for measuring a
hip-roof building is shown in Figure 3. The procedure starts
with calculation of edge sets out of image edges, which are
candidates for unknown model edges. The building param-
eters are calculated from an edge sample, whose edges
were randomly chosen from each edge set. After a range
check the weight of the computed model is calculated us-
ing fit of image edges. This procedure is repeated until the
weight all possible samples is calculated or a threshold for
the number of samples is reached. The building parame-
ters with the best calculated weight are chosen as the result
of the process. RANSAC is currently used for form param-
eter estimation (e.g. gutter height, width and length) for
saddleback-roof, hip-roof and flat-roof buildings as well as
for height determination of flat-roof buildings.

Clustering. Another robust method to estimate param-
eters is Clustering. Clustering is highly recommendable
for problems with few unknowns and a high redundancy
(Forstner, 1989). Clustering has been applied to determine
gutter width and height for saddleback-roof buildings and
to compare it with the RANSAC approach. Within the al-
gorithm a n-dimensional array is used where n is the num-
ber of unknown parameters (here n = 2). Each parameter

has to be discretized. Therefore a finite parameter space
is required and the result may be not accurate due to the
discretization. Every value of the array is the weight for the
special combination of parameters represented by the array
indices. While computing the result of the robust estimation
every observation is taken into account. Every observation
leads to a set of possible combinations of parameters which
correspond to the observation. For these combinations the
weight is increased. In the most simple case the combi-
nation of parameters with the best weight is chosen as the
solution.

Fine adjustment. An automatic fine adjustment (Labe
and Ellenbeck, 1996) by a robust spatial estimation, using
all line segments in all images provides an optimal fit of the
selected model to the image data.

2.3.4 Composition of a CSG model. After adapting the
parameters of the primitives, the operator is able to com-
pose a CSG tree by selecting one of the three logical oper-
ations union, difference or intersection. The actual acquired
CSG model is shown as a tree (cf. Figure 2).

Describing a building by the combination of primitives or
combined primitives requires a precise “docking” of the
primitives (Englert and Gulch, 1996). This docking is sup-
ported by matching and glueing facilities. The former allows
to match at least two edges of different primitives and the
latter matches and glues exactly two faces of different prim-
itives together.

2.4 Work flow of form and pose estimation

To summarize: the operator has to perform in the best case
three or four operations only for measuring basic building
types which is less than in the case of classical photogram-
metric point measurement. Two of the operations are sim-
ple selections and not measurement tasks.

In the case of a saddle-back-roof building four operations
are needed: select the building type (saddle-back), adjust
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Figure 3: RANSAC Technique applied to the measurement
of a hip-roof building.

the 3D model (primitive) of a saddle-back to two points
(two gable points) in one image, thus determining the rota-
tion around the Z-axis, and the length of the building and
finally select one ground point in the vicinity (in one im-
age) and the system automatically determines the remain-
ing four unknown parameters: a) the absolute roof height,
b) the ground height, ¢) the width of the building and d)
the gutter height. The absolute roof height and the ground
height are independently determined by cross-correlation
and epipolar search. The detection of the gutter height and
the determination of the width of the building is done by
Clustering or RANSAC. An example of the different steps is
given in Fig. 4. A final robust adjustment of all parameters
of each volumetric model in all images can further improve
the overall result.

The general operation-flow for the lop-sided saddleback-
roof building is similar to the symmetric saddleback-roof
building. The absolute roof height and the ground height
are separately determined by the cross-correlation mod-
ule, and the remaining parameters are computed by the
RANSAC technique. The difference is that the lop-sided
saddleback-roof building has one additional parameter (or
five unknown parameters): Because of the missing sym-
metry of the roof-top two widths have to be calculated in
the RANSAC procedure.

In the case of a hip-roof building the operator performs
practically the same operations: select the building type
(hip-roof), adjust the 3D model (primitive) to two points (two
roof top points) in one image, thus determining the rotation
around the Z-axis, and the length of the roof top and finally
selects one ground point in the vicinity (in one image) and

Figure 4: Example of measuring a saddleback-roof build-
ing. 1st row: Operator measures two gable points in the
left image. 2nd row: Automatic roof-top height. 3rd row:
Automatic gutter matching. 4th row: Automatic ground
height. 5th row: Fine adjustment and result.

the system automatically determines the remaining five un-
known parameters: a) the absolute height of the roof top, b)
the ground height, c) the length of the building, d) the width
of the building, and e) the gutter height. The search for
length, width and gutter height is performed by a RANSAC
technique.

In the case of a flat-roof building (box), even less parame-
ters have to be given: the operator selects the building type
(box), adjust the 3D model (primitive) to one point (one cor-
ner point) in one image, and finally selects one ground point
in the vicinity (in one image) and the system automatically
determines the remaining five unknown parameters: a) the
absolute height of the flat roof, b) the ground height, c) the
length of the building, d) the width of the building, and e)
the rotation around the Z-axis. The search for all parame-
ters except the ground height is performed by a RANSAC
technique.



2.5 Visualization

A visualization of the results is done by generating a VRML
(Virtual Reality Modeling Language) file of the building
models and exporting it to a VRML-browser. There are sev-
eral kinds of visualization available: (a) visualization of all
extracted models, (b) visualization of the actual model or
(c) visualization of the actual model with extracted texture.

3 TESTING AUTOMATED MODULES

Each of the automated modules as well as the combination
is tested for the success rate. The efficiency is compared
to earlier versions of the system.

3.1 Success rate

All modules for automated parameter estimation are inves-
tigated concerning their success rate. We distinguish be-
tween a) full success without any further intervention by
the operator, b) one ore two additional attempts or c) fail-
ure, which requires a more or less complete correction and
manual adjustment by the operator.

3.1.1 Datasets. We have started to examine the mod-
ules on two different datasets. The first dataset A consists
of a pair of two aerial images with moderate to good im-
age quality. Within the second dataset B (from the project
described in (Labe and Ellenbeck, 1996)) we use image
patches of the buildings to be measured. For every build-
ing 6 image patches exist. As Figures 5 and 6 show the
image quality from dataset B is much lower than the one
of the image pair (A). In both datasets the image scale is
1:12500. Dataset A is scanned with 12.5m, dataset B with
11um pixel size. So the ground resolution is comparable.
In both datasets the density of buildings is moderate. There
is enough space nearby to select a suitable ground point.
The buildings are of different size ranging from about 75m?
to more than 500m?; there are single buildings or buildings
connected to others. Some buildings have disturbances
and they are partly surrounded by bushes and trees. There
have been measured parts of complex buildings as well.
No approximate values for the unknown parameters were
used, but we define a certain range for the parameters for
the RANSAC approach. For that purpose we have decided
to work in object space units for higher flexibility and better
understanding. We have chosen slightly different ranges
for the different building types to be able to check the influ-
ence. The values are the same for all examined buildings
in all datasets except the absolute roof height range in case
of a box which is set different in the two datasets. But the
setting of this parameter is not very critical, as the range is
usually known from the flight plan, but of course the setting
influences the performance of the parameter estimation.

3.1.2 Correlation. The test for the correlation proce-
dure has been performed on the roof-top and on ground
points separately on saddleback and hip-roof buildings in
both datasets. In the case of a roof-top we use only one
trial as the point is chosen automatically between the two
given precisely located roof-top points. For the 109 roof-
tops it works well (up to 87% success rate) as long there
are no big disturbances due to e.g. chimneys right on the
roof top.In case of failure the operator measures the height
manually.

For the ground height determination several trials are possi-
ble because the success depends on the "intelligent” choice
of the point. There must be enough texture and no 3D dis-
turbances around that point. Here big differences between
unexperienced (not documented here) and experienced op-
erators can be observed. The high success rate for the
ground points (83%) in a first test on only 30 buildings is
mostly due to the skills of that operator in selecting a "good”
point. Further investigations are necessary on the effect of
training on the performance of that module.

3.1.3 RANSAC and Clustering. The RANSAC and the
Clustering approaches are tested with the datasets A and
B. In a first attempt the automated procedures are started.
For the second and third attempt the operator could change
the used images and/or in case of a box select another cor-
ner point or run the procedure once again. The success
rate is counted as success after maximal three attempts
(details in (Labe and Giilch, 1998)) with the operator ac-
cepting the result.

Some examples of successful and false determination of
the parameters computed by the RANSAC algorithm in
both datasets are shown in Figures 5 and 6.

[

Figure 5: Examples for RANSAC algorithm results in
dataset A. Two successful measurements and one failure
(wrong gutter height and width).

Figure 6: Examples for RANSAC algorithm results in
dataset B. Two successful measurements and one failure
(wrong rotation, length and width).

The success rates for about 160 saddleback-roof buildings
(up to 80 %) and the 46 hip-roof buildings (up to 88 %)
are extremely promising, whereas the calculation of the pa-
rameters of the 55 flat-roof building (box) is problematic (up
to 43% success rate). The performance for the lop-sided
saddleback-roof (not documented here) is expected to be
similar to the saddleback-roof and the hip-roof buildings.

The results show, that the influence of a lower image qual-
ity (like in dataset B) can not be compensated by a higher
amount of image patches.

For the saddleback-roof building we compare the Cluster-
ing and the RANSAC methods. Both methods give similar
results. We favor, however, the RANSAC approach for bet-
ter extensibility and the potential of handling a much higher
amount of parameters. Using the RANSAC approach we



can further see that additional attempts by changing the
image used to select the samples improve the results.

A better performance of the hip-roof buildings in dataset
A (only 12% failure) compared to dataset B (34% failure)
is most probably due to the higher image quality. Even if
we have to estimate one parameter more for the hip-roof
building compared to the saddleback-roof building we get a
comparable or even better performance, as we have cho-
sen slightly more restrictive parameter ranges for the hip-
roof building.

The current algorithm for finding the parameters of the box
has additional problems. The operator gives one corner
point only and the computer has to find edges which be-
gin at this corner and belong to the roof of the box. Using
a normal edge extraction it is clear that extracted line seg-
ments are not connected to the corner point itself. So the
search area around the point has to be large which leads
to more false image edges. Often short image edges which
are near a corner point are the reason for a bad estimation
of the rotation around the Z-axis. Then the other parame-
ters of the box can not be computed either correctly. The
box in Figure 6 (right) can serve as an example for failure
of that type. A solution would be to give an edge instead
of a corner point as a start information, which would not in-
crease the amount of operations for the user. The amount
of successful second and third attempts for the box is very
large compared to the number of successful first attempts.
This is a hint for a too low threshold for the number of sam-
ples computed in the RANSAC loop. This means we had
assumed a too low number of outliers when determining
that threshold. We are expecting a significant higher suc-
cess rate for the first attempt when we increase this thresh-
old. On the other hand side of course the computation time
for all boxes will be longer.

3.1.4 Combining methods. In the dataset A we ex-
amined the determination of all four unknown parameters
(roof height, ground height, gutter width and height) of 30
saddleback-roof buildings but without the final adjustment
step (cf. Table 1). In this test we applied correlation for
the heights and Clustering for the gutter parameters in a
predefined strategy. As a result 10 of the buildings were
correctly adjusted in the first attempt, 8 buildings required
the manual adjustment of 1 parameter only. For 11 build-
ings we applied the Clustering procedure between 1 and 3
times and we finally needed to adjust between 1 and 3 pa-
rameters manually. For one building the procedure did not
work at all (cf. saddleback-roof building in Fig. 5).

With the same image material we tested the overall proce-
dure (without fine-adjustment) to determine all five param-
eters (roof height, ground height, gutter length, width and
height) of 10 hip-roof buildings. The results show an even
better behavior: 6 of the buildings were correctly measured
with 1 attempt only, for the remaining 4 buildings, we had to
correct 1 parameter (mainly the gutter width) and once to
choose another ground point.

A general problem for the height determination either by
correlation or the robust techniques are image edges which
are parallel to the epipolar lines. In those cases we cur-
rently require operator assistance and manual measure-
ment.

The question of operator strategy is still open. When the
first automatic attempt fails the operator must decide if he
tries the automatic procedure again or if he adapts the

| Success | SB[ HR]
Total 30 | 10
Correctly adjusted 10 6
Manual adjustment of 1 parameter 8 4
1-3 iterations or 1-3 parameters 11 0
Complete failure 1 0

Table 1: Success rates of combination of parameter es-
timation tools (Correlation and Clustering/RANSAC) for
saddleback-roof buildings (SB) and hip-roof buildings (HR).

missing parameters manually. It is as well a compromise
between computation times and time for manual adjust-
ment. There is still a lack of experience to select the optimal
strategy.

If the selected model does not fit well to reality the result
will be some kind of generalization, which means the oper-
ator has to accept it or choose the proper model instead.
The optimal way depends of course on the task and the
available resolution provided by the image material.

3.2 Efficiency

For the gross acquisition time we monitor the navigation
through the image and image pyramids, the model adapta-
tion times and the time for creating the constructive solid
geometry tree of building parts. Table 2 shows the in-
creased efficiency in the acquisition process from about
120 seconds to about 40 seconds per primitive, counted as
gross acquisition time. With more training on the automa-
tion tools and the strategy we expect even better results at
least in sub-urban areas.

4 QUANTITATIVE AND QUALITATIVE COMPARISONS

Having buildings extracted by two different methods or at
different times or with different operators we need a method
to compare the resulting representations and check for
completeness. The methodologies for comparison devel-
oped so far follow two lines: a quantitative approach and
a qualitative approach based on visual inspection. We aim
at comparing to ground truth, but due to lack of such in-
formation we develop the methods for comparison of mea-
surement procedures of similar accuracy level. In all cases
we currently refer to the identical object or to parts of it and
take the identification of corresponding objects a given. The
current strategy of quality control is directed towards on-
line re-measuring selected buildings visualized in the Semi-
Automatic System, which would solve the correspondence
problem.

4.1 Comparing 2D footprints

First we focus on 2D footprints to develop the methodology
for the comparison of two measurements of the footprint of
the same building (like in Fig. 8). For a qualitative compar-
ison we use an overlay method of 2D polygons presented
in a VRML browser for visual inspection. For a quantitative
comparison we use probability densities to describe the im-
precision of measurements and the uncertainty of abstrac-
tion based on a method developed to determine topolog-
ical relationships between imprecise spatial objects from
two independent datasets (Winter, 1996). Details of the
this approach are given in (Ragia and Winter, 1998). The



Version Project Details Complexity | Primitives | Sec./Primitive
-1995 Hase Different Areas Suburban-urban | medium 249 124.8
1996 Hase+ Oedekoven | Suburban high 5499 86.4
1996 Hase+ Frankfurt | Downtown high 549 111.5
1996 Hase+ Rostock Urban high 371 149.6
1997 ObEx0.7.1 | Oedekoven Il Suburban high 525 70.0
1998 ObEx0.8.2 | Oedekoven IVsmall | Suburban medium 29 41.0

Table 2: Increased efficiency due to automation.

distances between the two boundaries along the so called
zone-skeleton are computed. The distances characterize
the deviation from being equal. The discretized distance
function along the special skeleton can be represented as
a histogram as shown in Fig. 7 and Fig. 8 (2nd row).

B

...........

Figure 7: Quantitative comparison of two overlapping areas
using an histogram of distances dto the zone-skeleton.

We getvalues of d < 0 for A\ B andd > 0 for B\ A, which
enables to distinguish between these two cases.

A Gaussian histogram indicates similarity, a bi-modal his-
togram indicates systematic errors (like translation), and a
biased histogram indicates missing or additional parts (ab-
straction) or gross errors.

An example of a real dataset is given in Fig. 8. We can see
that the area of the first measurement (A) contains the area
of the second measurement (B) to a large extend (nega-
tive d). The second area contains the first one only partly
(positive d) and there is a large difference in the form (d<-
0.8m). Itis in principle possible to introduce the different ac-
curacy levels of measurements into the process to improve
the method. This method still needs extensive testing, fur-
ther elaboration and extension to 3D models.

4.2 Comparing 3D models

For a qualitative comparison of 3D models from at least
two measurements we use the Virtual Reality Modeling
Language. The extracted 3D primitives are transformed
in VRML format and visualized with a VRML-browser, that
allows the 3D viewing and walk- or fly-throughs of the ex-
tracted scene. For the 3D visualization of extracted build-
ing parts we use different colors and transparency mode
to a) detect gross errors in e.g. height measurements and
b) to study and visually compare the chosen selection and
combination of primitives. Results from three different mea-
surements of the same building are given in Figures 9 and
10. In Fig. 9 we can see a good result with practically the
same generalization level and the same parameters in all
measurements. In Fig. 10 we have a bad result. One oper-
ator had forgotten an essential part of the building complex
(box lower left). Also the roof-top height of one part differs
by several meters from the other two measurements and
the reality. For the inspection of large amounts of data we
certainly need a pre-processing step that focus the opera-
tor’s attention only to the critical cases. Such a method can
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Figure 8: 2D - quantitative comparison of footprints. 1st
row: Area (A) Measurement at an Analytical Plotter, Im-
age patch with building, Area (B) Semi-automatic measure-
ment. 2nd row: Histogram of the morphological distances
in [dm] between the skeleton and the boundaries of the
building from the two measurements (image by courtesy
of T-Mobil and Aerowest).

be based on the developed approach described above, but
still needs to be designed and implemented.

Figure 9: 3D - qualitative comparison. Good result, as all
three measurements differ only slightly.

4.3 Completeness

Concerning the check of completeness of measurements
we follow two strategies: (a) the visualization of old mea-
surements in the Semi-Automatic System with the potential
of on-line correction or additional measurements by the op-
erator (supported by the automated tools) and (b) a more
automated approach based on image matching in urban ar-
eas with commercial software and automatic analysis of the



Figure 10: 3D - qualitative comparison. Bad result, as all
three measurements differ very much.

resulting digital surface model. Both strategies are currently
investigated on two different datasets.

5 CONCLUSIONS

We have presented a prototype system for the efficient
semiautomatic extraction of 3D building information from
imagery with a high degree of detail in urban and subur-
ban areas. We rely on the human operator to solve the in-
terpretation, but we supply automated tools that efficiently
support the interaction. The presented methods for robust
estimation of pose and form parameters of volumetric build-
ing models from digital imagery have been evaluated on
more than 250 buildings. The chosen strategy to support
the operator with automated on-line tools seems feasible.
From the psychological point of view we believe it is a bet-
ter way to introduce automation than letting the operator
only to correct the results calculated off-line by the com-
puter. Due to the integration in an interaction environment
the algorithms can be used and tested even if the success
rate of single modules (up to 88%) in suburban areas has
no yet reached a status which can be described as "works
in nearly all cases”. For the saddleback-roof and hip-roof
buildings the results of the tests fulfill our expectations. For
the box the search strategy should be changed. For this
building type the minimum number of parameters which the
operator has to give has already been reached. For the
saddleback-roof and hip-roof buildings the possibility to re-
duce the operator action to the measurement of one point
exists. To generally increase the success rates for the ro-
bust techniques more information sources than only image
edges may be necessary.

Besides an initial acquisition of 3D buildings the updating
process (change detection) as well as the validation and
editing of 3D models derived by other methods will be of
increasing importance in the future. We regard the devel-
oped system a suitable tool to perform these tasks. With the
developed and envisaged methodologies for quality control
based on quantitative and qualitative tools we should be
able to perform a fast inspection.

The increased efficiency during the development is very
promising, but we still lack the empirical comparison of time
measurements to classical photogrammetric methods on
large datasets. Due to the lack of international tests on
a broader basis we currently perform such a test in co-
operation with a company .

Our developments show an increased performance in semi-
automated building extraction, with the real potential as an
easy-to-use measurement and inspection tool.
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