Texture Modelling by Multiple Pairwise Pixel
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Abstract— A Markov random field model with a Gibbs prob-
ability distribution (GPD) is proposed for describing particular
classes of grayscale images which can be called spatially uniform
stochastic textures. The model takes into account only multiple
short- and long-range pairwise interactions between the gray lev-
els in the pixels. An effective learning scheme is introduced to
recover a structure and strength of the interactions using maxi-
mal likelihood estimates of the potentials in the GPD as desired
parameters. The scheme is based on an analytic initial approx-
imation of the estimates and their subsequent refinement by a
stochastic approximation. Experiments in modelling natural tex-
tures show the utility of the proposed model.

Keywords— Texture, Markov/Gibbs random field, pairwise in-
teraction, maximum likelihood estimate.

I. INTRODUCTION

Generative models of Markov random fields (MRF) with
Gibbs probability distributions (GPD) are promising for im-
age modelling because of the facility to generate image samples
by stochastic relaxation [10, 20, 34, 35, 39], to estimate param-
eters of the model from a training sample [21, 23, 25, 29, 32,
43], and to check the validity of the model directly by com-
paring the generated images with the learning samples visually
and quantitatively. These models, in a more general form, were
first introduced in statistical physics (see, for instance, [30]).
The GPDs on finite lattices which are the most interesting for
image modelling were investigated by Averintsev, Besag, Clif-
ford, Dobrushin, and Hammersley (see [1, 3, 7, 16, 26] and the
comprehensive surveys [14, 17]). The equivalence between the
MRF and GPD under a positivity condition, that is, the exis-
tence of the GPD for any MRF with non-zero probabilities of all
signal configurations in the lattice, and resulting factorization
of the joint and conditional GPDs are due to the well-known
theorems of Hammersley and Clifford [3, 26] and Averintsev [1]
(see, also, [34]).

The factorization relates global features of the MRF to local
interactions by specifying their geometric structure and prob-
abilistic strengths. Such interaction in the images means that
some local signal configurations are more probable than others
in the lattice. The interaction structure is described by a neigh-
borhood graph linking each pair of interacting pixels, called
neighbors. The GPD is represented by a product of strictly
positive factors, each defined on a corresponding complete sub-
graph, or clique of the pixels [3, 14, 10, 20, 28]. Each factor
describes quantitatively the interaction strength in the corre-
sponding clique. Usually, the factor is represented in an expo-
nential form and the exponent is called a potential; the higher
the potential, the more probable the signal configuration in the
clique.

Extensive investigations of the Markov/Gibbs image models
were initiated by Hassner and Sklansky [28], Cross and Jain [10],
and Lebedev et al. [34]. These pioneering results were amplified,
but directed to more practical problems of image restoration
(noise removal) and segmentation by Derin [11-13], Geman and
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Geman [13, 20] and have been explored in many other publica-
tions (see, for example, [4, 5, 8, 15, 19, 22-25, 31, 32, 35-38, 40]).
Comprehensive surveys of these works can be found in [18, 33,
41]. Tt should be noted that the traditional models borrowed
from physics, such as the autobinomial or Gauss-Markov mod-
els, may not to be the best ones for describing particular texture
types. For instance, the autobinomial model takes into account
only nearest neighbors in the lattice and defines the interaction
strength by a product of neighboring signal values. However,
in the context of image modelling it is hard to understand why
Jjust the nearest neighbors hold advantages over the more distant
ones or why the pair of neighboring gray levels (g, ¢) have the
same interaction as (1,4¢*) and twice the interaction of (£,9).

The Gauss-Markov model exploits many more interactions
because of rather big (and usually square) windows used as
cliques. The potential is proportional to a squared error of a
weighted linear prediction of the gray level in the central pixel of
the clique from the signals in other pixels. The model parame-
ters (regression weights over the window axa) can be estimated,
for instance, by minimizing a non-linear likelihood function of
a® unknown weights [3]. Kashyap and Chellappa studied these
models in-depth (see, for instance, [32, 33]) and introduced some
parameter estimation schemes. Stochastic relaxation was used
to generate the desired image textures. Cohen and Patel [9]
modelled power spectral densities of the Gauss-Markov fields.
These densities have an analytic representation in terms of the
regression weights and are generated simpler than the images
themselves due to a mutual independence of the spectral com-
ponents. Then the images are formed by a discrete cosine trans-
form of the generated densities. Both approaches show much
better texture modelling than the autobinomial model, espe-
cially if the windows allow long-range interactions (say, a = 13
or more), but the larger the window, the more the computa-
tional difficulties of parameter estimation. Therefore, it is hard
to involve arbitrarily long interactions. Moreover, to find the
most characteristic interactions, one needs to exhaust and com-
pare all the possible subwindows [32].

We can expect that the higher the number of signal inter-
actions that can be determined from the image itself (that is,
estimated as parameters of the GPD), the more effective will
be the image modelling. Here, we present the Markov/Gibbs
model of spatially uniform images that take account of mul-
tiple short- and long-range pairwise pixel interactions. It be-
longs to the exponential family of distributions [2] which are
strictly log-concave (that is, strongly unimodal), under rather
weak conditions [2, 29] that hold for the proposed model. This
allows us, at least in principle, to estimate from a given learn-
ing sample both the interaction structure and strengths. The
model exploits gray level difference histograms (GLDH) as suffi-
cient statistics and, therefore, supports well-known applications

of the GLDHs to describe textures [27].

Images with similar GLDHs are considered as belonging to
the same type. We will call the images which can be generated
successfully by this model (spatially) uniform stochastic textures
to discriminate them from other more complex image types.
This model is not parsimonious, relative to the Gauss-Markov
class, in terms of the number of the parameters, but is much
simpler as regards the potential for estimation and, in the main,
as regards the choice of the most characteristic interactions.

The paper is organized as follows. In Section 2 we present
initial assumptions about the gray-scale textures and introduce
the spatially uniform Markov/Gibbs image model with multi-
ple pairwise pixel interactions. Section 3 presents the learning
scheme for estimating the model parameters. Experiments in



generating natural textures and conclusions are given in Section

4.

II. Markov/GIiBBS MODEL WITH MULTIPLE PAIRWISE
INTERACTIONS

A. Notation and assumptions

Let X = (X(i) : 1 € R) be a 2-D lattice MRF with samples
x = (z() : 1 € R;qg = z(i) € Q), where R is the finite 2-D
lattice R = ((m,n): m=0,..,M -1, n=0,...,N — 1) of size
|IR| = M- N,and Q = {0,1,...,gmax} is a finite set of signal
values (gray levels, ¢) at lattice sites, or pixels, (m,n). The
sample space for x is denoted by SS.

We restrict our consideration only to spatially uniform
isotropic and anisotropic textures whose global visual appear-
ance depends mainly on the pairwise interactions between the
signals. In this case the interaction structure is translation-
invariant and represented by a first-order clique family contain-
ing the pixels themselves and a particular set of second-order
clique families Ko, = {(i,j) € R* : i —j = (pta,Va)} where
a € A. Here, A is a set of indices and (pta, ) denotes a rel-
ative displacement of the pixels in a clique. Any second-order
family contains all pixel pairs that have the same relative pixel
arrangement and differ by their absolute positions in the lattice.

Let V(2(7)) and Va(z(?), #(j)) be potentials, or non-constant
functions of the variables x(7) such that their supports (i) or
(7, ) are the cliques. The potential describes quantitatively the
interaction strength in the clique. It is natural to assume a
shift-invariant strength of the interactions of gray-scale textures
because usually their visual appearance does not depend on the
mean intensity, but is due to a pattern of intensity changes. In
general, such invariance leads to a non-Markov Gibbs model. To
stay within the Markov/Gibbs class, we specify potential values
which are independent of these shifts. For the first-order family
such a potential is zero-valued. For any second-order family the
potential has the same value on all signal pairs that differ by a
shift b: {Vau(q, u) = Va(g+b,u+b): (q,u),(g+but+b) € Q*}.
Therefore, the second-order potentials depend only on the gray
level differences: {Va(q,u) = Va(d = ¢ —u) : d € D} where
D ={—¢max,---,0, ..., Gmax }-

B. Representation of Spatially Uniform MRF Using Gray Level
Difference Histograms

Under the above assumptions, the Markov/Gibbs image
model takes the following form (see, also, [24, 25]):

PrixlV) = 25" exp [ S0 S Vel -2 | (1)

a€A (i j)€Kq

and can be represented as the exponential family distribution:

Pr(x|V) = Z3' - exp (Z S Vald) - Ha(cux)) C®

a€A deD

Here, Zv is a normalizing factor (or the partition function [30]),

H.(d|x) = Z 5(d—(z(i)—=x(j)))is a component of the gray
(¢,§) €Kq

level difference histogram (GLDH) for the clique family K., and

5(...) denotes the Kronecker function.

Obvious relations for the GLDHs, namely that ZHa(cﬂx) =

deD
a € A, yield a unique representation of the

|K.| Vx € 8S;

GPD in (1) and (2) by centering the potentials; it adds the
following constraints to (1):

Z Va(d)=0 Va€A. (3)

deD

This can be derived also from the concept of a relative Hamil-
tonian in [17]. The GPD in (2) is also invariant to the corre-
sponding centering of the GLDHs.

Let V. = {V.(d) d € D; a € A} and He(x) =
{Hen,a(d|x) : d € D; a € A} be the (G + |A])-component
vectors of the centered potentials and centered GLDHs, respec-
tively, and let @ denote the dot product. Here, G = 2-gmax - |A|.
As aresult of the centering, the vectors V and ch(x) are in the
same G-dimensional vector subspace R®. The GPD Pr(x|V) =
Z\_,1 -exp(V e Hep(x)) in (2) is the regular exponential family
distribution with the minimal canonical parameter V and min-
imal sufficient statistic Hen(x) if and only if (@) the vector V is
in R® and (b) the components of the vector Hey(x) are affinely
independent (cf. Corollary 8.1 and p.116 in [2]; see, also, [21,
29]); that is, if the condition V e Hey(x) = const, Vx € SS,
implies that all potential values are equal to zero (V = 0 and
const = 0). This holds for the model in (2) and (3) as can
be shown explicitly, by identifying particular image pairs x, x’
such that the differences Hen(x) — Hen(x') form an orthogonal
G-dimensional basis in RE.

Similar linear representations of the GPD exponent, but with
rather different terms, can be found in many publications, in
particular, in [20, 21]. A similar form of the GPD has been
introduced in the convolved form of an aura matrix which does
not discriminate between cliques from the different families but
with the same signal configuration values [19, 40]. The GPD
in (2) describes the model more precisely by revealing explicitly
the structure and strength of the pairwise pixel interactions.

In this model we assume that all pairwise clique families ex-
cept the given set A have zero-valued potentials. The assump-
tion of zero-valued potentials in all clique families (V = 0)
leads to a model of the independent random field (IRF) with
equiprobable signal values in the pixels. In other words, the
model in (2) differs from the IRF only in the given set A of
clique families.

The log-likelihood function LF(V[x°) = BEEEV) of the
potential vector V for a given learning sample x° is strictly
concave and has a unique maximum if and only if the vec-
tor Hcn(x°) is not on a boundary of a domain of the vectors
Hen(x) in RE (see [2], [29] for details). The interior of the
(G + |Al)-dimensional hyperrectangular domain containing the
GLDH vectors is given by the following conditions:

0 < Fa(d|x’) <1 VdeD;a€A, (4)

where Fo(d|x°) = Hﬁ{#ﬁ") denotes the marginal sample relative
frequency of the gray level difference for a given learning sample
x° obtained by normalizing the GLDH. In R this hyperrectan-
gular domain is restricted to a hypertetrahedral domain of the
vectors Hey(x). However, such a mapping preserves the interior
or boundary positions of these vectors, as can be easily shown
by using barycentric co-ordinates of these positions in the lat-
ter domain. In other words, the MLE of the potentials for the
model in (1) and (2) exists if the conditions of (4) hold. It is
easy to show that the conditional maximum of the likelihood
function LS(V|x°), given the constraints of (3), is obtained in
the point where the first-order partial derivatives of this func-
tion with respect to the components of the parameter V are
equal to zero.



From the given sample x°, the set {Kq: a € A} < {(ta,va) :
a € A} of the clique families and the vector V of the potential
values for each clique family need to be estimated.

III. MAaXxiMUM LIKELIHOOD PARAMETER ESTIMATION
A. Log-Likelihood Function

The first-order partial derivatives of the log-likelihood func-
tion LF(V|x°), at the point V, or components of the gradient,
have the form (see, also, [2]):

ILF(V|x°®) 0
) = o (R — ELROIVY, )
where po = |T;”|| and &£{...|V} is the expectation of the

marginal sample relative frequency, or the marginal probabil-
ity of the gray level difference M P,(d|V) if the images x € SS
have the GPD of (1) or (2) with parameter V. Therefore, the
gradient lies also in R™.

The matrix MS of second-order partial derivatives of the
log-likelihood function with respect to the components of the
parameter V is proportional to the covariance matrix for the
GLDHs taken with the negative sign [2].

For the model in (2) and (3), the following system of equa-
tions holds at the unique maximum point:

Va€A; de€D  Fu(d|x®) = MPu(d]V). (6)

The conditions of Eq. (4) allow us to use the normalized GLDHs
of the learning sample to check the validity of the model and
suitability of the learning sample itself in representing the
given texture. The model contains |A| clique families and
G = 2 - gmax - |A| potential values to be estimated from the
given learning sample with |R| = M - N initial signals. To ex-
ploit the asymptotic consistency of the MLEs, it is essential that
the number of these parameters should be much less than the
number of signals: G << |R]|.

If the conditions of (4) do not hold, we need to tailor the
textures to the model by reducing the number of potential val-
ues and/or the number of clique families. In particular, the
potential values can be equalized for different, but visually sim-
ilar, signal configurations, or the number of gray levels can be
reduced by quantization of the gray range. Sometimes, the im-
ages can be demagnified to reduce the number of clique families.

B. Initial Fstimates of the Potential Values

Let V = 0 be the zero point, that is, 0 = {V,(d) = 0 :
a € A; d € D}, in the space of the parameters V. This point
corresponds to the singular case of the MRF, or equivalently
to the IRF with independent and equiprobable signals over the
lattice.

The very weak interdependencies of the pairwise signal dif-
ferences in the IRF allow us to approximate the matrix MS
by a diagonal matrix with components which are proportional
to the variances of the GLDHs taken with the negative sign:
Var(H.(d|x)|0) = |Ka| ¢(d) where ¢(d) = MP(d)-(1—MP(d))
denotes the variance of the estimator of the marginal probabil-

ity MP(d) = W of the gray level difference d for the
IRF and abs(d) denotes the absolute value of d.

The truncated Taylor’s series expansion of the log-likelihood
function about 0 is, using the gradient formula in (5),

LF(V]x°) = LF(0]x°)+
S (Fu(dix®) — MP(d))* .
7 6(d) - (Faldlx®) = MP(d))?

deD

where the scaling factor A defines the step from the zero point
0 along the gradient direction and p, = ||I;”||; a € A.

Thus, initial estimates of the potential values can be com-
puted analytically by maximizing the function in (7) with re-

spect to the factor \: Vd € D; a € A

Va01(d) = o] + pa - (Fa(d|x®) — M P(d)), (8)
where
S D (Fudlx) = MP(d))?
)\[0] — a€A deD (9)
S S o) (Fuldixe) - MP(d))?

The Markov/Gibbs model under consideration is non-uniform
at the borders of the lattice and the cardinalities |K, of the
second-order clique families are slightly less than the lattice car-
dinality |R| (that is, the factors p, < 1). However, as the lattice
expands (|R| — oc0), these cardinalities approach the lattice car-
dinality (pa — 1Va € A). Thus, the initial estimates in (8) are
almost independent of the lattice size.

C. Heuristic Search for Clique Families Describing the Interac-
tion Structure

The initial potential estimates allow us to search for clique
families which best describe the local pairwise pixel interactions
in a given learning sample. The estimates in (8) show that the
strength of the pairwise interaction depends on the departure
from the IRF in any given clique family. The families with a
weak interaction have potential estimates which are close to the
zero point and thus can be excluded from the model because of
their small influence on the MRF.

Thus, the following heuristic solution of this problem can be
proposed. We exhaust all possible pairwise cliques in a given
search window of possible relative shifts between the pixels in
the clique |pe < pmax; |Va| < Vmax and reconstruct the par-
ticular structure of the pairwise pixel interaction in the given
image sample by comparing the distances between the initial
estimates of the potentials in (8) and the zero point in the pa-
rameter space. In other words, we compute the distance be-
tween the normalized GLDHs, or the sample marginal relative
frequencies, {Fa(d|x°): d € D} for all clique families a in the
window, and the triangle distribution {M P(d) : d € D} for the
IRF. The families representing the most characteristic spatially
uniform pairwise interactions can be found by a proper thresh-
olding of these distances. We can therefore consider that all
such models have the same interaction structure (correspond-
ing to the given search window) and differ only by the potentials
for these cliques: non-zero values for the characteristic cliques
and zero values for all the other families. This feature simplifies
a comparison of different uniform stochastic textures.

Experiments with several simulated and natural textures al-
low us to propose the following heuristic search strategy, giving
rather good results in describing their interaction structures:

(i) Compute GLDHs for all clique families in the search win-
dow;

(it) Compute the distances between the normalized GLDHs
and triangle distribution;

(i27) Compute the mean distance M D and standard deviation
o of the latter distances;

(iv) Compute the threshold Thr = M D +k-o (in our exper-
iments, k = 3 or 4);

(v) Choose the clique families whose distances exceed this
threshold to represent the characteristic structure of the signal
interactions.



Of course, this strategy has been determined empirically and
should be improved by more rigorous theoretical investigations.

D. Refining Fstimates of Potentials by Stochastic Approzima-
tion

After computing the initial estimates in (8) of the potential
functions, we refine them by solving the system of equations (6)
using a multi-step stochastic approximation (StA) closely re-
lated to a technique proposed in [43]. The StA can be imple-
mented because of the possibility of generating samples under
the given GPD by means of pixelwise stochastic relaxation. The
Metropolis relaxation algorithm [39] is used in our experiments.
Let us refer to as the (macro)step the successive stochastic relax-
ation pass round all the |R| pixels in the lattice, without repeti-
tion, under equiprobable random choice of each next pixel [23,
39]. Each step t = 1,2,... of the StA includes the following
operations:

(i) Generate an image X[ from a previous one Xp_;] by
stochastic relaxation under the GPD Pr(x|V},_,7) with the cur-
rent parameter estimate (the image X[o) is an IRF sample);

(it) Update the parameter estimates using the normalized
GLDHs for the generated image and a contracted StA-step
along the current approximation of the gradient in (5):

ViED; a€ A
Vaa(d) = Vageoa) + A - (Faldx®) = Fa(d]xpg) ;

(10)

(i27) Check the quality of these estimates by computing a
distance between the goal GLDHs for the learning sample x°
and current ones for the generated image x[y;

(iv) Terminate the process if the current quality reaches the
given threshold (the case of good model matching) or if the
number of steps exceeds the given limit due to poor quality of
the estimates (the case of poor model matching).

There is rather wide scope in the choice of possible schedules
for contracting successive steps during the StA process. The
schedule ensuring almost sure convergence of the process in (10)
to the desired MLE is deduced in [43]. However, in practice, as
mentioned in [43], this theoretical contraction is too slow to
achieve convergence in a reasonable time. In the experiments
below we used the following two heuristic schedules:

Co+1 CO+1 max
A= ———— - A A = ———— - A
[t] c1 + ot [o] OF A[] 1 ten-t M

(11)
where co,c1,c2 are user-specified control parameters and Afy™
is an estimate of the factor A obtained by maximizing the trun-
cated Taylor’s series for the likelihood function LF in (7) in
the neighborhood of the point V[;_;;. In the second case we
use the rough approximation of the current covariance matrix
by the diagonal one that resembles the initial diagonal ma-
trix at step t = 1 except for replacing the unknown marginals
with the current sample relative frequencies: Var(Hq(d|x)|V) =
|Ka| - Fa(d|xpy) - (1 — Fa(d|x)). The first schedule in (11) is
similar to the one found empirically and used in [43], but in
our experiments the final results were better, in general, for the
second variant with ¢cg = ¢; = ¢ and ¢2 = 1. The convergence
speed depended noticeably on the control parameter: small val-
ues ¢ € [0...5] gave slower but basically monotone convergence;
larger values ¢ € [10...30] usually resulted in faster but rather
oscillating convergence (of a hyper-relaxation type). In spite of
the overall good results of the above St A-learning these heuristic
schedules need more theoretical and experimental studies.
This StA-learning scheme can be regarded also as a self-
adjustable algorithm of image generation (in a broad sense, a

type of simulated annealing [20, 43]), because each StA-step
changes the potential estimates so as to obtain a better approx-
imation of the GLDHs of the given learning sample with the
histograms for the current image x;j. The image formed finally
by StA-learning resembles the desired texture more closely than
the images generated with the learnt potentials in the GPD and
ordinary stochastic relaxation.

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

Our experiments used the following natural textures, includ-
ing some from Brodatz [6]: ”Fur of Baboon” (50 x 50 pixels),
"Bark of Tree” (a digitized fragment 120 x 60 of the photoim-
age D12 from [6]), "Blood Cells” (60 x 30), ”Pressed Cork”
(a fragment 100 x 100 of the photoimage D4 from [6]), ” Wood
Grain” (65x65). Figure 1 shows the learning samples, the learnt
clique families, and the images generated by the Metropolis re-
laxation [39] under the GPD of (1) with the learnt clique families
and potentials. Images with 16 gray levels (that is, gmax = 15)
were generated and used for estimation. In these examples 2,
8, 2, 6, and 7 clique families were chosen, respectively, and 75,
255, 75, 195, and 255 potential values were estimated for them
using the proposed learning scheme. The interaction maps in
Figure 1(b) represent each clique family by two square boxes
with coordinates piq, Vo and —pq, —vq with respect to the origin
(0,0) indicated by a black mark. The darker the box, the more
characteristic the family. In particular, the chosen clique fami-
lies have intra-clique pixel displacements (1,0) and (2, 0) for the
texture "Fur of Baboon” and (3,1) and (—3,2) for the texture
?Blood Cells”.

These results allow us to conclude that the Markov/Gibbs im-
age model with multiple pairwise pixel interactions is promising
for simulating spatially uniform textures as well as in discrim-
inating between them. Of course, uniform textures which can
be modelled efficiently by the proposed model form lower-level
type (micro)textured images. Nevertheless, a reasonable num-
ber of natural textures belongs to this type, as well as many
artificial ones, and this justifies the use of the model in image
modelling and processing.
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