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Abstract

The paper describes a new approach to image seg-
mentation. It accepts the inherent deficiencies occur-
ing when extracting low-level features and when deal-
ing with the complexity of real scenes. Image segmen-
tation therefore is understood as deriving a rich sym-
bolic description useful for tasks such as stereo or ob-
ject recognition in outdoor scenes.

The approach is based on a polymorphic scheme for
simultaneously extracting points, lines and segments in
a topologically consistent manner, together with their
mutual relations derived from the feature adjacency
graph (FAG) thereby performing several grouping steps
which gradually use more and more specific domain
knowledge to achieve an optzmal image description.

The heart of the approach is 1.) a detailed analysis
of the FAG and 2.) a robust estimation for validating
the found geometric hypotheses.

The analysis of the FAG, derived from the exoskele-
ton of the features, allows to detect inconsistencies of
the ertracted features with the ideal image model, a
cell-complex. The FAG is used for finding hypothe-
ses about incidence relations and geometric hypothe-
ses, such as collinearity or parallelity, also between
non-netghbored points and lines.

The M-type robust estimation is used for simulta-
neously eliminating wrong hypotheses on geometric re-
lationships. It uses a new argument for the weighting
function.

Keywords: image segmentation, grouping, robust
estimation.

1 Introduction

Image segmentation notoriously appears to be the
bottleneck for tasks such as object recognition, struc-
tural stereo or image interpretation. In spite of the
many segmentation techniques available, none of them
is flexible enough to be applicable in a large range of
domains.

1.1 Related Work and Motivation

Segmentation, understood as image partitioning in
its general form seems to be not meaningful (F1s-
CHLER AND BOLLES 1985) as one generally cannot ex-
pect all the relevant boundaries to be observable. Seg-
mentation, understood as deriving a not necessarily
complete symbolic image description (cf. the ’primal
sketch’ of MARR 1982) leads to various approaches

for detecting the basic features, points, edges, and seg-
ments, separately, but due to the incompleteness of the
resulting image description motivated the research on
low level grouping techniques, especially for edges (cf.
HorAUD AND VEILLON 1990, DOLAN AND RISEMAN
1992, HUDDLESTON AND BEN-ARIE 1993). The di-
chotomy of edge and region based techniques formed
the basis for integrating both approaches (cf. GE-
MAN AND GEMAN 1984, PAVLIDIS AND Liow 1990,
CHU AND AGGARWAL 1993), which however, either
not explicitly integrate point type features, necessary
for consistent analysis (cf. KovALEVSKY 1989) or
start at the grid structure of the image (cf. GEIGER
AND YUILLE 1991) not allowing to represent larger
context explicitly, e. g. the straightness of edges in a
polyhedral world.

The reason for the difficulties in image segmenta-
tion seems to result from the need to integrate data
and model driven image analysis in an explicit man-
ner: decisions about the image content should be de-
layed to later stages of the analysis process where more
scene knowledge is available (cf. PRICE 1984, Mc-
CAFFERTY 1990 p. 31). The image model therefore
needs to provide several layers of increasing complex-
ity, which can absorb the increasing amount of (pro-
jected) scene knowledge during information aggrega-
tion and allows a smooth transition to hlgher aggre-
gation procedures. This view strongly supports the
grouping paradigm introduced by Lowr 1985 and
BIEDERMAN 1987 and vividly used since (e. g. DICK-
INSON ef al. 1992, SARKAR AND BOYER 1993).

The necessity to integrate scene knowledge on sev-
eral levels into the image analysis, integrating data
and model driven techniques, therefore requires a
broader setup of the first steps within the analysis
chain and was the motivation to develop a new ap-
proach to image segmentation. It accepts the inher-
ent deficiencies occuring when extracting low-level fea-
tures and when dealing with the complexity of real
images.

1.2 Outline of the Segmentation Proce-
dure

The concept is based on an image model (cf.

Fig. 1) starting with an ideal continuous image 1=

(P, L,8) being a cell-complex with segments § = {S;}
as 2-cells containing a smooth image function i(z,y),

lines £ = {L;} as 1-cells, and points P = {P;} as 0-



Figure 1: Model of the ideal (a.) and the real (b.) con-
tinuous image, true points P; are expected to lie within
the point regions P;, lines similarly. The borders of the
feature regions establish neighborhood relations.

Figure 2: The image segmentation procedure: increas-
ingly more scene knowledge is integrated into the seg-
mentation procedure via the image model. The hy-
potheses generation and estimation step may be iter-
ated for reaching more complex groupings.
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cells, all being open sets (the tilde stands for ”true”).
The real continuous image I = (P, L,S) is a blurred
version leading to point and edge regions £ = {L;}
and P = {P;} and consequently to segments & = {S;}

which are smaller in area than the corresponding Sg.
The true discrete image g(r,c) is a discretized and
noisy version of the real continuous image. The task is

to derive estimates 7 and §(z,y) of 7 and g(z,y) based
on the given observations g¢(r,c¢) and some generic
knowledge about the intensity g(z,y) and the geom-

etry in £ and P. This knowledge in a first instance
refers to neighboring features and possibly more com-
plex cliques C of features which are built by all neigh-
bors of points and segments. The knowledge we use at
this stage of the development is primarily of geometric
nature, namely straightness, parallelity, rectangularity
and collinearity of line features.

Fig. 2 shows the different steps of the segmentation
procedure:

1. The polymorphic feature extraction (cf.
FORSTNER 1994) leads to a list of points, lines and
segments. It may operate on grey scale or colour im-

ages (BRUGELMANN AND FORSTNER 1992) and may
lead to straight or curved lines. The low-level image
model triggers this step by the chosen homogeneity
measure within the segments (shaded grey) and the
expected form of the boundaries. An example is given
in Fig. (3a, b). Observe that the points and straight
line segments are extracted independently and at this
stage of the analysis these features represent an accu-
rate but incomplete image description.

2. The generation of hypotheses about the geomet-
ric properties of the features is based on the feature
adjacency graph (FAG) derived from the exoskeleton
of the features (cf. Fig. 3c). All neighboring features
are tested with respect to a small and sufficient set of
geometric relations, taking their uncertainty into ac-
count. Focus of attention thereby may be realized by
selecting a context dependent set of features.

3. A M-type robust estimation fuses the information
established so far: the positional information of points
and lines and the form information of the hypotheses.
The robust estimation simultaneously eliminates pos-
sibly wrong or conflicting hypotheses and performs an
optimal estimation of the geometry of the segmenta-
tion using all information available at that stage (cf.
Fig. 3d).

The final result consists of sets of features and geo-
metrical hypotheses which have been proven to be con-
sistent at that level of knowledge. The following steps
in the analysis will further increase the percentage of
correct hypotheses but can rely on the consistency of
the result of the image segmentation.

The setup and the analysis of the FAG for generat-
ing hypotheses and the robust estimation are discussed
in more detail in the following sections. More exam-
ples, also from real images, demonstrate the versatility
of the approach.

2 Generating Grouping Hypotheses

The polymorphic feature extraction (FEX) pro-
vides a first symbolic description of the image in form
of lists of features F € {P,L,S}. The neighborhood
analysis of these features based on the feature adja-
cency graph (Sect. 2.1) allows to identify failures dur-
ing FEX (Sect. 2.2) and to provide hypotheses for fur-
ther grouping (Sect. 2.3). Using the FAG for a first
interpretation is shown in the examples (Sect. 4).

2.1 The Feature Adjacency Graph

The FAG is an attributed graph G(F,N,7,p),
where the set F of nodes of G denotes the set of fea-
tures F = {P,L,S} with geometric and physical at-
tributes 7, and the set A of edges of G denotes the
set of pairs N;; = N(F;, F;) representing neighborhood
relations between two features F; and F; € F with re-
lational attributes denoted by p. Features having a
common relation build cliques ¢ = {€C(*), ¢, ..} of
arbitrary order.

We distinguish two kinds of neighborhood relations:
Direct neighborhood relations N2 = {N;;} represent
real neighborhoods in the image space. They are de-
fined by the exoskeleton, thus, they are extracted only
based on the geometric proximity of the two features in
concern. The minimal and the maximal distance and



Figure 3: Roof image (a., pixel size 24 c¢m at ground level), result of the polymorphic feature extraction (b.,
points, lines and segments), exoskeleton of the features (c., cf. Fig. 1.b!), and result of segmentation of roof
boundaries (d.).

Figure 4: Example of an ideal image description, di-
rect and some useful indirect neighborhood relations.
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the length of the common exoskeleton line between two
features may be used to characterize their connectiv-
ity. Analyzing the exoskeleton has several advantages
(EVERs 1988): 1. no threshold is required defining
the neighborhood and 2. the complexity of the proce-
dure is independent on the number of features.

In the ideal case (cf. Fig. 4) no neighborhoods of
type N(P;, P;), N(L;, L;), or N(S;,S;) occur. As indi-
rect neighbors, especially between segments, separated
by a line, and lines separated by a point or common to
a segment are important for further analysis, these in-

@ Segment Node

direct neighborhood relations A'™* are also collected in
the FAG, thus G(F, N ,v,p) = G(F,N° UN* v,p).
Obviously, Fig. 3c reflects the image model Fig. 1b
and provides a complete partitioning, however, being
polymorphic and the boundaries not carrying geomet-
ric information.

The analysis of the FAG can be based on its cliques.
We have started the analysis by investigating cliques

C® of order 2, thus Cgi), c® Cgf,), Cgf), ng) and C%),

sl

in the following omitting the index (%) for brevity.

2.2 Detecting Failures

Fig. 5 shows all types of failures possibly occuring
during FEX, which easily can be detected by analyzing
the FAG.

Lost and split features cause cliques C,,, Cy, or
Css which do not occur in an ideal segmentation (cf.
Fig. 1, 4). The correction, however, is hard, as each
of these cliques gives rise to at least two alternatives
(cf. Fig. 6 for a situation with Cy;).

Spurious features, points or lines, can be hypoth-
esized in case they are isolated within a segment, hav-
ing only one feature as neighbor, and in case of very
short line segments, i. e. less than 4 pixels (cf. FUCHS
et al. 1994). Obviously, this decision is error prone
and does not cover all cases. Therefore, the final de-
cision on spurious features should be postponed, i. e.
defining a non-spurious feature to take part in a larger
context (cf. below).

Merged features represent an incomplete seg-
mentation and cause inconsistencies with respect to
the ideal image model. As can be seen in Fig. 5, again,
only a larger context is able to overcome these errors.

Image partitioning does not have difficulties with
inconsistencies, which seems to be an advantage. But
such schemes hide difficulties, such as the one in Fig. 6,
possibly caused by poor contrast, as a decision on one
of the both interpretations is made on a too low level,
which is difficult to be undone later. Our scheme
makes the deficiencies explicit, allowing to use the
strong features for either continuing a data driven



Figure 5: Examples of image descriptions, derived by
feature extraction on real images leading to inconsis-
tencies with resp. to the image model.
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Figure 6: Two possible interpretations of a situation
with a neighborhood Css.

analysis or to initiate higher level hypotheses, in order
to gather enough knowledge for resolving the situa-
tion.

2.3 Geometric Hypotheses

Interpreting scenes with man made objects allows
to introduce general geometric knowledge already at
this stage of the image analysis without having to re-
fer to the semantic content of the image. In contrast
to more global techniques, like the Hough-transform
which requires to fix the ’scale’, i. e. the radius of in-
terest, we start with a local analysis using the cliques
Cu, Cjp, and Cp,, of the FAG, as points and lines carry
the geometric structure of the image.

| |
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Table 1  Relations between straight edge segments.
Orien—InC%_Ilce endpo%nt— endpoint-line no

tation endpoint| ¢ Jipe ¢ line incidence
perpendiculan ]_ I l —_
parallel _— —_— — — .
arbitrary N l/ [/ ‘ /

Two points P; and P; with N(P;,P;) , a point P;
and the end point of a line L; with N(P;, L;) or two end
points of two lines L; and L; with N(L;,L;) are tested
for identity. A point P; and a line L; with N(P;, L;)
or a end point of a line L; and a line L; with N(L;, L;)
are tested for point-line-incidence. Neighborhood
relations between two lines L; and L; with N(L;, L;)
are tested for collinearity, parallelity and orthog-
onality. For neighboring lines the 12 semantically dif-
ferent relations collected in Table 1 are hypothesized
by technically combining the above mentioned point-
point and point-line relations with the angle between
the lines. In all cases a hypothesis test on the geomet-
ric relation is performed, taking the uncertainty of the
features into account (cf. KANATANT 1991).

3 Robust Estimation for Hypothe-
ses Selection and Geometric Recon-
struction

3.1 Fusion of Image Data and Hypotheses

The feature extraction and the analysis of the FAG
provided us with two types of information, namely
the position of the image features and the hypothe-
sized geometric relations. The task now is to find an
optimal reconstruction of the underlying true segmen-
tation based on this information. This reconstruction
has to take the different type of uncertainty of both
information sources into account:

a. Sets P = {P;} and £ = {L;} of points and
straight line segments L; = (B;,E;). Their coordi-
nates p = (z,y) are locally estimated. Whereas the
coordinates of the points are uncertain, which can be
represented by their covariance matrix X,,, we do not
assume the features to be wrong, as the percentage of
spurious features is quite low (cf. FUCHS et al. 1994).

b. A set of geometric hypotheses between these el-
ements. Though the hypotheses are derived using a
hypothesis test, they may actually be wrong. More-
over, due to lack of knowledge about the true scene
and to approximations in the imaging model (e. g.
weak perspective) the hypotheses may even not hold
strictly, though they are not false.

A technical solution to the recovery of the true seg-
mentation therefore may be based on a global robust
estimation, where only the observed hypotheses are
treated as candidates for outliers.

3.2 Model for Geometric Reconstruction

The model for geometric reconstruction may be for-
malized in the following way:

The functional model relates the expected val-
ues F(1l) of the observed quantities I to the unknown
parameters 3 by the in general nonlinear relation

E(l) = g(B) or equivalently the observed values to the

estimated parameters I + € = g(8) with the residuals
e = g(B) — I. The unknown parameters 3 consist of
estimates for all coordinates of the true feature points
or end points of the true line segments.

As the coordinates of the extracted feature points
and of the end points of the extracted line segments



Figure 7: Lines of equal probability form ’clubs’ not
showing full symmetry around begin and end point.

are treated as observations we obtain the very simple
functional model F(z;) = &; and E(y;) = §; or

z; + é\x, =Z; yi + é\yi = /y\z (1)

for all coordinates.

As the existence of the relations between the ex-
tracted features is uncertain, we introduce these re-
lations as soft constraints, which i1s done in the fol-
lowing way. All hypotheses may be written as a
scalar ¢ or vector ¢ function of the coordinates,
whose expected value E(c¢) or E(e) is assumed to

be zero. E. g. the Icidence of a point P(p ) and

a lirrej(NB(f)B) E(py)) leads to the scalar constraint

cr(P,B,E) = (yp—9yB)(¥r—2p)—(Zp—2B)(Ye —UB)
or the Equahty of two points to the vector constraint

c(P(),Q@) = P — q. In this case it leads to
the functional model ¢g(E(P), F(Q)) = ¢g(P,Q) or

cu(P,Q)+ €., = cx(P,Q) with ex(P,Q) = 0. This
explicitly reads as

0+€x:fL’\Q—fL’\p 0+€y:§Q—§p. (2)

Analogously we obtain the observation equations for
the other hypotheses.

The stochastical model encodes the uncertainty
of the observational values. The reweighting scheme
of the robust estimation procedure critically depends
on the chosen stochastical properties.

We have to distinguish three types of observations:

1. The stochastical nature of feature points is
encoded in their 2 x 2 covariance matrix D(p)
D(z,y) = ¥ . It reflects the accuracy of the points
with respect to the underlying model, i. e. how well
the measured points are expected to fulfill the con-
straints.

2. The stochastical nature of the end points of line
segments requires a more detailed modeling. The un-
certainty of the end point position along the line (in u-
direction, cf. Fig. 7) actually is non-symmetric: lines
tend to be too short, sometimes quite a bit, and they
are seldom too long. The standard deviation o, (u) or
oout(t) of u therefore is made dependent on whether
the fitted position u is closer or further from the center
C of the line segment than up or ug resp. These stan-
dard deviations may be derived from the data. In the
examples we chose o;, = 1 pixel and o,,; = 10 pixels
restricting to fill short gaps. The standard deviation
of the position across the edge, thus in v-direction de-
pends on the deviation @ from the center C of the line

segment. The isolines of the density function on a line
segment instead of error ellipses thus are error ’clubs’
as in Fig. 7.

3. The stochastical nature of the constraints is
chosen such a way that they approximate crisp con-

straints. The variances o2, or covariance matrices

X.,c, are related to those, 77, and X, respectively,
derived by error propagation from the observed coor—
dinates. Thus the weights w.;, = 1/0 W, =31

cicy
of the constraints are k-times larger than the cor-
responding values derived from the image features.
E. g. from cg, = zg — zp (cf. eq. (2)) follows
o2 = (0’§Q+agp)//€. We chose £ = 2. These

B,z
weights will be modified in the estimation procedure.

The estimation procedure is based on the func-
tional and the gtochastical model which can be written
asl 4+ = g(8), D(I) = ¥y . Using the coordinates

of the features as approximate values B(O) and the Ja-
cobian X = (z;5) = (9¢:/90;) |ﬁv_ﬁ(o) we obtain the
i=F;

linearized (Gauﬁ Markov) model y = g(B?) -1 =
XAB, W =53]

Z'” or in groups of observations

y; = g;(8) ~1l; =X, AB, W, = %! (3)

YiYi *

The estimates TA-E = (XTWX)_lXTWy lead to
better approximations in the next iteration. Gener-

~(r+1) ) . “aW .
ally we have 3 =B+ AB . The robust esti-
mation consists of an iterative reweighting scheme for
the groups of observations

Wi =wi g4 )

using a decreasing weight function f(-) via Agy). The
argument of the weight function f(-) is chosen to be
the normalized distance

A() [2(/\)/\]

Ay Ay,

A = A 5)

The estimated size ZZZ(-V) =y, — A( )] Zz(/l/;z .

(Z‘%ia)_légy) of the error Ay, in the i-th group of
observations is the difference of the observed value y;

and the predicted value 7y A( il XiZE(V)[Z] in an esti-
mation, where the group yl of observations is not used

(cf. Fig 8). Tts covariance matrix has to be derived
by error propagation. The denominator d? = Xf o, de-

pends on a significant number and the dimension f of
the statistic (1 for scalar, 2 for vector hypotheses).
The choice of argument within a reweighting
scheme is new and motivated by the deficiency of clas-
sical reweighting schemes. There the residuals are
taken as argument, leading to quite unsatisfactory re-
sults due to the smearing effects in a least-squares fit.
Here the effect of outliers onto the argument of the
weight function is completely taken care of.
Convergence usually is achieved after 5-10 iterations.



Figure 8: The argument of the weight function de-

o

pends on the predicted error y; — ;- not on €

Figure 9: Examples for grouping: top: input, bottom
output. Collinearity (a.), point-line incidence (b.) and
the effect of the error clubs (c.): Instead of the inter-
section point one obtains a reasonable mean point.
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Three examples for the effect of the integration of fea-
ture geometry and hypotheses are given in Fig. 9.

The result of the robust estimation consists of a set
of constraints which — strictly speaking — could not
be disproved by that part of the image model which
is used in the estimation procedure. This in our con-
text refers to the set of hypotheses between points and
lines, namely incidences and geometric relations. The
estimated coordinates of the feature points and the
end points of the line segments only are correct if the
hypotheses involved actually are correct.

\/

\/

4 Examples

The following examples (cf. Fig. 10) show the re-
sult of the proposed polymorphic scheme for deriving
a symbolic image description useful for further analy-
sis. All images contain man made objects with mainly
polygonal region boundaries. Within the hypotheses
generation step short lines (< 6 pixels) and isolated
features were ignored in all cases in order to obtain
only the strong image structures. The visualization of
the result of the robust estimation is primarily meant
to show the accepted hypothesis via their effect onto
the geometry, and should not be interpreted as the
final result of the segmentation.

The first example, taken from ROSENTHALER et al.
1992, shows the system to be able to close short gaps
and especially the effect of the collinearity constraints
along the vertical lines, which are indirectly neigh-
bored via the common feature points. To check for the
parallelity constraint is meaningful in this case due to
the horizontal viewing direction. The robust estima-
tion analyzed 1103 hypotheses and left 812 (74 %) ac-
cepted. As the line features have been assumed to have
a positional error (o) of 0.3 pels across the edge and
the hypotheses are introduced as soft constraints the

collinearities are not quite fulfilled. Obviously some
short, though accepted line segments close to other,
longer ones, are prolongated. Partly this appears to
be correct, partly not - a situation which cannot be
resolved at that level of the analysis.

In the second example, taken from ROTHWELL et
al. 1993, no hypotheses on parallelity and orthogonal-
ity were tested in order to keep the geometry of the
weak perspective. 351 (75 %) out of 465 hypotheses
were accepted. The positional error of 0.1 pels of the
edges lead to nearly no geometric shift or rotation of
the edges, however to consistent corner positions. As
the current version cannot handle curved boundaries
the circular parts of course are erroneously seen as
straight. A kind of hysteresis could be applied by first
grouping the very strong lines (cf. Fig. 11), here the
positional error is 0.3 pels) and then link the collinear
shorter lines (not shown).

The third example is to show the effect of induced
hypotheses. Up to 693 (45 %) out of 1552 hypotheses
were accepted, due to the large blobs, causing large
cliques with a high percentage of accidental wrong hy-
pothesis. The positional error of the edges was in-
tentionally chosen to be high, 0.5 pels. Observe the
change of orientation of quite some edges due to par-
allelity and collinearity constraints, but also the (ob-
viously incorrect) merging of close neighboring lines
caused by point-line incidences. Orientations did not
change when choosing the error to be 0.3 pels.

The last example, taken from the ISPRS test (cf.
FRITSCH AND SESTER 1994) is to demonstrate the
usefulness of the FAG for goal driven grouping (cf.
also Fig. 3). Assuming the purpose of the analysis to
be building detection, the selection of the roof bound-
ary features was done based on their color being red,
thus using explicit scene knowledge. 66 % (331 out
of 505) hypotheses were accepted. The result of the
estimation may be used for triggering further analysis,
e. g. based on aspects of roof parts.

When evaluating these results one must keep in
mind that we did not want to force the local group-
ing to make decisions which actually require a larger
context, be it a scene model or more images.

5 Conclusions

The paper presented an approach for generating a
rich symbolic image description. The salient feature of
the concept is its openness at the different aggregation
levels for changes or extensions in the image model.
This refers to the analysis of color or multi-spectral
images. Also the low level aggregation to straight line
segments may be easily replaced by other schemes, of
course requiring the inclusion of, say, circular or conic
elements in the robust estimation.

The crucial part is the use of a topologically con-
sistent image model and the attempt to exploit the
structure of that model within all analysis steps. This
is the cue to detect inconsistencies in the symbolic
image description and the guide to build hypotheses
for corrections. The proposed feature adjacency graph
and its analysis can be transferred to any other fea-
ture extraction scheme, as the applied image model, a
cell-complex, is rich enough.



Figure 10: Input images (left column), result of FEX (middle column), result of robust estimation (right column).
Short lines ( < 6 pixels) and isolated features are ignored. Last row: the grouping generation only used features,
which have relations to the (red) roof segments




Figure 11: Example 2 from Fig. 10 with only lines
> 15 pels.

/

The experience with the system indicates that the
image model, as far as the accuracy of the detected
features and the expected relations is concerned, di-
rectly influences the result allowing a top-down control
of the grouping to be performed. This refers to both,
the weighting of the features, representing their ex-
pected coherence with the model, and the selection of
hypotheses of a certain type. The results on different
types of real images show promising results.

The potential of the feature adjacency graph is not
yet exploited. The very next step will be to use the
local image structures together with the decisions pro-
vided by the robust estimation in order to integrate
the information of the segments. Furthermore the ac-
cepted hypotheses then need to be realized by updat-
ing the feature adjacency graph, which then can be
used for the next step in the analysis. In case of recon-
struction problems, e. g. when using the grouped fea-
tures in a stereo system using symbolic image match-
ing, the same type of strategy may be applied again,
hypothesizing relations and identifying the incorrect
ones using a global robust estimation procedure.
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