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The paper presents a method for automatically and optimally de-
termining the vanishing points of a single image, and in case the
interior orientation is given, the rotation of an image with respect
to the intrinsic coordinate system of a lego land scene. We per-
form rigorous testing and estimation in order to be as independent
on control parameters as possible. This refers to (1) estimating
vanishing points from line segments and the rotation matrix, (2)
to testing during RANSAC and during boosting lines and (3) to
classifying the line segments w. r. t. their vanishing point. Spher-
ically normalized homogeneous coordinates are used for line seg-
ments and especially for vanishing points to allow for points at in-
finity. We propose a minimal representation for the uncertainty of
homogeneous coordinates of 2D points and 2D lines and rotations
to avoid the use of singular covariance matrices of observed line
segments. This at the same time allows to estimate the parame-
ters with a minimal representation. The vanishing point detection
method is experimentally validated on a set of 292 images.

1 INTRODUCTION

The orientation of a camera with respect to a world coordinate
system is a classical task of photogrammetry. It can only be de-
termined in case some information about the world is available
and can be identified in the image. Determining the camera pose
using reference points or lines visible in the image are classical
and use either the spatial resection or the direct linear transforma-
tion, depending on whether the camera is calibrated or not. Re-
ducing the amount of prior knowledge leads to the area of inverse
perspective, where partial information about the object and the
image can be derived using generic geometric properties of the
scene, especially the existence of parallel or orthogonal straight
lines. Going beyond, recent attempts to exploit illumination ef-
fects visible in an image allow to derive rough estimates of the
orientation of the camera or the direction of the light source.

This paper presents a method for detecting vanishing points and
possibly the rotation matrix of the camera w. r. t. the intrinsic
coordinate system of a Lego land or Manhattan world with two
or three mutually orthogonal sets of straight lines visible in the
image. The paper is motivated by two observations of previous
approaches: (1) The difficulty to represent the space of solutions,
the unit sphere in two or three dimensions, within a search or es-
timation process and (2) lack of a standard algorithmic sequence
for statistically rigorously inferring the desired parameters.

The main goal of the paper therefore is to apply rigorous testing,
classification and estimation in all steps of a stochastic algorithm
in order to reduce the number of control parameters and to obtain
optimal results in terms of reliability and accuracy. To exploit
the framework of projective geometry, where uncertain elements
regularly are characterized with singular covariance matrices and
during estimation require additional constraints, we propose a
minimal representation of the uncertainty and the parameters to

be estimated. These two means at the same time solve the two
above mentioned problems of representation and rigorous esti-
mation.

The paper is organized as follows. We first give a short review
on previous approaches for handling the two mentioned prob-
lems within vanishing point detection and rotation estimation.
We then introduce a minimal representation overcoming singu-
larities, which is used for a method for vanishing point detection
and rotation estimation. We experimentally validate the method
on a set of 292 images.

Notation. We distinguish between the name, say x , of an entity
and its representation, say x. We distinguish homogeneous vec-
tors or matrices, say the 3-vector x or the 3 × 3-matrix K, from
Euclidean vectors or matrices, say the 2-vector x and the 3 × 3-
matrix R. Stochastical variables, say x, are underscored. The unit
matrix is denoted with In, the skew symmetric 3×3-matrix S(x)
of a 3-vector induces the cross product, thus x × y = S(x)y.
In case an equation contains homogeneous entities on both sides,
the equality sign = means equality up to a factor 6= 0. Concate-
nation of scalars, vectors and matrices follows MATLAB style:
horizontal concatenation reads [a, b], vertical reads [a; b].

2 RELATED WORK

Vanishing point detection has been attacked at least since Barnard’s
influential paper 1983, addressing the unit sphere representation
of the space of all vanishing points. When referring to one vanish-
ing point all lines not going through this point are outliers highly
robust methods are required, e. g. clustering [Straforini et al.,
1992], the Hough transform [Tuytelaars et al., 1998] and random
sample consensus [Wildenauer and Vincze, 2007]. Heuvel [1998]
included an estimation of the rotation matrix. A good review is
given by Rother [2000]. However, quite a number of recent pub-
lications address special aspects, such as including lens distor-
tion [Grammatikopoulos et al., 2007], focussing on road scenes
[Kong et al., 2009], efficient clustering processes [Schmitt and
Priese, 2009], or a new method based on the socalled J-linkage
algorithm for efficient clustering [Tardif, 2009].

Statistical modelling in the context of vanishing point detection
has been adressed by Collins and Weiss [1990] who used models
for the uncertainty of lines and vanishing point for optimal esti-
mation, [Heuvel, 1998] who tracked the uncertainty through the
sequence of decision steps or Coughlan and Yuille [2003], who
include generic knowledge of the distribution of the lines, which
was the basis for Deutscher et al. [2002], where also the principle
distance was estimated, and Schindler and Dellaert [2004], who
use an expectation-maximization approach to find more that one
triplet of vanishing points.

Our approach, similar to the one of Heuvel [1998], tracks the
uncertainty from the automatic line detection, via the vanishing



point detection to the estimation of the rotation. We however, our
approach (1) exploits the uncertainty estimate from the line seg-
ment finder, (2) starts with finding vanishing points, and only in
case of known interior orientation imposes the rectangular con-
straints, and (3) is tested on a large set of images.

3 MINIMAL REPRESENTATION FOR UNCERTAIN
POINTS ON THE UNIT SPHERE

3.1 Motivation

Uncertain points x in the Euclidean plane are usually represented
by a pair {µx,Σxx} where µx is a 2-vector of the mean and Σxx
the 2 × 2-covariance matrix. It may be visualized by a standard
ellipse, (x − µx)TΣ−1

xx (x − µx) = 1, with bounding box be-
ing of size 2σx × 2σy . In case we have an observation x for the
mean vector it can also be represented by the a pair {x,Σxx},
a situation which we will assume in the following to simplify
notation. This representation directly can be transferred to ho-
mogeneous coordinates with 3-vector x and the corresponding
3 × 3-covariance matrix Σxx. In order to avoid the free scaling
and be able to represent points at infinity it is of advantage to
work with spherically normalized homogeneous coordinates xs:

xs = N(x) := x/|x| . (1)

Given the covariance matrix Σxx for the unnormalized homoge-
neous vector, the covariance matrix of the spherically normalized
vector is

Σxsxs = JxxsΣxxJT
xxs , with Jxxs = (I3 − xsxsT) / |x| (2)

where the Jacobian, except for the factor is a projection matrix
with rank 2. Therefore the covariance matrix Σxsxs has rank 2
and null space xs. It can be visualized by a standard ellipsoid:
Its centre sits on the unit sphere S2 at xs, it is flat in the direc-
tion xs and indicates the directional uncertainty of the vector xs.
Actually the distribution of the unit vectors is no Gaussian distri-
bution any more, as all uncertain points sit on the unit sphere. We
assume the directional uncertainty to be small enough, such that
an approximation of the spherical distribution of xs by a Gaus-
sian distribution is acceptable. This Taylor expansion, neglecting
second order terms, decreases with the square of the angular un-
certainty, which is acceptable, namely below 1 h, in case the
directional uncertainty is below 1◦.

The singularity of the covariance matrix has a number of con-
sequences: (1) the standard ellipse can not be given explicitly,
(2) we cannot express the Mahalanobis distance of a point close
to a given point µx, as we also would need the inverse covari-
ance matrix of the difference vector, which is singular, (3) we
cannot express a weighted least squares estimation using the in-
verse covariance matrix as weight matrix, (4) in case we estimate
some point on the unit sphere, we need an additional constraint,
which increases the number of parameters per unknown 2D point
to four, which in case of large systems may be inefficient. These
disadvantages is the motivation to change the representation.

The argumentation can be transferred to all other geometric en-
tities in 2D and 3D space, especially to 2D lines, which we will
use for representing straight line segments.

3.2 A Minimal Representation

A minimal representation would do with two parameters per point
and a 2× 2 covariance matrix. Without loosing the possibility to
handle points at infinity we can use the following representation.

1. We use the spherically normalized vector xs for representing a
point, either working in the projective plane, where xs and −xs

represent the same point or working in the oriented projective
plane, distinguishing point vectors with different sign.

In the following we always assume homogeneous vectors to be
spherically normalized, and omit the superscript for simpli-
fying the notation.

2. We only use the uncertainty of the directional vector in the
tangent plane. This either can be done by locally spanning a two-
dimensional coordinate system (s, t) in the tangent plane or by
rotating the uncertain point into the north (or the south-) pole,
there working in the (x, y) system of the Euclidean plane and
omitting the third coordinate. This leaves us with a regular 2×2-
covariance matrix. The situation is sketched in Fig. 1 The min-
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Figure 1: Transfer of the uncertainty of a point on the unit sphere
S2 from the point x to the north pole O(e3) by a minimal rota-
tion R , thereby transporting the coordinate frame (st), tangent
to x to (xy), tangent to O: working at O with two parameters is
equivalent to working in the two-dimensional tangent space at x
embedded in the three-dimensional space (uvw).

imal rotation from the north pole e3 to the point x is given by
[McGlone et al., 2004, p. 51]

R(e3,x) =
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= [Jx(x) | x] (3)

The rotation of the uncertain point x to the north pole yields the
reduced covariance matrix

Σxrxr = Jx(x)T Σxx Jx(x) (4)

with the Jacobian Jx being the left two columns of R(x, e3).
The index x indicates that the Jacobian refers to a 3-vector. The
inverse relation, the covariance matrix Σxx of the homogeneous
point for a given reduced covariance matrix Σxrxr :

Σxx = Jx(x) Σxrxr JT
x(x) . (5)

3. We measure the difference of two neighbouring points either
in the tangent plane or after having rotated both points with the
same transformation into the north (or the south-) pole. As we
can transfer the uncertainty by variance propagation a compari-
son then can be based on the Mahalanobis distance.

Thus, in case two neighbouring points x and y are given, the Ma-
halanobis distance is determined by first reducing the two points,
thus by rotating the wit the same rotation close to the north pole.
For this we need two steps. First we need to make the covariance
matrices consistent by centering them at some good approxima-
tion xa for the common mean. This is achieved by rotating the



uncertainties from x and y to xa by a minimal rotation, e. g.

Σaxx = R(x,xa) Σxx RT(x,xa) (6)
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Figure 2: Estimation is performed at the north-pole in order to ex-
ploit the regularity of the reduced covariance matrix of the obser-
vations. This first needs to be transformed into the approximate
point xa, then - together with x - rotated (R ) into the north-pole,
allowing to skip the third coordinate - and yielding the reduced
observation xr . The reduced approximate value is 0,

Second we need to derive the reduced homogeneous coordinates
by rotating the complete situation to the north pole and omitting
the third coordinate, thus applying JT

x(xa). This leads to the re-
duced coordinates

xr = JT
x(xa)x , yr = JT

x(xa)y , (7)

and the corresponding covariances

Σaxrxr
= JT

x(xa) Σaxx Jx(xa) (8)

Σayryr
= JT

x(xa) Σayy Jx(xa) (9)

which finally allows us to determine the Mahalanobis distance in
the classical manner:

d2 = (xr − yr)
T (Σxrxr + Σyryr )−1 (xr − yr) (10)

The inversion always is possible in case the rank of the covariance
matrix of the homogeneous point is two.

Therefore in the following we will represent a 2D point x using
its homogeneous coordinates and its reduced covariance matrix:

x : {x,Σxrxr} . (11)

where the approximate value is chosen to be identical to x, thus
xa = x. As also the full covariance is used, it may be of advan-
tage to also store the full 3 × 3 covariance matrix in case it is to
be used frequently and the number of elements to be handled is
not too large.

The same representation is used for 2D lines l : {l,Σlrlr},
where l are the spherically normalized homogeneous coordinates,
reflecting the interpretation of 2D lines on the unit sphere as al-
ready done by Barnard [1983].

4 DETECTING VANISHING POINTS

We assume a set of N straight line segments ln, n = 1, ..., N be
derived with some image processing tool. We represent them as
infinitely long straight lines {l,Σlrlr}n in some camera coordi-
nate system:

1. In all cases we assume the camera to be straight line preserv-
ing.

2. We assume the image centre to be identical to the principle
point, the skew between the axes to be 0 and the scales in x and
y direction to be equal.

3. The principle distance is either given or assumed to be identical
to the longer side of the image.

Thus the calibration matrix is assumed to be

K =

 c 0 xh
0 c yh
0 0 1

 (12)

Given the line segments pl in the pixel-coordinate system we
obtain their coordinates in the camera system from l = KT pl.
In case the above mentioned assumptions are close to reality, we
after this transformation will be able to apply the orthogonality
constraints between the derived vanishing point vectors, other-
wise, the transformation from pixel to camera coordinates just
serves for conditioning. In the experimental section we give more
details on the derivation of the line segments and their accuracy.

We again assume the homogeneous coordinates to be spherically
normalized and the uncertainty is represented by the reduced co-
variance matrices derived from the image processing tool. The
line segments belong to one of four classes, either to one of the
three vanishing points of the Lego land scene or to none of these
three points. Let the n-th line segments ln belong to class ck, k ∈
{0, 1, 2, 3}, k = 0 indicating the line being an outlier.

The optimization problem is to find classes cn and three vanish-
ing points xj such that the robustified function

Ω2(cn,xj) =

3∑
j=0

N∑
n=1

δ(cn − j)ρ(d2(xj , ln)) (13)

is minimal. Here we use the Kronecker delta, the function ρ(t2) =
min(T 2, t2) with the threshold T = 3 and the Mahalanobis dis-
tance of the vanishing point xj from the line segment ln

d2(xj , ln) =
e2(xj , ln)

σ2
ejn

=
(xT
j ln)2

xT
jΣln lnxj

. (14)

We assume ρ(d2(x0, ln)) = T 2 to include line segments going to
no vanishing points. In case the classes cn are not known, the op-
timization function in general is not convex and shows many local
optima, requiring specific optimization procedures such as used
in Coughlan and Yuille [2003]; Deutscher et al. [2002]; Schindler
and Dellaert [2004]. We apply a stochastic algorithm for finding
the classes. A RANSAC approach appears to be most suitable,
due to the simplicity of the geometric situation and the lack of
approximate values. Therefore we need to perform the following
steps:

1. For each vanishing point, (1) use a RANSAC approach for
identifying preliminary classes, (2) determine a robust Maximum
likelihood type estimation for the vanishing points, given the classes,
(3) perfom a boosting step to find more lines belonging to that
vanishing point and (4) finally again perform a robust ML type
estimation. This actually is a procedure for robustly finding the
pole xj of the best fitting circle through a subset of the points ln
on the unit sphere.

2. Given all vanishing points test whether two of them are identi-
cal.



3. determine the best class for each line segment and repeat the
ML type estimation for all vanishing points.

4. Enforce the orthogonality constraint onto the vanishing point
directions in the camera system, which results from the orthogo-
nality of the main directions of the Lego land scene.

We describe the individual steps in more detail.

4.1 Detecting vanishing points using RANSAC

Random sample consensus (RANSAC, Fischler and Bolles
[1981]) has undergone many modifications since its inven-
tion. We use the version MLESAC, where, instead of choos-
ing the solution with the maximum number if inliers, we
choose the randomly found pair of lines minimizing Ω2(x) =∑
n ρ(d2(ln,x)). At the same time we treat all line segments

with d2 < T 2 as inliers.

Though the putative vanishing point x = lm ∩ lm′ , depending
on the randomly chosen line segments lm and lm′ is uncertain,
we treat it as a trial point within a random search procedure, and
therefore do not need to take its uncertainty into account - in con-
trast to a procedure, where the other N − 2 line segments are
tested to determine the size of the consensus set of lines for the
hypothesis (m,m′).

4.2 ML-type estimation of a vanishing point

Given a set {ln, n ∈ Nj} lines segments which are supposed to
support the vanishing point xj , we perform an estimation of the
point. Based on approximate values lan, n ∈ Nj for the line seg-
ments and xaj for the j-th vanishing point, we search for estimates
(omitting the index j in this section for simplicity)

l̂n = ln + v̂n = l̂an + ∆̂ln , x̂ = x̂a + ∆̂x (15)

fulfilling the nonlinear constraints

gn(̂ln, x̂) = l̂Tn x̂ = 0 , n ∈ Nj (16)

As the covariance matrix of the observations is singular, we trans-
form the model into the equivalent model using the reduced ob-
servations lrn and the reduced approximated point xar :

lrn = JT
x (̂lan) ln xar = JT

x(x̂a) xa ≡ 0 (17)

leading to the new constraints for the reduced values

gn(̂lrn, x̂r) = 0 , n ∈ Nj (18)

We now iteratively improve the approximate values for the fit-
ted observations and the estimated point using a linear substitute
model, derived by Taylor expansion of the constraints. This reads
as

gn(̂l
a

rn, x̂
a
r) + aT

n ∆̂xr + bT
n ∆̂lrn = 0 D(lrn) = Σalrn lrn

,
(19)

where the reduced covariance matrix is determined using (6) and
(8). With the approximate values for the residuals v̂arn = l̂

a

rn −
lrn and the estimated residuals v̂lrn = v̂arn + ∆̂lrn we want to
find best corrections ∆̂lrn and ∆̂xr minimizing

Ω2(∆̂lrn, ∆̂xr) =
∑
n∈Nj

v̂T
rn (Σalrn lrn

)−1 v̂rn (20)

under the given constraints. Observe the covariance ma-
trix Σlrn lrn depends on the unknown parameters. This setup

only is possible, as the covariance matrix of the reduced
observations is regular. The classical solution is ∆̂xr =
Σx̂x̂ AT

r (BT
rΣalrlr Br)−1cg with

Ar
N×2

= [aT
rn] , BT

r
N×2N

= Diag(bT
rn) cgn = −xaT lan + bT

rn v̂
a
rn

with the Jacobians, both being 1× 2-vectors aT
rn = l̂aT

n Jx(x̂a),
bT
rn = xaT

r Jx(̂lan) and the covariance matrix of the reduced co-
ordinates of the estimated point

Σx̂r x̂r = (AT
r (BT

rΣalrlr Br)Ar)−1 (21)

The corrections for the fitted observations are

∆̂lr = Σalr lr BrΣx̂r x̂r (cg − Ar∆̂xr)− v̂a (22)

We now need to determine the updated fitted observations l̂n and
the updated point coordinates x̂. These we obtain by rotating the
vectors N([∆̂lrn; 1]) and N([∆̂xr; 1]) back to the vicinity of the
approximate values:

l̂(ν+1)
n = RT(̂l(ν)n , e3) N

([
∆̂lrn

1

])
(23)

x̂(ν+1) = RT(x̂(ν), e3) N

([
∆̂xr

1

])
(24)

Finally, we determine the estimated variance factor from the
weighted sum of the residuals: σ̂2

0 = Ω/(Nj − 2).

As some of the constraints may not be fulfilled, we apply a ML-
type estimation, by eliminating those constraints where the Ma-
halanobis distance dn of the constraint cgn from 0 is significant,
using d2

n = c2gn
/σ2

cgn
∼ χ2

1 with σ2
cgn

= bT
rn Σalrn lrn

brn.

4.3 Boosting for finding lines belonging to a vanishing point

Now, as we have an initial good estimate for the vanishing point,
we search for more lines supporting it. This boosting step, sta-
tistically checks the inner products fn = x̂Tln, using d2

n =
f2

n
/σ2

fn
∼ χ2

1. It takes the uncertainty Σx̂̂x from (21) of the es-
timated vanishing point into account when determining the vari-
ance σ2

fn
of fn. Thus we use σ2

fn
= x̂TΣln ln x̂ + lTnΣx̂̂xln. This

procedure is repeated three times, in each step only using those
line segments which have not been previously identified.

4.4 Classifying the line segments

We now assume we have up to three vanishing points
xj(xj ,Σxj xj ), omitting the hatˆ , both for convenience, and as
these vanishing points will be treated as input to the final esti-
mate. As the sequence of finding the vanishing points may favour
the first and possibly the second vanishing point, we now perform
a classification of all line segments. We perform the same test
with the up to three test statistics d2

nj = f2
nj/σ

2
fnj

per line seg-
ment ln. In case the log likelihood ratio rn,jj′ = d2

nj/d
2
nj′ is

smaller than a factor, say 1/25, for all j′ 6= j, then the line seg-
ment is classified as belonging to class j, thus cn = j. Otherwise
it is classified as not decidable, indicating it is either an outlier or
a line segment close to a line joining two vanishing points. Af-
ter the lines have been classified as belonging to one of the three
vanishing points, the coordinates of the vanishing point again are
determined using a ML-type estimation.

4.5 Enforcing the orthogonality constraint

We finally enforce the orthogonality constraint in case we know
the interior orientation of the camera. As the coordinate vectors



of the vanishing points are mutually statistically independent, we
have the full statistical information from all relevant line seg-
ments.

We now treat the coordinates (xj ,Σxj xj ) of the vanishing points
achieved from the individual detection, boosting and estimation
as observations, which need to be corrected. Based on approx-
imate values xaj , which in the first iteration are identical to xj ,
we again obtain x̂j = xj + v̂j = x̂aj + ∆̂xj , j = 1, 2, 3
to fulfill the orthogonality constraint. The model for enforcing
the three orthogonality constraints is g(x̂i) = 0 with g1 =
x̂T

2 x̂3, g2 = x̂T
3 x̂1, g3 = x̂T

1 x̂2. After reducing the obser-
vations x̂rj = JT

x(x̂j) xj , j = 1, 2, 3 in order to be able to
handle the singularity of the covariance matrices Σxj xj we ob-
tain the reduced model g(x̂ri) = 0 with g1 = x̂T

r2x̂r3 = 0,
g2 = x̂T

r3x̂r1 = 0, g3 = x̂T
r1x̂r2 = 0. The linearized model

therefore is cg(x̂a) + BT
r ∆̂xr = 0 or explicitely x̂aT

2 x̂a3
x̂aT

3 x̂a1
x̂aT

1 x̂a2

+

 0T x̂aT
r3 x̂aT

r2

x̂aT
r3 0T x̂aT

r1

x̂aT
r2 x̂aT

r1 0T


 ∆̂xr1

∆̂xr2
∆̂xr3

 =

 0
0
0


The reduced covariance matrices Σaxrjxrj

of the observations are
derived following (6) and (8), first transforming the rotation into
the approximate point and second transforming them to the north
(or south) pole and omitting the third, the zero component.

Minimizing Ω =
∑3
j=1 v̂

T
rj (Σaxrjxrj

)−1 v̂rj under the three
constraints yields the classical solution for the update for the
fitted observations ∆̂xr = Σaxrjxrj

Br(BT
rΣxrjxrj Br)−1(cg +

BT
rxr) +xr . They are used to obtain improved approximate val-

ues for the fitted values of the vanishing point coordinates, as in
(24). In spite of the low redundancy of R = 3 it useful to deter-
mine and report the estimated variance factor σ̂2

0 = Ω/3.

5 EXPERIMENTS

5.1 Used data

We perform two tests, one using uncalibrated images for inves-
tigating reliabity of the vanishing point detections and a second
using partially calibrated images, where the principal distance is
known.

In both cases we automatically derive straight line segments.
They are represented by their centroid x0 [pel], their length l
[pel], their direction φ. This allows to give the stochastical prop-
erties by the standard deviation σq of the centroid across the line
and the standard deviation σφ of the direction. They are derived
from a ML-estimation using the edge elements and are approxi-
mately

σq =
1√
l
σe , σφ =

√
12

l3 − l σe (25)

where σe is standard deviation of an edge element, which de-
pends on the manner of subpixel positioning and always is
smaller than the rounding error 1/

√
12 [pel]. In our context

mainly the angular accuracy is relevant. Using the techniques
described by Meidow et al. [2009] the spherically normalized co-
ordinates l := ls of all line segments together with their singular
covariance matrix Σll are determined. For testing we always take
a high significance level of S = 0.9999. We employ the adaptive
determination of the number of trials in the RANSAC procedure
as described by Hartley and Zisserman [2000].

The processing time for each image is in the order of a few sec-
onds, including the edge detection program, written in C, and the
vanishing point detection, using non optimized MATLAB code.

5.2 Detecting vanishing points

The first group of experiments addresses the quality of the van-
ishing point detection. We evaluate the detection procedure on
three levels of accuracy.

Visual evaluation. First we check the reliability of the vanish-
ing point detection. We downloaded 140 Google images named
’building’ or ’batiment’ (cf. Fig. 3) with a minimum side length
of 768 pixels. No interior orientation is known, some images
are images sections, some are graphics, some show significant
lens distortion. For each image we visually identified the num-

Figure 3: 12 of 140 building images, taken from Google (’build-
ing’, ’batiment’). Such images are used for evaluating the van-
ishing point detection.

ber of vanishing point, a human could find, and - by inspecting
the color coded line segments and the directions to the vanishing
points - the number of correctly found vanishing points. The re-
sult is shown in the table 1. From the 102 images, where 3 or
more vanishing points could be detected, in only 7 images the
system found only one vanishing points, whereas in 28 images
two vanishing points were detected. From the 95 images, mostly
with facades, where only two vanishing points could be detected,
in 90 % the system could find both vanishing points. In three
images no vanishing points could be detected even by a human.
This is coherent with the experiment on the ETRIMS-data base
[Korč and Förstner, 2009], where in all 60 images of facades both
vanishing points could be detected.

0 1 2 3 4 5 6
0 3 0 0 0 0 0 0
1 0 0 3 4 0 0 0
2 0 0 92 25 2 0 1
3 0 0 0 65 4 0 1

Table 1: Horizontal: number of vanishing points a human could
detect. Vertical: the number of vanishing points correctly de-
tected by the algorithm. 140 Google images and 60 eTRIMS
images.

The software gives an internal estimate for the accuracy of the
vanishing points. We compared this with the number of line
segments supporting a vanishing point. In the Google data
set of 40 images on an average 90 lines supported a vanishing
point, the mean standard deviation of the direction is appr. 0.3◦.
On an average we obtain an internal estimate for the accuracy
σd ≈ 2.5◦/

√
n, which is a lower bound for the real accuracy.

Of course, no check on the orthogonality of the vanishing points
could be performed as the intrinsic parameters are not available
for these images.



Comparison with manual measurements. In 54 images we
measured all vanishing points manually, by interactively identi-
fying two straight lines pointing towards a vanishing point. We
compared these directions with the one determined by the system.

The histogram of the 143 angular differences between the manual
and the automatic measurements is shown in fig. 4. About 1/3 of
the manually measured vanishing points show a difference larger
than 6 degrees, a threshold taken from the histogram. The other
95 differences indicate an average angular difference of 1.1◦. As
a spatial direction has two degrees of freedom, this corresponds
to a standard deviation in each angular direction of appr. 0.7◦,
which is slighly larger than twice the internally estimated accu-
racy of 0.3◦.

Figure 4: Histogram of angular differences between manually
measured and automatically computed vanishing points

Finally, we evaluated the the method on the 102 images of the
YORK URBAN data base [Denis et al., 2008], with images of size
580× 640 pixels. There the vanishing points were manually de-
termined using multiple edges per vanishing point. From the 306
vanishing points 286 (93 %) were automatically detected. They
showed an angular difference of 1.7◦, corresponding to a direc-
tional uncertainty of 1.2◦. The lower accuracy probably results
from the lower resolution, thus the shorter line segments used. An
example, where only two vanishing points were found is shown
in fig. 5.

Figure 5: Image with only two vanishing points found correctly.
The black star is the estimated vanishing point, the white diamond
the reference point. The green line segments in the image are
identified as outliers before boosting. After boosting the distance
to the reference point is diminuished by appr. 30 %. The blue
vanishing point can be automatically be identified as outlier, as
σ̂2

0 = 126.72 is significanly larger than 1.

6 CONCLUSIONS AND FUTURE WORK

We presented a new method for vanishing point detection, which
tracks the uncertainty from the image data to the final result and
empirically evaluated the result on 292 images. The estimation
was consistently performed with homogeneous coordinates, for
which we proposed to use a minimal representation for the un-
certainty.

The system easily can be extended to determine parameters for
lens distortion, as proposed by Grammatikopoulos et al. [2007].

It up to now does not perform enough self diagnosis, in order to
reliably determine the number of correct vanishing points. For a
practical use a priori knowledge should be integratable in a flexi-
ble manner, e. g. constraints on the orientation or the prior knowl-
edge about the relevance of line segments.
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