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Abstract. Estimation using homogeneous entities has to cope with ob-
stacles such as singularities of covariance matrices and redundant parame-
trizations which do not allow an immediate definition of maximum likeli-
hood estimation and lead to estimation problems with more parameters
than necessary. The paper proposes a representation of the uncertainty
of all types of geometric entities and estimation procedures for geometric
entities and transformations which (1) only require the minimum number
of parameters, (2) are free of singularities, (3) allow for a consistent up-
date within an iterative procedure, (4) enable to exploit the simplicity of
homogeneous coordinates to represent geometric constraints and (5) al-
low to handle geometric entities which are at infinity or at least very far,
avoiding the usage of concepts like the inverse depth. Such representa-
tions are already available for transformations such as rotations, motions
(Rosenhahn 2002), homographies (Begelfor 2005), or the projective cor-
relation with fundamental matrix (Bartoli 2004) all being elements of
some Lie group. The uncertainty is represented in the tangent space of
the manifold, namely the corresponding Lie algebra. However, to our
knowledge no such representations are developed for the basic geometric
entities such as points, lines and planes, as in addition to use the tangent
space of the manifolds we need transformation of the entities such that
they stay on their specific manifold during the estimation process. We
develop the concept, discuss its usefulness for bundle adjustment and
demonstrate (a) its superiority compared to more simple methods for
vanishing point estimation, (b) its rigour when estimating 3D lines from
3D points and (c) its applicability for determining 3D lines from observed
image line segments in a multi view setup.

Motivation. Estimation of entities in projective spaces, such as points or transfor-
mations, has to cope with the scale ambiguity of these entities, resulting from the
redundancy of the projective representations, and with the definition of proper
metrics which on one hand reflect the uncertainty of the entities and on the
other hand lead to estimates which are invariant to possible gauge transforma-
tion, thus changes of the reference system. The paper shows how to consistently
perform Maximum likelihood estimation for an arbitrary number of geometric
entities in projective spaces including elements at infinity under realistic as-
sumptions without a need to impose constraints resulting from the redundant
representations.
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The scale ambiguity of homogeneous entities results from the redundant rep-
resentation, where two elements, say 2D points, x (x) and y(y) are identical, in
case their representations with homogeneous coordinates, here with x and y,
are proportional. This ambiguity regularly is avoided by proper normalization
of the homogeneous entities. Mostly one applies either Euclidean normalization,
say xe = x/x3 (cf. [13]), then accepting that no elements at infinity can be
represented, or spherical normalization, say xs = x/|x|, then accepting that the
parameters to be estimated sit on a non-linear manifold, here the unit sphere
S2, cf. [7, 11]. The sign ambiguity usually does not cause difficulty, as the homo-
geneous constraints used for reasoning are independent on the chosen sign. The
singularity of contrained observations also has also been pointed out in [5].

The uncertainty of an observed geometric entity in many practical cases, can
be represented sufficiently well by a Gaussian distribution, say N(µx, Σxx). The
distribution of derived entities, y = f(x), resulting from a non-linear transforma-
tion can also be approximated by a Gaussian distribution, using Taylor expansion
at the mean µx and omitting higher order terms. The degree of approximation
depends on the relative accuracy and has been shown to be negligible in most
cases, cf. [8, p. 55].

The invariance of estimates w.r.t. the choice of the coordinate system of the
estimated entities usually is achieved, by minimizing a function in the Euclidean
space of observations, in the context of bundle adjustment being the reprojection
error, leading to the optimization function Ω =

∑
i(xi − x̂i)TΣ−1

xixi
(xi − x̂i).

This at the same time is the Mahalanobis distance between the observed and
estimated entities and can be used to evaluate whether the model fits to the
data.

This situation becomes difficult, in case one wants to handle elements at in-
finity and therefore wants to use spherically normalized homogeneous vectors,
or at least normalized direction vectors when using omnidirectional cameras,
as their covariance matrices are singular. The rank deficiency is at least one,
due to the homogeneity. In case further constraints need to be taken into ac-
count, as the Plücker constraint for 3D lines or the singularity constraint for
fundamental matrices, the rank deficiency increases with the number of these
constraints. Therefore, in case we want to use these normalized vectors or matri-
ces as observed quantities, already the formulation of the optimization function
based on homogeneous entities is not possible and requires a careful discussion
about estimable quantities, cf. [17]. Also the redundant representation requires
additional constraints, which lead to Lagrangian parameters in the estimation
process. As an example, one would need four parameters to estimate a 2D point,
three for the homogeneous coordinates and one Lagrangian for the constraint,
two parameters more than the degrees of freedom.

It remains open, how to arrive at a minimal representation for the uncertainty
and at the estimation of all types of geometric entities in projective spaces which
are free of singularities and allow to handle entities at infinity.

Related work. This problem has been addressed successfully for geometric trans-
formations. Common to these approaches is the observation that all types of
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transformations form differentiable groups called Lie groups. Starting from an
approximate transformation, the estimation can exploit the corresponding Lie
algebra, being the tangent space at the unit element of the manifold of the group.
Take as an example the group SO(3) of rotations: Starting from an approximate
rotation Ra a close-by rotation R can be represented by R = R(∆R) Ra , with
a small rotation with rotation matrix R(∆R) depending on the small rotation
vector ∆R. This small rotation vector can be estimated in the approximate
model R ≈ (I 3 + S(∆R)) Ra , where the components of the rotation vector ∆R
appear linearly, building the three dimensional space of the Lie algebra so(3)
corresponding to the Lie group SO(3). Here S(.) is the skew symmetric ma-
trix inducing the crossproduct. The main difference to a Taylor approximation,
which is additive, say R ≈ Ra + ∆R, is the multiplicative correction in (1),
which guarantees that the corrected matrix is a proper rotation matrix, based
on the exponential representation R(∆R) = exp(S(∆R)) of a rotation using
skew symmetric matrices.

This concept can be found in all proposals for a minimal representation for
transformations: Based on the work of Bregler et al. [6], Rosenhahn et al. [19]
used the exponential map for modelling spatial Euclidean motions, the special
Euclidean group SE(3) being composed of rotations SO(3) and translations in
IR3. Bartoli and Sturm [2] used the idea to estimate the fundamental matrix with
a minimal representation F = R1Diag(exp(λ), exp(−λ), 0)R2, twice using the
rotation group and once the multiplication group IR+. Begelfor and Werman [4]
showed how to estimate a general 2D homography with a minimal representation
statistically rigorous, namely using the special linear group SL(3) of 3 × 3-
matrices with determinant 1, and its Lie algebra sl(3) consisting of all matrices
with trace zero, building an eight dimensional vector space, correctly reflecting
the correct number of degrees of freedom.

To our knowledge the only attempt to use minimal representations for geo-
metric entities other than transformations have been given by Sturm [20] and
Åström [1]. Sturm suggested a minimal representation of conics, namely C =
RDRT, with D = Diag(a, b, c). Using a corresponding class of homographies
H = QDiag(d, e, f), Q being a rotation matrix, which map any conic into the
unit circle Diag(1, 1,−1), he determines updates for the conic in this reduced
representation and at the end undoes the mapping. Another way to achieve a
minimal representation for homogeneous entities is given by Åström [1] in the
context of structure from motion. He proposes to use the Cholesky decomposi-
tion of the pseudo inverse of the covariance matrix of the spherically normalized
homogeneous 2D point coordinates x to arrive at a whitened and reduced obser-
vation. For 3D lines he uses a special double point representation with minimal
parameters. He provides no method to update the approximate values xa guar-
anteeing the estimate x̂ ∈ S2. His 3D line representation is also not linked to
projective Plücker representation, and he cannot estimate elements at infinity.

Our proposal is similar in flavour to the idea of Sturm and the method of
Åström to represent uncertain 2D points. However, it is simpler to handle, as it
directly works on the manifold of the homogeneous entities.
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Notation. We name objects with calligraphic letters, say a point x , in order to
be able to change representation, e. g. using Euclidean coordinates denoted with
a slanted letter x or homogeneous coordinates with an upright letter x. Matri-
ces are denoted with sans serif capital letters, say R, or in case of homogeneous
matrices H. This transfers to the indices of covariance matrices, the covariance
matrix Σxx for a Euclidean vector and Σxx for a homogeneous vector. The op-
erator N(.) normalizes a vector to unit length. We adopt the Matlab syntax
to denote the stack of two vectors or matrices, e. g. z = [x;y] = [xT,yT]T.
Stochastic variables are underscored, e. g. x.

1 Minimal Representation of Uncertainty

The natural space of homogeneous entities are the unit spheres Sn, possibly
constrained to a subspace. Spherically normalized homogeneous coordinates of
2D points (xs) and lines (ls), and of 3D points (Xs)and planes (As) live on S2

and S3 resp., while 3D lines, represented by Plücker coordinates (Ls), live on the
Klein quadric Q. The points on S3 build the Lie group of unit quaternions, which
could be used for an incremental update q = ∆qqa of spherically normalized 3D
point or plane vectors. However, there exist no Lie groups for points on the 2-
sphere or on the Klein quadric, see [18]. Therefore we need to develop an update
scheme, which guarantees the updates to lie on the manifold, without relying on
some group concept.

We will develop the concept for unit vectors on the S2, representing 2D points
and lines, and generalize it to the other geometric entities.

1.1 Minimal representation for uncertain points in 2D and 3D

Let an uncertain 2D point x be represented with its mean, the 2-vector µx and
its 2 × 2-covariance matrix Σxx. It can be visualized by the standard ellipse
(x − µx)TΣ−1

xx (x − µx) = 1. Spherically normalizing the homogeneous vector
x = [x; 1] = [u, v, w]T yields

xs =
x
|x|

, Σxsxs = JΣxxJT with Σxx =
[
Σxx 0
0T 0

]
, J =

1
|x|

(I 3−xsxsT)

(1)
with rank (Σxx) = 2 and null(Σxx) = xs. Taking the smallest eigenvalue to be
an infinitely small positive number, one sees that the standard error ellipsoid is
flat and lies in the tangent space of x at S2. In the following we assume all point
vectors x to be spherically normalized and omit the superscript s for simplicity
of notation.

We now want to choose a coordinate system Jx(x) = [s, t] in the tangent
space ⊥ x and represent the uncertainty by a 2 × 2-matrix in that coordinate
system. This is easily achieved by using

Jx(x) = null(xT) , (2)
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Fig. 1. Minimal representation for an uncertain point
x (x) on the unit sphere S2 representing the projective
plane IP2 by a flat ellipsoid in the tangent plane at x .
The uncertainty has only two degrees of freedom in the
tangent space spanned by two basis vectors s and t of
the tangent space, being the null space of xT. The uncer-
tainty should not be too large, such that the deviation of
the distribution on the sphere and on the tangent do not
differ too much, as at point y .

assuming it to be an orthonormal matrix fullfilling JT
x(x) Jx(x) = I 2, see fig. 1.

We define a stochastic 2-vector xr ∼ M(0, Σxrxr
) with mean 0 and covariance

Σxrxr
in the tangent space at x . In order to arrive at a spherically normalized

random vector x with mean µx we need to spherically normalize the vector

xt = µx + Jx(µx)xr (3)

in the tangent space and obtain

x(µx,xr) = N (µx + Jx(µx)xr ) , Jx(µx) =
∂x
∂xr

∣∣∣∣
x=µx

(4)

We thus can identify Jx(µx) with the Jacobian of this transformation. The inverse
transformation can be achieved using the pseudo inverse of Jx(x) which due to
the construction is the transpose, J+(x) = JT

x(x). This leads to the reduction of
the homogeneous vector to its reduced counterpart

xr = JT
x(µx) x . (5)

As JT
x(µx) µx = 0 the mean of xr is the zero vector, µxr

= 0.
This allows to establish the one to one correspondence between the reduced

covariance matrix Σxrxr
and the covariance matrix Σxx of x:

Σxx = Jx(µx)Σxrxr
JT
x(µx) , Σxrxr

= Jx(µx)TΣxx Jx(µx) . (6)

We use (5) to derive reduced observations and parameters and after estimating
corrections ∆̂xr then apply (4) to find corrected estimates x̂ = x̂(xa, ∆̂xr).

A similar reasoning leads to the representation of 3D points. Again, the
Jacobian JX is the null space of XT and spans the 3-dimensional tangent space
of S3 at X. The relations between the singular 4 × 4-covariance matrix of the
spherically normalized vector X and the reduced 3×3-covariance matrix ΣXrXr

are equivalent to (6).
Homogeneous 3-vectors l representing 2D lines and homogeneous 4-vectors

A representing planes can be handled in the same way.

1.2 Minimal representation for 3D lines

We now generalize the concept for 3D lines. Lines L in 3D are represented by
their Plücker coordinates L = [Lh;L0] = [Y − X,X × Y ] in case they are
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derived by joining two points X (X) and Y (Y ). Line vectors need to fullfill the
quadratic Plücker constraint LT

hL0 = 0 and span the Klein quadric Q consisting
of all homogeneous 6-vectors fulfilling the Plücker constraint. The dual line L(L)
has Plücker coordinates L = [L0;Lh], exchanging its first and second 3-vector.
We also will use the Plücker matrix I (L) = XYT − YXT of a line and will
assume 3D line vectors L to be spherically normalized. As in addition a 6-vector
needs to fullfill the Plücker constraint in order to represent a 3D line, the space
of 3D lines is four dimensional.

The transfer of the minimal representation of points to 3D-lines requires some
care. The four dimensional tangent space is perpendicular to L, as LTL− 1 = 0
holds and perpendicular to L, as L

T
L = 0 holds. Therefore the the tangent space

is given by the four columns of the 6× 4 matrix

JL(L) = null
([

L ,L
]T)

(7)

again assuming this matrix to be orthonormal. Therefore for random perturba-
tions Lr we have the general 6-vector

Lt(µL,Lr) = µL + JL(µL)Lr (8)

in the tangent space.
In order to arrive at a random 6-vector, which is both spherically normalized

and fullfills the Plücker constraint also for finite random perturbations we need
to normalize Lt = [Lth,L

t
0] accordingly. The two 3-vectors Lth and Lt0 in general

are not orthogonal. Following the idea of Bartoli [3] we therefore rotate these
vectors in their common plane such that they become orthogonal. We use a
simplified modification, as the normalization within an iteration sequence will
have decreasing effect. We use linear interpolation of the directions Dh = N(Lth)
and D0 = N(Lt0). With the distance d = |Dh −D0| and the shortest distance
r =

√
1− d2/4 of the origin to the line joining Dh and D0 we have

Mh,0 = ((d± 2r)Dh + (d∓ 2r)D0) |Lth| / (2d) (9)

The 6-vector M = [Mh;M0] now fullfills the Plücker constraint but needs to be
spherically normalized. This finally leads to the normalized stochastic 3D line
coordinates

L = N(Lt(µL,Lr))
.= M / |M| (10)

which guarantees L to sit on the Klein quadric, thus to fullfill the Plücker con-
straint.

zed, omitting the superscript e for clarity.
The inverse relation to (10) is

Lr = JT
L(µL) L (11)

as JL(µL) is an orthonormal matrix. The relation between the covariances of L
and Lr therefore are

ΣLL = JL(µL)ΣLrLr
JT
L(µL) , ΣLrLr

= JL(µL)+ΣLL J+T
L (µL) . (12)
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Conics and quadrics can be handled in the same manner. A conic C =
[a, b, c; b, d, e; c, d, e] can be represented by the vector c = [a, b, c, d, e, f ]T, nor-
malized to 1, and – due the homogeneity of the representation – is a point in IP5

with the required Jacobian being the nullspace of cT. In contrast to the approach
of Sturm [20], this setup would allow for singular conics.

Using the minimal representations introduced in the last section, we are
able to perform ML-estimation for all entities. We restrict the model to contain
constraints between observed and unknown entities only, not between the pa-
rameters only; a generalization is easily possible. We start with the model where
the observations have regular covariance matrices and then reduce the model,
such that also observations with singular covariance matrices can be handled.
Finally, we show how to arrive at a Mahalanobis distance for uncertain geometric
entities, where we need the inverse of the covariance matrix.

The optimization problem. We want to solve the following optimization problem

minimize Ω(v) = vTΣ−1
ll v subject to g(l+ v,x) = 0 (13)

where the N observations l, their N ×N covariance matrix Σll and the G con-
straint functions g are given, and the N residuals v and the U parameters x
are unknown. The number G of constraints needs to be larger than the number
of parameters U . Also it is assumed the constraints are functionally indepen-
dent. The solution yields the maximum likelihood estimates, namely the fitted
observations x̂ and parameters l̂, under the assumption that the observations
are normally distributed with covariance matrix Σll = D(l) = D(v), and the
true observations l̃ fullfill the constraints given the true parameters x̃.

Example: Bundle adjustment. Bundle adjustment is based on the projec-
tion relation x′ij = λijPjXi between the scene points Xi, the projection matrices
Pj and the image points xij of point Xi observed in camera j. The classical ap-
proach eliminates the individual scale factors λij by using Euclidean coordinates
for the image points. Also the scene points are represented by their Euclidean
coordinates. This does not allow for scene or image points at infinity. This may
occur when using omnidirectional cameras, where a representation of the image
points in a projection plane is not possible for all points or in case scene points
are very far compared to the length of the motion path of a camera, e.g. at
the horizon. Rewriting the model as xij × PjXi = 0 eliminates the scale factor
without constraining the image points to be not at infinity. Taking the homo-
geneous coordinates of all image points as observations and the parameters of
all cameras and the homogeneous coordinates of all scene points as unknown
parameters shows this model to have the structure of (13). The singularity of
the covariance matrix of the spherically normalized image points and the neces-
sity to represent the scene points also with spherically normalized homogeneous
vectors, requires to use the corresponding reduced coordinates. �

For solving the generally non-linear problem, we assume approximate values
xa and l̂

a
for the fitted parameters and observations to be available. We thus

search for corrections ∆̂l and ∆̂x for the fitted observations and parameters using
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l̂ = l+v̂ = l̂
a
+∆̂l and x̂ = x̂a+∆̂x. With these assumptions we can rephrase the

optimization problem: minimize Ω(∆̂l) = (̂l
a
− l+ ∆̂l)TΣ−1

ll (̂l
a
− l+ ∆̂l) subject

to g(̂l
a

+ ∆̂l, x̂a + ∆̂x) = 0 The approximate values are iteratively improved by
finding best estimates for ∆̂l and ∆̂x using the linearized constraints

g(̂l
a
, x̂a) + A∆̂x+ BT∆̂l = 0 (14)

with the corresponding Jacobians A and B of g to be evaluated at the approxi-
mate values.

Reducing the model. We now want to transform the model in order to allow for
observations with singular covariances. For simplicity we assume the vectors l
and x of all observations and unknown parameters can be partitioned into I and
J individual and mutually uncorrelated observational vectors li, i = 1, ..., I and
parameter vectors xj , j = 1, ..., J , referring to points, lines, planes or transfor-
mations.

We first introduce the reduced observations lri, the reduced corrections of
the observations ∆̂lri and the reduced corrections ∆̂xrj :

lri = JT
li(̂l

a
, x̂a)li , ∆̂lri = JT

li(̂l
a
, x̂a)∆̂li , ∆̂xrj = JT

xj (̂l
a
, x̂a)∆̂xj

(15)
where each Jacobian refers to the type of the entity it is applied to. The reduced
approximate values are zero, as they are used to define the reduction, e. g.
from (5) we conclude xar = JT

x(xa)xa = 0. We collect the Jacobians in two block
diagonal matrices JT

l = {JT
li(̂l

a
, x̂a)} and JT

x = {JT
xj (̂l

a
, x̂a)} in order to arrive at

the reduced observations lr = JT
l l, the corrections for the reduced observations

∆lr = JT
l ∆l and parameters ∆xr = JT

x∆x.
Second we need to reduce the covariance matrices Σlili . This requires some

care: As a covariance matrix is the mean squared deviation from the mean, we
need to refer to the best estimate of the mean when using it. In our context the
best estimate for the mean at the current iteration is the approximate value l̂

a

i .
Therefore we need to apply two steps: (1) transfer the given covariance matrix,
referring to li, such that it refers to l̂

a

i and (2) reduce the covariance matrix
to the minimal representation l̂ri. As an example, let the observations be 2D
lines with spherically normalized homogeneous vectors li. Then the reduction
is achieved by: Σa

lrilli
= Jai ΣliliJ

aT
i with Jai = JT

x(lai ) R(li, l̂ai ), namely by first
applying a minimal rotation from li to l̂ai (see [16, eq. (2.183)], second reducing
the covariance matrix following (6). Observe, we use the same Jacobian Jx as
for points, exploiting the duality of 2D points and 2D lines. The superscript a

in Σa
lrilli

indicates the covariance to depend on the approximated values.
The reduced constraints now read as

g(̂l
a
, x̂a) + Ar∆̂xr + BT

r ∆̂lr = 0 with Ar = AJT
x BT

r = BTJT
l (16)

Now we need to minimize the weighted sum of the squared reduced residuals
v̂r = l̂

a

r − lr + ∆̂lr = −lr + ∆̂lr thus we need to minimize Ω(∆̂lr) = (−lr +
∆̂lr)T

(
Σa
lrlr

)−1 (−lr + ∆̂lr) subject to the reduced constraints in (16).
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The parameters of the linearized model are obtained from (cf. [16, Tab. 2.3])

Σx̂rx̂r
= (AT

r (BT
rΣ

a
lrlrBr)−1Ar)−1 (17)

∆̂xr = Σx̂rx̂r
AT
r (BT

rΣ
a
lrlrBr)−1wg (18)

∆̂lr = Σa
lrlrBr(BT

rΣ
a
lrlrBr)−1(wg − Ar∆̂xr)− v̂a (19)

using wg = −g(̂l
a
, x̂a) + BT

r v̂r. It contains the theoretical covariance matrix
Σx̂rx̂r

in (17), at the same time being the Cramer-Rao-bound. The weighted
sum of residuals Ω is χ2-distributed with G−U degrees of freedom, in case the
observations fulfill the constraints and the observations are normally distributed
with covariance matrix Σll and can be used to test the validity of the model.
The corrections ∆̂xr and ∆̂lr are used to update the approximate values for
the parameters and the fitted observations using the corresponding non-linear
transformations, e. g. for an unknown 3D line one uses (10).

Example: Mahalanobis distance of two 3D lines. As an example for
such an estimation we want to derive the mean of two 3D-lines Li(Li, ΣLiLi), i =
1, 2 and derive the Mahalanobis distance d(L1,L2) of the 3D lines. The model
reads g(L̂1, L̂2) = L̂2− L̂1 = 0, which, exploits the fact that the line coordinates
are normalized. First we need to choose an appropriate approximate line La,
which in case the two lines are not too different can be one of the two. Then we
reduce the two lines using the Jacobian JL(La), being the same for both lines
Li, and obtain Lri = JT

L(La)Li and the reduced covariance matrices Σa
Lri,Lri

=
JT
i ΣLiLi

Ji with JT
i = JT

L(La)R(Li,La) using the minimal rotation from Li to La.
As there are no parameters to be estimated, the solution becomes simple. With
the Jacobian BT = [−I 6, I 6] and using ∆̂xr = 0 in (19) the reduced residuals are
v̂ri = ±Σa

LriLri
(Σa

Lr1Lr1
+ Σa

Lr2Lr2
)−1(−(Lr2 − Lr1)). The weighted sum Ω of

the residuals is the Mahalanobis distance and therefore can be determined from

d2(L1,L2) = (Lr2 −Lr1)T(Σa
Lr2,Lr2

+Σa
Lr2,Lr2

)−1(Lr2 −Lr1) , (20)

as the reduced covariance matrices in general have full rank. The squared dis-
tance d2 is χ2

4 distributed, which can be used for testing. In case one does not
have the covariance matrices of the 3D lines Li but only two points Xi(Xi) and
Yi(Y i) of a 3D line segment, and a good guess for their uncertainty, say σ2I 3,
one easily can derive the covariance matrix from Li = [Y i −Xi;Xi × Y i] by
variance propagation. The equations directly transfer to the Mahalanobis dis-
tance of two 2D line segments. Thus, no heuristic is required to determine the
distance of two line segments.

2 Examples

We want to demonstrate the setup with three interrelated problems: (1) demon-
strating the superiority of the rigorous estimation compared to a classical one
when estimating a vanishing point, (2) fitting a straight line through a set of 3D



10 Wolfgang Förstner

points and (3) inferring a 3D line from image line segments observed in several
images as these tasks regularly appear in 3D reconstruction of man-made scenes
and solved suboptimally, see e.g. [12].

Estimating a vanishing point. Examples for vanishing point estimation from
line segments using this methodology are found in [9]. Here we want to demon-
strate that using a simple optimization criterion can lead to less interpretable
results. We compare two models for the random perturbations of line segments:
α) a model which determines the segment by fitting a line through the edge
pixels, which are assumed to be determinable with a standard deviation of σp,
β) the model of Liebowitz [15, Fig. 3.16], who assumes the endpoints to have
zero mean isotropic Gaussian distribution, and that each of the endpoint mea-
surements are independent and have the same variance σ2

e . Fig. 2 demonstrates
the difference of the two models. The model α, using line fitting, results in a
significant decrease of the uncertainty for longer line segments, the difference in
standard deviation going with the squareroot of the lenght of the line segment.
For a simulated case with 10 lines between 14 and 85 pixels, the uncertainty

Fig. 2. Error bounds (1 σ) for line segments. Dashed: following the model of Liebowitz
[15], standard deviation standard deviation at end points σ = 0.15 [pel] , Solid: from
fitting a line through the edge pixels with standard deviation σp = 0.3 [pel] for segments
with 10, 40 and 160 pixels. Deviations 20 times overemphasized. The uncertainty differ
by a factor of 2 on the avaerage in this case.

models on an average differ by 4
√

85/14 ≈ 1.6 in standard deviation. Based on
200 repetitions, the empirical scatter of the vanishing point of the method β of
Liebowitz is appr. 20 % larger in standard deviation than the method α using
the line fitting accuracy as error model. This is a small gain. However, when sta-
tistically testing the line segments whether they belong to the vanishing points,
the decision depends on the assumed stochstical model for the line segments:
When compared to short segments, the test will be much more sensitive for long
segments in case model α is used, as when model β is used, which appears to be
reasonable.

Fitting a 3D line though points. We now give an example proving the va-
lidity of the approach again using simulated data in order to have full ac-
cess to the uncertainty of the given data. Given are I uncertain 3D points
Xi(Xi, ΣXiXi

), i = 1, ..., I, whose true values are supposed to sit on a 3D line L .
The two constraints for the incidence of point Xi and the line L can be written
as

gi(X̃i, L̃) = J1(L̃) X̃i = J2(X̃i)L̃ = 0 (21)

with the Jacobians J1(L) and J2(Xi) depending on the homogeneous coordinates
of the points and the line. The incidence constraint of a point and a line can be
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expressed with the Plücker matrix of the dual line: I (L)X = 0. As from these
four incidence constraints only two are linearly independent, we select those
two, where the entries in I (L) have maximal absolute value, leading to the two
constraints gi(Xi,L) = J1(L)Xi for each point with the 2 × 4 matrix J1(L).
The Jacobian J2(Xi) = ∂gi/∂L then is a 2 × 6-matrix, cf. [16, sect. 2.3.5.3].
Reduction of these constraints leads to gi(Xi,L) = J1r(L)Xi = Jr2(Xi)L = 0
with the reduced Jacobians J1r(L) and Jr2(Xi) having size 2×3 and 2×4 leading
to a 4× 4 normal equation matrix, the inverse of (17). Observe, the estimation
does not need to incorporate the Plücker constraint, as this is taken into account
after the estimation of Lr by the back projection (10).

We want to perform two tests of the setup: (1) whether the estimated vari-
ance factor actually is F -distributed, and (2) whether the theoretical covariance
matrix ΣL̂,L̂ corresponds to the empirical one. For this we define true line pa-
rameters L̃, generate I true points X̃i on this line, choose individual covariance
matrices ΣXiXi

and perturb the points according to a normal distribution with
zero mean and these covariance matrices. We generate M samples, by repeating
the perturbation M times. We determine initial estimates for the lines using
an algebraic minimization, based on the constraints (21), which are linear in L
and perform the iterative ML-estimation. The iteration is terminated in case the
corrections to the parameters are smaller than 0.1 their standard deviation.

We first perform a test where the line passes through the unit cube and
contains I = 100 points with, thus G = 200 and U = 4. The standard deviations
of the points vary between 0.0002 and 0.03, thus range to up to 3% relative
accuracy referring to the distance to their centroid, which is comparably large. As
each weighted sum of squared residualsΩ is χ2-distributed withG−U = R = 196
degrees of freedom, the sum Ω =

∑
m ωm of the independent samples Ωm is

χ2
MR distributed, thus the average variance factor σ̂2

0 =
∑
m σ̂0

2
m is FMR,∞

distributed. The histogram of M = 1000 samples σ̂0
2
m is shown in fig. 3, left.

Second, we compare the sample covariance matrix Σ̂L̂L̂ withΣL̂,L̂, the Cramer-
Rao-bound and a lower bound for the true covariance matrix, using the test for
the hypothesis H0 : Σ̂L̂L̂ = ΣL̂,L̂ from [14, eq. (287.5)]. As both covariance ma-
trices are singular we on one side reduce the theoretical covariance matrix to
obtain ΣL̂r,L̂r

and on the other side reduce the estimated line parameters which

we use to determine the empirical covariance matrix Σ̂L̂rL̂r
from the set {L̂rm}

of the M estimated 3D lines. The test statistic indicates that the hypothesis of
the two covariance matrices being was not rejected.

Estimating 3D lines from image lines segments. The following example demon-
strates the practical use of the proposed method: namely determining 3D lines
from image line segments. Fig. 3 shows three images taken with a CANON 450D.
The focal length was determined using vanishing points, the principle point was
assumed to be the image centre, the images were not corrected for lens distortion.
The images then have been mutually oriented using a bundle adjustment pro-
gram. Straight line segments were automatically detected and a small subset of
12, visible in all three and pointing in the three principle directions were manually
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brought into correspondence. From the straight lines lij , i = 1, ..., 12; j = 1, 2, 3
and the projection matrices Pj we determine the projection planes Aij = PT

j lij .
For determining the ML-estimates of the 12 lines Li we need the covariance
matrices of the projection planes. They are determined by variance propaga-
tion based on the covariance matrices of the image lines lij and the covariance
matrices of the projection matrices. As we do not have the cross-covariance ma-
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Fig. 3. Left: Histogram of estimated variance factors σ̂0m
2 determined from M =

1000 samples of a 3D line fitted through 100 points. The 99 % conficence intervall
for the Fisher distributed random variable σ̂0

2 is [0.80,1.25]. Right: three images with
12 corresponding straight line segements used for the reconstruction of the 3D lines,
forming three groups [1..4],[5...8], [9...12] for three main directions.

trices between any two of the projection matrices, we only use the uncertainty
ΣZjZj

of the three projection centres Zj . The covariance matrices of the straight
line segments are derived from the uncertainty given by the feature extraction
as in the first example. The covariance matrix of the projection planes then is
determined from ΣAijAij

= PT
i ΣliliPi + (I 4 ⊗ lij)Σpipi

(I 4 ⊗ lTij).

Now we observe, that determining the intersecting line of three planes is dual
to determining the best fitting line through three 3D points. Thus the procedure
for fitting a 3D line through a set of 3D points can be used directly to determine
the ML-estimate of the best fitting line through three planes, except for the fact,
that the result of the estimation yields the dual line. First, the square roots of
the estimated variance factors σ̂2

0 = Ω/(G− U) range between 0.03 and 3.2. As
the number of degrees of freedom is G− U = 2I − 4 = 2.3− 4 = 2 in this case
is very low, such a spread is to be expected. The mean value for the variance
factor is 1.1, which confirms the model to fit to the data.

As a second result we analyse the angles between the directions of the 12 lines.
As they are clustered into three groups corresponding to the main directions of
the building, we should find values close to 0◦ within a group and values close to
90◦ between lines of different groups. The results are collected in the following
table. The angles between lines in the same group scatter between 0◦ and 14.5◦,
the angles between lines of different orientation differ from 90◦ between 0◦ and
15◦. The standard deviations of the angles scatter between 0.4◦ and 8.3◦, this is
why none of the deviations from 0 or 90◦ are significant.

The statistical analysis obviously makes the visual impression objective.
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lmin\# 1 2 3 4 5 6 7 8 9 10 11 12
173 [pel] − 2.6◦ 2.7◦ 3.0◦ 88.6◦ 89.0◦ 88.7◦ 76.5◦ 86.7◦ 87.0◦ 86.6◦ 85.2◦

155 [pel] 0.7 − 0.7◦ 1.6◦ 89.9◦ 89.7◦ 87.3◦ 75.1◦ 89.0◦ 89.2◦ 88.9◦ 87.4◦

72 [pel] 0.7 0. − 0.9◦ 89.4◦ 89.8◦ 87.9◦ 75.6◦ 89.4◦ 89.6◦ 89.3◦ 87.8◦

62 [pel] 1.2 0.3 0.1 − 88.5◦ 88.9◦ 88.7◦ 76.4◦ 89.8◦ 90.0◦ 89.7◦ 88.2◦

232 [pel] 0.6 0.0 0.1 0.2 − 0.4◦ 2.8◦ 15.3◦ 89.6◦ 89.3◦ 89.7◦ 89.1◦

153 [pel] 0.3 0.1 0.0 0.1 0.1 − 2.4◦ 14.9◦ 89.5◦ 89.2◦ 89.6◦ 89.1◦

91 [pel] 0.5 0.8 0.4 0.2 0.8 0.6 − 12.5◦ 89.0◦ 88.7◦ 89.1◦ 88.6◦

113 [pel] 1.0 1.1 1.1 0.9 1.1 1.1 0.8 − 87.0◦ 86.7◦ 87.2◦ 87.0◦

190 [pel] 1.6 0.4 0.3 0.1 0.2 0.3 1.0 1.3 − 0.4◦ 0.2◦ 1.6◦

82 [pel] 1.4 0.3 0.2 0.0 0.4 0.4 1.2 1.4 0.5 − 0.5◦ 1.8◦

103 [pel] 1.6 0.5 0.4 0.2 0.2 0.2 0.9 1.2 0.3 0.6 − 1.6◦

225 [pel] 2.4 1.1 1.1 1.0 0.5 0.5 1.3 1.5 3.2 3.6 4.0 −

Fig. 4. Result of determining 12 lines from Fig. 3. Left column: minimal length l of
the three line segments involved, upper right triangle: angels between the lines. Lower
left triangle: test statistic for the deviation from 0◦ or 90◦.

3 Conclusions and Outlook

We developed a rigorous estimation scheme for all types of entities in projective
spaces, especially points, lines and planes in 2D and 3D, together with the cor-
responding transformations. The estimation requires only the minimum number
of parameters for each entity, thus avoids the redundancy of the homogeneous
representations. Therefore no additional constraints are required to enforce the
normalization of the entities, or to enforce additional constraints such as the
Plücker constraints for 3D lines. In addition we not only obtain a minimal rep-
resentation for the uncertainty of the geometric elements, but also simple means
to determine the Mahalanobis distance between two elements, which may be
used for testing or for grouping. In both cases the estimation requires the covari-
ance matrices of the observed entities to be invertible, which is made possible
by the proposed reduced representation. We demonstrated the superiority of
rigorous setup compared to a suboptimal classical method of determining van-
ishing points, and proved the rigour of the method with the estimation of 3D
lines from points or planes. The convergence properties when using the proposed
reduced representation does not change as the solutions steps are algebraically
equivalent. The main advantage of the proposed concept is the ability to handle
elements at or close to infinity without loosing numerical stability and that it is
not necessary to introduce additional constraints to enforce the geometric enti-
ties to lie on their manifold. The concept certainly can be extended to higher
level algebras, such as the geometric or the conformal algebra (see [10]) where
the motivation to use minimal representations is even higher than in our context.

Acknowledgement. I acknowledge the valuable recommendations of the review-
ers.
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