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Abstract

This paper presents a novel method for detecting scale
invariant keypoints. It fills a gap in the set of available
methods, as it proposes a scale-selection mechanism for
junction-type features. The method is a scale-space exten-
sion of the detector proposed by Förstner (1994) and uses
the general spiral feature model of Bigün (1990) to unify
different types of features within the same framework. By
locally optimising the consistency of image regions with re-
spect to the spiral model, we are able to detect and classify
image structures with complementary properties over scale-
space, especially star and circular shapes as interpretable
and identifiable subclasses. Our motivation comes from
calibrating images of structured scenes with poor texture,
where blob detectors alone cannot find sufficiently many
keypoints, while existing corner detectors fail due to the
lack of scale invariance. The procedure can be controlled
by semantically clear parameters. One obtains a set of key-
points with position, scale, type and consistency measure.
We characterise the detector and show results on common
benchmarks. It competes in repeatability with the Lowe de-
tector, but finds more stable keypoints in poorly textured ar-
eas, and shows comparable or higher accuracy than other
recent detectors. This makes it useful for both object recog-
nition and camera calibration.

1. Introduction

Local image features are an important aspect of com-
puter vision research. The idea is to represent the image
content by a set of small, possibly overlapping represen-
tative parts, which are invariant to distortions arising from
the acquisition process, from illumination or viewpoint, and
can reliably be found in other images of the same object.
Corresponding features in different views may then be de-
termined by nearest neighbour search in the space of de-
scriptions of the surrounding image region, providing both

sparseness and robustness compared to a search over the
whole image domain.

Keypoints play a central role as they are anchored to
a specific position in the image which is useful for both
matching and recognition. We distinguish two types: Point-
like keypoints refer to a specific point in the image, as
a junction or the centre of a round spot, whereas blob-
like keypoints refer to small regions, not necessarily round,
where no specific point needs to be identifiable in the image
within the region. Procedures for using keypoints consist
of two parts: a keypoint detector and a keypoint descriptor.
Here we are only concerned with the detection, and rely on
the power of Lowe’s SIFT descriptor [10].

“There is no such thing as generic keypoints” [21]. The
choice of a particular detector must reflect the task at hand.
The motivation for the new detector proposed in this paper
arose in the context of automatic image orientation in poorly
textured, structured scenes, as shown in Figure 1. We found
that in such cases, state of the art keypoint detectors of-
ten yield too few features or poor geometric configurations.
Sometimes multiple features are computed in very nearby
locations, which have to be eliminated during matching to
fulfil the uniqueness constraint. The Harris affine detector
does not reliably extract the corner features, as one would
expect. However, a combined set of features from two or
three complementary detectors may well give stable corre-
spondences for camera calibration and orientation. Thus we
require the following properties from a keypoint detector:

Completeness & Complementarity: The detector
should as much as possible exploit structural elements vis-
ible in the image to yield a maximally complete set of key-
points. This implies that different types of complementary
keypoints are extracted at the same time.

Invariance and repeatability: The detected keypoints
should be scale and rotation invariant and provide high re-
peatability in order to support image matching.

Accuracy: The keypoints should have high localisation
accuracy to support camera calibration.

Interpretability: Basic interpretable elements in the
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Figure 1: A challenging image pair of a poorly textured
scene with features extracted by three popular keypoint de-
tectors (Top: Harris affine, center: Lowe, bottom: our de-
tector). The left column shows the set of extracted features
in one image, while the middle and right column show the
reduced set of matched features of the pair using SIFT de-
scriptors. Note that the Harris affine detector does not ex-
tract corners, while our detector delivers corners as a subset.

scene, especially corners and circles, should be part of the
detected keypoints.

Control parameters: The procedure should have as few
control parameters as possible, with clear semantics.

To meet these requirements, we developed a scale-space
extension of the keypoint detector in [3] and generalised it
from junctions to all types of spiral features according to
Bigün [1]. The idea is to find points where the consistency
of image regions with respect to a spiral model is locally op-
timal. This allows for the simultaneous detection and classi-
fication of image structures with complementary properties
over scale-space, especially star and circular shapes as in-
terpretable and identifiable subclasses. One obtains a set of
keypoints with position, scale, type and consistency mea-
sure.

We start by giving an overview of the most related ex-
isting feature detectors as a basis for describing and char-
acterising our detector in detail in section 3. In section 4
we compare the new method to state of the art detectors in
well known benchmarks. It turns out that it competes in
repeatability with the Lowe detector. However, in poorly
textured areas it finds more stable keypoints, which is use-
ful for object recognition, and its accuracy is comparable or
higher than that of well known keypoint detectors, which is
favourable for camera calibration. We conclude with some
critical remarks and possible future work.

2. Related work
The basic local feature detectors by Förstner [5] and

Harris and Stephens [7] detect windows of given size hav-
ing locally maximal localisation accuracy with respect to
least-squares matching onto a shifted, noisy copy of them-
selves. This is achieved by evaluating the structure tensor,
or second moment matrix

Mτ,σ = ∇τg∇τgT = Gσ ∗
[

g2
x,τ gx,τgy,τ

gx,τgy,τ g2
y,τ

]
(1)

which is computed by first determining the gradient∇τg =
[gx,τ , gy,τ ]T using the differentiation scale τ , and then tak-
ing the average with a kernel having integration scale σ,
which is usually chosen as a Gaussian. [19] have shown that
selecting windows is most effective when using local max-
ima of the smallest eigenvalue λ2(M) above a threshold,
thus requiring a sufficiently large gradient content within
the window to be locally optimal. This is both in contrast
to the proposals in [5], where a minimum ratio λ2/λ1 is
required for excluding points on edges, and the heuristic
measure det Mσ,τ−k tr2 Mσ,τ in [7], where k is determined
empirically. As shown in [5], the detected windows are not
only highly suitable for matching, but also optimal for lo-
cating centres of junctions and circular symmetric features.
The window centres at corners are biased, as will be dis-
cussed further below. Triggs [21] generalised these prop-
erties, and developed a rigorous theoretical framework for
designing detectors which explicitly optimise localisation
accuracy in the least-squares self-matching approach under
selectable combinations of translation, orientation, scaling
and illumination parameters.

Scale invariance of keypoint detectors has been ad-
dressed thoroughly by Lindeberg [9] for all types of fea-
tures. For finding blob-like keypoints, he proposed to use
the Hessian

Hτ =
[
gxx,τ gxy,τ
gxy,τ gyy,τ

]
(2)

of the image function and to search for maxima of the de-
terminant det Hτ and the scale-normalised trace τ2 tr Hτ

over increasing values of τ . As the trace tr Hτ is identical
to the Laplacian of Gaussians (LoG) of the image function
∇2
τg = ∇2

τ ∗g, the proposed maximum search is equivalent
to template matching with the Mexican hat form of ∇2

τ and
can hence be interpreted as finding dark and bright blobs at
characteristic scales. The LoG scale-space is used by the
popular keypoint detector of Lowe [10].

Mikolajczyk and Schmid [12] also followed Lindeberg’s
approach and proposed to extract blob-like keypoints where
both tr Hτ and det Hτ attain a local maximum, leading to
the so-called Hessian-Laplace detector. Furthermore, they
proposed a scale-invariant version of the Harris detector
that works iteratively in two steps: First, the positions of



candidate keypoints are attained by searching local extrema
within each level of the multi-scale Harris function. Then
a characteristic scale is selected by searching a local peak
over scale at each of these candidate positions in the LoG
scale-space. The integration scale σ of the Harris measure is
taken from the optimal scale in the Laplacian pyramid and
the differentiation scale is related to σ by a constant ratio
σ/τ = k.

To our knowledge, no scheme for selecting the scale
from the structure tensor is proposed.

Junction-type keypoints have also been addressed by Lin-
deberg [9], who proposed a two-step scale selection proce-
dure: It first detects points and selects the integration scale σ
based on local curvature of the contours of the image func-
tion, and then finds the differentiation scale τ by maximis-
ing the precision

d̃(τ) =

∫
x∈IR2 |(x− x′)T∇τg(x′)|2Gσ(x′)dx′∫

x∈IR2 |∇τg(x′)|2Gσ(x′)dx′
(3)

of the junction [9, eq. (65)]. A final localisation step accord-
ing to Förstner [5] is carried out on the resulting scale level.
As the scale of the corner points measures their roundness,
the scale of most corners is quite small.

Interpretability of keypoints is sometimes the main mo-
tivation for developing a scheme. This of course refers to
all corner detectors based on edge analysis, but also to di-
rect schemes as the one step procedure in [3] or the method
of Parida et al. [17]. The latter describe how to detect and
classify junctions explicitly by measuring coherency of gra-
dients in a local window with a junction model containing
a variable number of intersecting edges, equivalent to the
numerator in (3). The detector considers different scales,
but provides no explicit scale selection mechanism. Other
detectors based on the consistency of local image structure
with a junction model have been proposed in [15; 18].

The bias induced by window detectors at corners, i. e. the
distance between the optimal window’s centre and the ac-
tual corner, is scale dependent. It is reduced by the second
step in the procedures [5] and [9]. Ouellet et al. [16] employ
this bias to develop an accumulator-based detector: By us-
ing uniform instead of Gaussian windows for the integration
step, they reduce the effect and select those bias-corrected
positions which are supported by the largest image region.
However, they only investigate three scales. The procedure
described in [3] integrates window selection and bias reduc-
tion into one step. It can classify the detected keypoints as
junctions and circular symmetric features, but works only
on prespecified scales.

Affine invariant detectors [11; 12; 22] have been moti-
vated by the fact that scale invariance alone is not sufficient
for robust matching in case of very strong viewpoint varia-
tions. They have been characterised and analysed in detail
in [6; 13]. Although the new operator presented here is not

affine invariant, the most prominent scale and affine invari-
ant detectors will be included in our experimental compari-
son in section 4.

The point detectors of Förstner [3; 5] include the junc-
tion model and measure consistency of local image struc-
ture with respect to both junction-type and circular sym-
metric features. Bigün [1] generalised this idea in a unified
theory for all local feature types that can be derived as spe-
cial cases of spiral features, including junctions and circu-
lar features. This theory has been a major inspiration for
the detector proposed in this paper. However, Bigün did
not explicitly solve the problem of scale selection, although
addressing feature detection at different scales.

3. Theory
The principle. Referring to Figure 2, the task is to find
representative keypoints. Besides the white and black re-
gions that a Laplacian blob detector easily finds (region d),
we want to detect all junction regions including their local
scale. The junction detector of Lindeberg [9] finds these
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Figure 2: Left: Chequerboard with two different scales
and some exemplary keypoints shown with circles approx-
imately having the desired radius. The local scales at key-
points a, b, and c are not desired: They are not representa-
tive for the junction. Right: Keypoints computed by the new
detector (1-σ-circles): red: corners, white: circular sym-
metric features.

points, but with small local scales only, as indicated by
points a, b, and c. However, we would like to have re-
gions around the junctions which are as large as possible,
but still represent the junction and not the neighbouring im-
age structures. This is indicated by the lower right junctions
e, f, g, h and i, where the regions indicated by the circles are
approximately proportional to the area covered by the junc-
tion.

In contrast to Lindeberg’s selection scheme based on the
local curvature we directly optimise (3), but using the more
general spiral model M (α) of Bigün [1], with star shaped
(α = 0) and circular symmetric (α = 90◦) regions as spe-
cial cases.

In a nutshell, we search for keypoints [p, σ] = [x, y, σ]
in the smoothed image g(p, τ) with smoothing param-



eter τ , where the position p of a spiral structure with
parameter α in a window of integration scale σ can be
determined with locally highest precision [p, σ]opt =
arg maxp,α,τ,σw(p, α, τ, σ), which may also be interpreted
as a weight. The precision w is measured by the inverse of
the empirical variance d̃ from (3) of the centre position.

The image model. An image patch around p has an ideal
spiral structure in case the edge direction at a point q in
the neighbourhood has a constant angle α with the radius
vector. This structure has been suggested by [1] for im-
age analysis and is illustrated in Figure 3. In case α = 0◦

the edge directions point toward the centre of rotation and
form an ideal star shaped image function as a special case
(Figure 3a). In case α = 90◦ the gradient directions point
toward the centre of rotation and form circular symmetric
features (Figure 3b). Hence this model of spirals meets
our requirement of interpretability in section 1 and yields
a straightforward criterion for a keypoint detector.
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Figure 3: Measuring the distance d of an edge from the ref-
erence point p in a spiral type feature. The angle α is mea-
sured between the radial and the tangential direction and is
constant per figure, thus the spirals are logarithmic spirals.
(a) Junction, where α = 0◦. (b) Circular symmetric feature,
α = 90◦. (c) Logarithmic spiral with arbitrary α.

In order to measure the consistency of the neighbour-
hood of a point p with the model we determine its dis-
tances dn to the edge line through a neighbouring point
qn having angle α with respect to the gradient direction
at qn (Figure 3). The gradient ∇τg = ∇Gτ ∗ g depends
on the differentiation scale τ . Transformed with the rota-
tion matrix Rα, the distance is given by d(p, qn, α, τ) =
(qn−p)TRα∇τg(qn)/|∇τg(qn)|. The variance of the cen-
tre point is determined as the Cramer Rao bound derived
from a Maximum Likelihood Estimation of all pixels in the
neighbourhood of the reference point p based on the model
M : The stochastic variable d(q|M ) for the distance d is as-
sumed to be normally distributed with mean 0 and variance

Var
(
d(q|M )

)
= s2/

(|∇τg(q)|2Gσ(q − p)
)
. (4)

The weight, or inverse variance 1/Var(d(q)) of each d has
three important properties: It increases with the squared

magnitude of the gradient, depends on the distance |q − p|
of q from the reference point p and is scaled by some vari-
ance factor s2.

Discrete optimisation function. We first assume fixed
parameters α, τ and σ and want to estimate the optimal po-
sition of the spiral. The negative log-likelihood function to
be minimised is

Ω =
N(σ)∑
n=1

[
(qn − p)TRα∇τg(qn)

]2
Gσ(qn − p) (5)

with respect to p, the sum ranging over all N(σ) pixels qn
in the neighbourhood of p defined by the GaussianGσ . The
Cramer Rao bound for the covariance matrix Σ bpbp of the
estimated position p̂ is given by

Σbpbp = ŝ2M−1 with M =
∑
n JnWJT

n (6)

using the Jacobian Jn = ∂dn/∂p and the diagonal weight
matrix W = Diag(s2/Var(dn)), with the variance Var(dn)
from (4). The unbiased estimated variance factor ŝ2 is given
by ŝ2 = Ω(p̂) / (N(σ)− 2). In order to come to a scalar
measure, we take the maximum eigenvalue λ1(Σbpbp) of the
covariance matrix, indicating the maximum variance of p̂
in some direction in the flavour of Shi et al. [19]. For find-
ing keypoints with maximum localisation precision we take
the inverse variance. Making all dependencies explicit, we
obtain the formal definition of the precision

w(p, α, τ, σ) =
1

λ1(Σbpbp) =
(N(σ)− 2) λ2(M(p, α, τ, σ))

Ω(p, α, τ, σ)
(7)

with the matrix M(p, α, τ, σ) from (6) and using the fact
that 1/λ1(Σbpbp) = λ2(Σ−1bpbp ).

Continuous optimisation function. For numerical rea-
sons we now replace the sums by adequate integrals
and exploit the resulting convolutions. The matrix M
turns out to be the moment matrix of the gradients
or the structure tensor M(p, α, τ, σ) = N(σ)Gσ(p) ∗(

Rα∇τ∇T
τRT

α

)
referring to the spiral model and special-

ising to the classical structure tensor for α = 0. The av-
erage squared distance can be written as Ω(p, α, σ, τ) =
N(σ) tr

{
Rα∇τ∇T

τRT
α ∗ ppTGσ(p)

}
due to tr(AB) =

tr(BA) and identifying the integral as a convolution. Ob-
viously, the factor N(σ) cancels when determining the pre-
cision in (7). The smaller eigenvalue λ2(M) of the structure
tensor measures isotropy of the local texture. The threshold
for this quantity is discussed at the end of this section. As
the smallest eigenvalue λ2 of M(p, α, σ, τ) is independent
on α, it only needs to be calculated once.



Finally, we need to give an expression for N(σ). This is
not straight forward as the Gaussian has unlimited support,
i. e. one in principle would need to count all pixels of the
image. Practically only pixels in a small range around the
reference position p contribute to the estimation process.
We take the number of pixels in a box filter having the same
energy as the Gaussian, N(σ) = 12σ2 + 1, being aware
that this is an approximation, as the used gradients are not
stochastically independent.

Estimating α. Before being able to detect local maxima
in the precision cube w(p, τ, σ), we need to find the op-
timal angle α that maximises w for each point in con-
cern. Whereas the number N(σ) and the eigenvalue λ2

of the structure tensor M are independent on the angle α,
the sum Ω(α) is a periodic function in α represented by
Ω(α) = a−b cos(2α−2α0) with a minimum Ωmin = a−b
at α = α0. We can determine a, b and α0 from three par-
ticular values for Ω, e. g. using α = {0◦, 60◦, 120◦}. The
parameter α = α0 maximises the precision p for a certain
location and scales (p, σ, τ).

Non-maximum suppression over scale and space. The
local maxima still may be too close to each other in position
or scale. Moreover, only points with similar spiral charac-
teristic, thus similar angle α should be compared. Therefore
we suppress all non-maxima in the scale-angle-space. The
neighbourhood is defined by a weighted distance (Maha-
lanobis distance):

r2 =
|p− p′|2

((fpσ)2 + (fpσ′)2)
+

sin2(α− α′)
σ2
a

+
(log σ/σ′)2

(fs log 2)2
(8)

Keypoints p′ closer to another keypoint p are eliminated, in
case r < Tr. For fp = 1, fs = 1/2, Tr = 1 and σa =

√
2,

for example, points should have a distance larger than σ in
the image plane, a factor

√
2 (half an octave) in scale or 45◦

with respect to α. Non-maximum suppression with these
default parameters is optional in our algorithm.

The algorithm. The optimisation of the five parameters,
position p, model parameter α, the differentiation and the
integration scales τ and σ is realised by locally finding the
optimal α, and imposing a constraint on the two scales by
fixing their ratio, hence τ = σ/k with k = 3, for exam-
ple (Algorithm 1). We evaluate the precision of each point
p and each scale σ in the scale-space image g(p, σ, τ(σ))
and search for local maxima using a spline approximation
of the function w(p, σ) [8, pp. 78–82]. Interpolating w al-
lows us to localise precise keypoints with subpixel/subscale
accuracy.

Threshold for the isotropy λ2(M). By putting a thresh-
old on λ2(M) we can eliminate spurious keypoints, i. e. key-
points caused by noise. In case of a white noise image with
standard deviation s the eigenvalues of M are equal, hence
λ2 = 1/2 tr(M), where tr(M) is the sum of N(σ) abso-
lute squared gradients a = g2

τ,x + g2
τ,y . As the expecta-

tion of the derivative square E(g2
τ,x) = s2

∫
G2
τ,x(x)dx =

s2/(8πτ4) and 2a/E(a) is χ2
2-distributed we obtain the

threshold Tλ(s2, τ, σ, S) = N(σ)
16πτ4 s

2χ2
2,S with a specified

significance level S, depending on the noise variance s2 and
both scales, but not onα. Note that s2 can be estimated from
the image data. This is an approximation, as the pixels in
the window are not statistically independent. However we
found that with a threshold 1.5 Tλ we do not obtain spurious
features on a pure noise image, indicating the dependency
on the scales and the noise variance holds empirically.

Algorithm 1: Proposed keypoint detection scheme
g, k, Tλ, Tw, S, fp, fs, Tr → {p, σ, α}

for all scales σ do
determine gradient: ∇τ (g(p, σ));
determine λ2 of moment matrix: M(p, α = 0, σ);
for three angles α = 0◦, 60◦, 120◦ do

determine Ω(p, α, σ);
end
determine best angle α0(p, σ) yielding Ωmin;
compute precision w(p, σ);

end
detect local maxima in 26-neighbourhood of w;
keep keypoints with λ2(M) > Tλ;
perform non-maximum suppression;
optimise keypoint locations by interpolating w;

4. Experiments
Empirical proof of theory. We will now demonstrate the
interpretability and complementarity of the points extracted
on an image of a Siemens star with regular beams. The
results for several detectors are depicted in Figure 4. The
thick blobs, found by the Lowe-detector, perfectly match
to the dark ends of the beams with intuitive local scale.
The smaller blobs, anchored to the outer corners of each
ray’s end, are not easy to interpret, and not symmetric ei-
ther. MSER clearly detects one region for each beam in
perfect symmetry, and no non-interpretable features at all.
Results for Harris-Laplace, Hessian-Laplace and IBR are
neither symmetric nor easy to interpret. Especially the first
two yield many redundant points at different scales and
slightly differing positions. Here a non-maximum suppres-
sion certainly would help. The comments on IBR apply for
EBR, which is not shown here, as well. After all, while at
least the Lowe detector and MSER provide stable and inter-



Figure 4: Features detected by different methods on the
beams of a Siemens star. The image contains a small
amount of Gaussian noise (2 %). Top left to bottom right:
Lowe, MSER, Harris affine, Hessian affine, IBR, SFOP.
Lowe, MSER and SFOP clearly show rotation invariance.
SFOP detects the same larger blobs in the ends of the beams
of the star as LOWE. Only SFOP explicitly detects the cen-
tre junction.

pretable results, none of the detectors actually gives a com-
plete structural representation, because the corner points are
not detected by any of the methods. Our detector (bottom
right) finds both blob-like structures comparable to the thick
blobs extracted by the Lowe detector, shown in cyan, and
the complete set of junctions, shown in red. Note the junc-
tion points detected at the end of each fan as special corners.
The feature type is explicitly returned by the new detector
via the angle α, which we mapped directly to the 180◦-
colormap of the HSV color space for plotting. This illus-
trates well that the feature type is robustly distinguished.

Repeatability on planar structures. We want to follow
the well known repeatability benchmark scheme proposed
in [13], using the software supplied by the authors. How-
ever, we agree upon Haja et al. [6] to modify the scheme in
two ways: First, we only consider the best matches in case
of multiple possible assignments in order to forbid repeata-
bility values greater than 100 %. Second, for two keypoints
(i, j) in an image pair (m,n), we not only want to measure
the area overlap ei,jo (m,n) of their shapes for determining
valid correspondences, but also the position error ei,jp (m,n)
of their window centres, cf. [6; 13]. As precision is an im-
portant factor, we choose to plot the repeatability for one
specific image pair over varying thresholds on both eo and
ep as in [13, Figure 21 (a)].

The results of the Lowe detector are computed with the
original implementation kindly provided by the author, but
using the original, not double image resolution. All other

Figure 5: Example images from our experiments. From left
to right: Boat, Graffiti, Leuven City Hall.

implementations are taken from the website maintained by
the authors of [13], with parameters set to the same values
as proposed there.

We investigate the repeatability on three sequences with
six or seven images each, depicted in Figure 5 and 1, us-
ing carefully estimated 2D homographies between image
pairs as a ground truth for the point transfer. It has been
found by several authors that under moderate affine dis-
tortions (i. e. less than 40◦ viewpoint angle for a planar
surface) affine-invariant detectors show lower repeatability
than scale-invariant ones on average. Hence we expect dif-
ferent results for the three datasets.

The first two sequences are popular examples from the
authors of [13].The Boat sequence shows a textured scene
with natural and man-made objects from a constant view-
point under rotation and zoom variations. We expect our
detector to show good repeatability here. The Graffiti se-
quence shows a structured pattern with strong increasing
affine distortions, so that in this case we expect better results
from affine-invariant detectors between non-neighbouring
images. Our own Door sequence (Figure 1) shows an in-
door environment under rotation and scale variations with
small affine distortions. The poor texturedness makes it a
challenge for most state of the art detectors.

The results are shown in Figure 6. For the two standard
datasets Boat and Graffiti, we have chosen to set the signifi-
cance level of our detector so that the number of correspon-
dences is almost equal to that of the Lowe detector. We see
from the upper row of Figure 6 that, together with Lowe,
our detector shows highest repeatability w.r.t. overlap er-
ror, and significantly better repeatability w.r.t. position error
than all other detectors. Considering the Graffiti sequence,
the results for our detector are below average for all scores.
Note that both our detector and the Lowe detector did not
return keypoints with less than around 20 % overlap error
here, which may be explained by the windows shapes being
restricted to circles. However, the Lowe detector behaves
otherwise better than our detector, as the blobs are more ro-
bust to affine distortions than the spiral family. Although
we may still improve the behaviour by computing the affine
parameters of the local patch from the second moment ma-
trix, we emphasise that the result is already satisfying for
many applications.

We have also computed results when automatically esti-



Figure 6: Results of the repeatability benchmark for three sequences. Top row: Boat, middle row: Graffiti, bottom row:
Door. The left column shows the number of valid correspondences for each image w.r.t. the first image with less than 40 %
area overlap error eo. The centre column shows the percentage of valid correspondences for varying patch overlap error
ei,jo (1, 3) for images 1 and 3. The right column shows the percentage of valid correspondences w.r.t. varying localisation
error ei,jl (1, 3) for images 1 and 3. Our new Scale-invariant Feature OPerator is denoted with SFOP.

mating the noise variance of the images and setting Tλ as
derived in section 3. The number of valid correspondences
increased by a factor of 1.5 on average, while yielding very
similar repeatability results. For objectiveness however, we
used the simple thresholds in the benchmark.

Considering the results for the Door sequence in the bot-
tom row of Figure 6, we see that all state of the art detec-
tors yield less than ten matches, making automatic camera
calibration almost impossible. Our detector provides about
three times more correspondences, while still showing aver-
age repeatability both concerning area overlap and position
error, thus building a robust input for camera calibration for
this difficult sequence.

Applicability on scenes with 3D structure. The compar-
ison carried out so far restricts to planar surfaces or far away
objects. For also getting insight into the behaviour on sur-
faces with strong 3D structure, we used the same detectors
as input for an automatic image orientation procedure on
the Leuven City Hall sequence [20]. This procedure uses a
RANSAC scheme for determining epipolar geometries, so
we ran the estimation 10 times with each detector, respec-
tively. We were interested in the average estimated accuracy
of the observed features as reported by the bundle adjust-
ment, and found that it was comparable for all detectors,
being about 0.5 pel with variations of about 1/10 pel over
repeated estimates. Furthermore we examined the average



Euclidean distance of the estimated projection centers from
the ground truth, which however was slightly different: We
got similar values of about 30 mm for Lowe and our detec-
tor, but better results – about 20 mm – for MSER, Hessian
affine and the “corner subset” of our detector, i. e. when re-
stricting to α = 0. This indicates that the proposed detector
is at least comparable to the others on images showing com-
plex 3D structure. For more results on 3D data, we refer to
a recent work on the suitability of detectors for image orien-
tation [2], where our new detector performed well under a
variety of empirical and statistical indicators. Besides this,
we intend to run a recently proposed benchmark test using
3D objects [14], which we expect to verify the current re-
sults.

5. Conclusion

We have proposed a new keypoint detector which ex-
tends the one of Parida et al. [17] by scale-space properties
and incorporates the general spiral feature model of Bigün
[1]. We have shown that the detector has repeatability com-
parable to state of the art detectors. It gave the best overall
results for a standard zoom-and-rotation sequence, while
ranging below average for a sequence with strong affine
distortions. The key advantages of this detector over ex-
isting ones are complementarity, and hence improved com-
pleteness on structured images, and interpretability, while
showing the same high localisation accuracy. This makes
it a very good choice for camera calibration and object
recognition, especially in the case of poorly textured, struc-
tured objects. The completeness of several popular detec-
tors w.r.t. the information provided by an image has been
addressed in a recent study [4], where the proposed detec-
tor showed good results.

In the future we want to investigate the effect of mak-
ing the differentiation scale independent on the integration
scale, the effect of the size of the window around a keypoint
on the repeatability, and the effect of classifying the key-
points. Furthermore, we want to develop and investigate an
affine invariant extension of the detector.
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