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Summary. Geometric reasoning in Computer Vision always is performed under
uncertainty. The great potential of both, projective geometry and statistics, can be
integrated easily for propagating uncertainty through reasoning chains, for making
decisions on uncertain spatial relations and for optimally estimating geometric enti-
ties or transformations. This is achieved by (1) exploiting the potential of statistical
estimation and testing theory and by (2) choosing a representation of projective
entities and relations which supports this integration.

The redundancy of the representation of geometric entities with homogeneous
vectors and matrices requires a discussion on the equivalence of uncertain projective
entities. The multi-linearity of the geometric relations leads to simple expressions
also in the presence of uncertainty. The non-linearity of the geometric relations
finally requires to analyze the degree of approximation as a function of the noise
level and of the embedding of the vectors in projective spaces.

The paper discusses a basic link of statistics and projective geometry, based on
a carefully chosen representation, and collects the basic relations in 2D and 3D and
for single view geometry.

1 Introduction

Uncertainty is present in Computer Vision in all analysis steps: in image processing,
in feature extraction, pose estimation, grouping, but also in recognition and inter-
pretation. Problems are, among others, the adequate representation of uncertainty,
propagation of uncertainty, estimation under uncertainty, decision making under
uncertainty. Recently, statistical inference has become a major thread of research
at all levels of image analysis. This certainly is caused by the rich arsenal of tools,
which allows to precisely model uncertainty, to check the validity of the assumptions
made, and to reason under uncertainty.

This paper is about uncertainty in geometric reasoning, specifically using pro-
jective geometry. Algebraic projective geometry has become the basic tool for repre-
senting geometry of multiple views, cf. the two classical text books [10, 18]. The two
examples in fig. 1 and 2 show two applications where algebraic projective geometry
can be used to advantage.
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Fig. 1. 2D-Grouping of points and lines, e. g. resulting from a image preprocess-
ing step, consists of two steps: (1) Testing of hypothesized mutual relations, taking
uncertainty of image features into account, and (2) joint estimation of geometric
features. All points and lines in the figure may be grouped. The result may be an
optimal estimate, e. g. of the line 1 using incident points x;, collinear lines m;, or-
thogonal n; and parallel lines o;. In algebraic projective geometry all these relations
are linear easing statistical testing and estimation.
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Fig. 2. Triangulation of points and lines: Estimation of 3D-point X7 (left) and
3D-line Ls (right) from image points x' and image lines I'. The spatial relations
between image and space points and lines can easily be expressed as a function
of the projection matrices and for points and lines resp. Also in this case, using
algebraic projective geometry eases statistical testing these relations and the joint
optimal estimation of 3D-line.
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In both cases the geometric relations can be expressed as multi-linear forms of
the entities involved, which would not have been possible when not using projective
geometry.

On the other hand rigorous estimation techniques, e. g. used in the bundle ad-
justment for image orientation minimizing the reprojection error, have been accepted
as reference for suboptimal techniques and as a final step in order to obtain statis-
tically optimal results. The need to exploit the full information about the statistics
is demonstrated in the example of fig. 3: All geometric entities with a certain prob-
ability lie within a certain region, whose shape and size vary individually. Therefore
pure geometric measures are not useful for reasoning under uncertainty.

Fig. 3. Testing spatial relations: Necessity of taking the uncertainty into account
rigorously, e. g. when testing a point-line incidence: In the presence of uncertainty
the geometric distance d of the points x; from the line 1 is not useful for testing. The
uncertainty of a point in a first approximation can be represented by a confidence
ellipse, while the uncertainty of a line can be represented by a confidence hyperbola
being the collection of the confidence regions across the line of all points. Though the
situation is much more complex in 3D, it can easily be handled using the covariance
matrices of the entities in concern.

We only want to mention two prominent representative publications where pro-
jective geometry and statistics have been integrated to a larger extent:

Kanatani [25] apparently was the first who integrated geometry in 2D and 3D
and statistics in a rigorous manner. He aimed at completeness in uncertain geo-
metric reasoning, and discussed motion estimation and optical flow. He proposed
rigorous tests and optimal, i. e. maximum likelihood estimates. However, though
he used homogeneous vectors for representing geometric entities, he required 2D-
and 3D-points to be Euclidian normalized. This was motivated by the otherwise
indefinite scaling of the vectors, but does not allow to handle points at infinity. The
partitioning of the vectors into a homogeneous and an Euclidean part, which as
such is reasonable for interpretation (cf. [3]), lead to cumbersome expressions in the
covariance matrices, especially as he aimed at giving explicit expressions including
both, the error propagation and the normalization to Euclidean homogenous vectors.

In his thesis, Criminisi [9] integrated uncertainty reasoning into all steps of sin-
gle and multiple view analysis. For a great number of geometric reasoning tasks,
also including the determination of transformations, he gave explicit expressions for
covariance matrices. He also analyzed the degree of approximation introduced by
linearization.
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Unfortunately, in both cases the beauty of projective geometry got lost on the
way to the integration of statistical reasoning.

The ease of handling multi-linear, especially bilinear forms was questioned by
Haddon and Forsyth [16]: They demonstrated that significant bias and deviations
from a Gaussian distribution might occur when partitioning bilinear forms, i. e. when
solving for structure and motion from image observations. Their examples, however,
seem to be caused by a very low signal to noise ratio, resulting from comparably
short base lines in image sequences.

Altogether there appears to be a clear agreement to use both, statistics and
projective geometry for spatial reasoning under uncertainty. The main problem left is
to find an adequate representation and adequate procedures for geometric reasoning.
The approach described in this paper tries to avoid the disadvantages mentioned
above

In statistics uncertainty of measurements usually is represented by covariance
matrices. Generally speaking, instead of working with the probability densities one
uses the first two moments of the distribution. This appears to be widely accepted
and is adequate as long as the signal-to-noise ratio is high enough, say much above
10 : 1, which nearly always is the case in the first steps of image analysis. Moreover,
propagation of uncertainty can be performed within the calculus of linear algebra
to a sufficient accuracy.

Therefore, among the many representations, homogeneous vectors and matrices
appear to be the right choice for geometric entities and transformations. An em-
bedding into more fundamental concepts, such as the double algebra or Grassman-
Cayley algebra [4, 11] or even the Geometric Algebra [21, 22] does not seem to be
possible. However, - and this was the motivation for the approach presented here, cf.
[15, 23] - the beautiful structures of these algebras, should be kept as far as possible.

Together with the nearly always approximate representation of uncertainty using
covariance matrices, there exists a rich and powerful arsenal of tools for statistical
reasoning along. This especially holds for estimation techniques (e. g. [31]). The
versatility of these tools is the basis for the broad experience in the field of geodesy,
where estimation of geometric quantities is a standard task [20, 29, 27]. The key to
an easy to use concept of estimation procedures lies in the generic representation
of the given functional relations between all observed quantities and all unknowns,
not so much in the optimization function nor the optimization procedures e. g. the
trust region method to increase convergence [19], which appear to be a - though
necessary - second step.

Therefore, among the many procedures for estimation, the Maximum Likelihood
estimation based on the so-called Gauss-Helmert model appears to be the right
choice. It is generic, as it allows to represent all estimation problems with non-linear
constraints. Similarly to all other alternative models the estimation processes itera-
tively improves approximate values for all parameters. The approximate values have
to be reasonably good, which in our context can be achieved based on the rich work
of the past decade.

The paper is organized as follows: Section two uncertainty discusses issues of un-
certainty: (1) the representation, especially in the context of homogeneous entities,
(2) the propagation, especially the effect of linearization, (3) the estimation under
generic constraints and (4) basic elements from testing. Section three geometric re-
lations discusses issues of projective geometry: (1) the representation of geometric
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entities, (2) their construction from given ones, (3) their relations including homoge-
neous transformations as a basis for uncertainty propagation, statistical testing and
estimation. Section four finally discuss when conditioning of the geometric entities
and normalization of the covariance matrices is necessary to overcome the proposed
approximations.

The goal of the paper is to provide simple-to-use tools for uncertain geometric
reasoning. We do not discuss the sources of uncertainty (cf. Kanatani’s valuable
discussion in this volume) and do not address refinements concerning computational
efficiency.

Notation: Vectors are bold face times letters, such as  or X, matrices are bold
face sens serif letters, such as A = [a;;] or H. Homogeneous vectors and matrices are
upright letters, such as x or H, Euclidean vectors are slanted letters, such as x or
X. Vectors representing geometric 2D-entities are lower case letters, such as « or 1,
vectors representing geometric 3D-entities are upper case letters, such as A and X.
Planes are denoted with letters A, B, ... from the beginning of the alphabet, lines
are denoted with letters 1, L, M, ... from the middle of the alphabet, and points are
denoted with letters X, Y ... from the end of the alphabet. The n X n-unit matrix is
denoted with /,,. The i-th n-unit vector is denoted with ei"). Stochastical variables
are underscored, such as z. The density function of the stochastical variable z,
possibly being a vector @, is denoted with pg(-). The expectation, the variance and
the covariance operators are E(-), V(-) and Cov(:,) resp. Covariance matrices are
indexed with two indices, e. g. V() = Xz = [04,2,], allowing to densely write the
covariance of two different vectors Cov(z,y) = Xy = [04,y;]- The determinant of
a matrix is |A|.

We will use the vec-operator, column-wise stacking the columns of an n x m-
matrix A into a nm-vector vecA, thus vec(A") contains the nm elements of A row-
wise. We will use the Kronecker product A® B = [A;; B]. With the vec-operator we
use the two relations vec(ABC) = (CT ® A)vecB and as vec(ABc) = vec(c' BTA")
and vec(ABc) = (¢" ® A)vecB = (A® ¢ )vec(BT). Row-wise concatenation of two
matrices A and B leads to the matrix [A|B].

2 Uncertainty

2.1 Representation and Propagation of Uncertainty
Basics

Probability theory is a classical tool for representing uncertainty. In our context
we are concerned with representing the uncertainty of coordinate vectors z, which
is usually done via the probability density function (pdf) p,(x) or the cumulative
probability density function (cpdf) P, (x), the function in contrast to the indepen-
dent variable in brackets. In many cases one reasonably well can use the Gaussian
or normal distribution with density

-1
1 e_%(w_ﬂm)-rzzw (T-p,) , (1)

92 (5 Pyy ow) = — e
(2m)" | Zaa|

which depends on two parameters, the n-vector g, and the symmetric n X n-matrix
X zz. Observe, the density function of the normal distribution only is defined for
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regular X,,. For practical reasons one uses the short notation & ~ N(u,, ¥zz) to
indicate the stochastical variable z to be normally distributed with the parameters
@, and M.

Often reasoning can be restricted to the so-called moments of the distribution.
With the expectation operator E(f(z)) = [ f(x)p.(x)dx we will regularly use the
mean, being the first moment of the distribution, the variance, being the central
second moment, and the kurtosis, being the central fourth moment p4,, normalized
with 302

E((z — pa)*)

2 2 Bag _
pe =B@ = [apala) do, ol = V(@) = Blla—p)"), x= o = SE_p=L)

which leads to kK = 1 for Gaussian variables.

For vector valued stochastical variables we have the covariance matrix defined
as Xyp = [0u;2;] = V(z) = E((z — p, ) (z — u,)"). In case two stochastical variables
are statistically independent, their joint distribution psy(z,y) is separable, thus

Poy(®,y) =pa(2) py(y)  and  Poy(z,y) = Pu(z) Py(y) - )

For normally distributed variables £ ~ N (@, ¥zz) the two parameters p, and
X2 are the mean and the covariance matrix.

Propagating uncertainty through chains of non-linear functions in general is
intractable. For very specific distributions and simple functions this can be done
explicitely, using various techniques, depending on the special situation, cf. the dis-
cussion and the many examples given by Papoulos [30]. We, however, may restrict
to the propagation of the first two moments.

If two first moments of a stochastical vector are used to describe its & ~
M, (p,,, X2e) distribution, then the vector valued nonlinear function y = f(x) has
a distribution y ~ My (g, X'yy) with the first two moments (cf. [27])

: of(z
I"’y = .f(u'x) Eyy = Jyaczmc-/;m Wlth Jym = —‘g(w ) (3)
L=z

This error propagation law holds rigorously for any distributions with finite first
and second order moments in case the relation f(z) is linear. In case of non-linear
function it is an approximation, which we discuss below in our context of geometric
reasoning.

The basic idea is to attach a covariance matrix to each uncertain entity during
geometric reasoning.

Representing Uncertain Homogeneous Vectors

Attaching a covariance matrix to homogeneous vectors can be done straight forward
and has been extensively done by Kanatani and Criminisi. E. g. in case the Euclidean
coordinates x = (z, Q)T ~ M(p,, ¥:) is given the corresponding covariance matrix
of the homogeneous 3-vector x = (z, y, 1)T is given by

02 Oy 0
Y= |0ay 0, 0] . 4)
0 00
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This approach is correct and circumvents the problem of discussing projective enti-
ties (cf. table 4): The transition from uncertain Euclidean entities, which are primary
observations, to uncertain homogeneous entities is simple and can be done statis-
tically rigorous for points. One goal of the paper is to show, that the transition to
other uncertain homogeneous entities, e. g. by construction, is simple, and a good
approximation. The same holds for the derivation of Euclidean entities from ho-
mogeneous ones. Thus instead of working with a non-redundant representation in
Euclidean space, e. g. in IR? for 2D-points, one uses a redundant representation in
a higher dimensional Euclidean space, e. g. in IR? for 2D-points.

The beauty of algebraic projective geometry for geometric reasoning and mul-
tiple view analysis shown in the paper of Faugeras/Papadopoulo [11] was the key
motivation to use homogeneous coordinates for representing uncertain geometric en-
tities but to stay as close as possible to the concepts of the Grassman-Cayley algebra
in order to preserve the transparency of the geometric relations.

simple, rigorous/approximate

euclidean projective homogeneous
entity r---®= entity r---- > coordinates
Rn I:,n Rn+k
: difficult simple,|approximate
* approximate pie.japp
euclidean projective homogeneous
entity |----- entity |----- coordinates
Rm Pm Rm+|

simple, approximate

Fig. 4. Reasoning under uncertainty in projective geometry. Instead of perform-
ing calculations with Euclidean entities one works with homogeneous entities, only
implicitly using them as representations of projective entities.

However, the redundancy k& in the representation with homogeneous entities,
which is £ = 1 for all entities, except for 3D-lines, where it is £ = 2, leads to some
difficulties:

1. The redundancy in the representation immediately leads to singular covariance
matrices as e. g. in (4). Thus there is no proper pdf for homogeneous entities*

2. Construction of new entities from given ones, using the classical tools of statis-
tical error propagation in general leads to regular covariance matrices. This is
in contrast to the singularity of the covariance matrices derived from Euclidean
entities, cf. (4) and prevents a simple comparison of uncertain stochastic vectors
having covariance matrices of different rank.

! which was a critics of a reviewer of some earlier conference paper using this
approach.
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Kanatani [25] proposed to use the Euclidean normalized homogeneous co-
ordinates for points. This imposes a constraint, e. g. the component w of
x = [u,v, Q]T to be normalized to 1, and results in covariance matrices with the
desired rank. Interestingly, he normalizes 2D-lines, 3D-lines and planes spheri-
cally.
This normalization, however, will be shown not to be necessary in general.
Therefore also homogeneous vectors with a full rank covariance matrix will be
allowed.
The equivalence relation for homogeneous vectors therefore needs to be redefined
for this reason.
Only in case one uses the proposed test statistics for correctly sorting multiple
hypotheses in search problems, one needs to condition and normalize the geo-
metric entities. However, always spherical normalization can be applied which
enables to include points at infinity.

3. The representation and propagation of uncertainty with the second moments is
an approximation.
The degree of approximation needs to be known to safely apply the proposed
approach.

On Singular Covariance Matrices

We first discuss the pdf of random vectors containing fixed entities. When repre-
senting fixed values, such as the 3rd component in (z,y, 1)-'—7 we might track this
property through the reasoning chain or just treat the value 1 as stochastical vari-
able with mean 1 and variance 0. The second alternative has implicitly been chosen
by Kanatani [25] and Criminisi [9].

One can easily construct a 2-vector with a singular 2 x 2-covariance matrix.
Assume z ~ N(pz,1) and y ~ N(uy,0) are independent stochastical variables, thus

~N , .
2= (L) Loe
The distribution of y can be defined as a limiting process:
py(y) = lim g(y;py,07) =8y — py) -
Ty

The resulting J-function is a so-called generalized function, only definable via a
limiting process. As z and y are stochastically independent their joint generalized
pdf is, cf. (2) -

Goy = 92(@5 pay 1) 6(y — p1y) -
Obviously, working with a mixture of Gaussians and é-functions will be cumbersome
in case stochastical variables are not independent.

Again, in most cases reasoning can done using the moments, therefore the com-
plicated distribution is not of primary concern. The propagation of uncertainty using
the second moments only relies on the covariance matrices, not on their inverses,
and can be derived using the so-called moment generating function (cf. [30]), which
is also defined for generalized pdf’s. Thus uncertainty propagation can be performed
also in mixed cases.
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Equivalence Relation for Uncertain Homogeneous Entities

A more critical problem is the equivalence relation of uncertain vectors.
The equivalence of two fixed, i. e. statistically certain, homogeneous n-vectors x
and y usually is represented as

XTy<<=x=Ay (5)

for some factor A € IR\ 0. In case two stochastic n-vectors x and y are given with
their pdf p;(x) and p,(y) the equivalence relation would transfer to

ngﬁpw(x):/\l_npy (%) (6)

for some factor A € R \ 0.
This equivalence relation does not allow to use regular covariances for homoge-
neous entities as they may occur. As an example, assume

T1 T2
P= |4 NN(P'p:Epp) q= 2 NN(Nanqq)
1

—_

with
100
=g =0" (010
000

Using (3), the covariance matrix of the joining line 1 = p x q is (cf. the discussion
around table 3.3, p. 30)

2 0 —(z1+ z2)
211 = 0'2 0 2 _(yl + y2)
—(@1+22) —(p+y) oi4ad+ui+ys

and has determinant
|2l = 20° (22 — 21)” + (y2 —11)?) .

Thus the covariance matrix of 1 always has full rank. This is in contrast to the
fact that, given the two parameters of a line, the resulting covariance matrix of its
homogeneous vector has rank 2.

The reason for this conflict is: The equivalence relation (6) does not allow the
factor A to be uncertain.

E. g., if two 2-vectors x =y € IP' follow a Gaussian distribution p.(x) = p,(y)
with covariance matrix ¥, = X,,, they certainly are equivalent. If now A is 2
and 3 with probability 1/2, then z = A y follows a mixture of two equally probable
Gaussians with 43,, and 93,, thus

=3 @)+ Hn () -bn B ()

shown in fig. 5. This density function is not equivalent to p,(x) when using the
equivalence relation (6). However, any realization comes either from 1/4 p,(y/2) or
from 1/9 py(y/3), thus is equivalent to x. Therefore the equivalence relation (6) is
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Fig. 5. Two pdf’s of a homogeneous 2-vector. Left: original, right: modified. The two
distributions represent the same 1D-point & = u/v with g, = (g, p)" = (1,1)".
However, the distributions cannot be easily be related; especially, without further
knowledge, the right distribution cannot be derived from the left one.

too restrictive.

We therefore propose to use the following equivalence relation for fixed vectors:

(7)

‘x%y4:>xs=ys

with the spherically normalized vectors

s_ X s_ Y
Y '

This equivalence relation can be directly transferred to uncertain vectors using
the pdf of the normalized vectors

X 2y <= pas(x°) = pys(y°) ©)

In case one wants to be sure not to deal with generalized functions, one also can use
the equivalence relation based on the cumulative distributions

X2y <= Pps(x°) = Pys (y°) . 9)

In the case of a normally distributed homogeneous vector x ~ N(p,,, X3,) with
a covariance matrix of arbitrary rank, one directly can determine the covariance
matrix of the normalized vector from

Emsms = Jszlmm-]:
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ox?® 1 xx"
o= ox —m(’—ﬁ) :

Obviously, the Jacobian has rank deficiency 1 and null-space N (X;.) = x, therefore
the covariance matrix at least has rank deficiency 1 and x is in its null space.
Thus the equivalence relations (8) and (9) explicitely state, that only the direc-
tion of a homogeneous vector is of concern, and, if the pdf or cpdf of the direction
is the same for two homogenous vectors, they are equivalent. This allows to use
covariance matrices of any rank for representing uncertain homogeneous vectors.

with the Jacobian

w ()
, Xa//
, xa) -
NS
r
/'sx_ 7
4 y X,y
—————————— e e ——————— -
o S~ 7 Ce
. N - X
-
/ X~
’ 7SN
/ 2/
) (A
' z v
' 7 \ uv
L I

Fig. 6. Equivalent uncertain homogeneous vectors. The Euclidean plane IR? with
Euclidean vectors (z,y) is embedded in IR® with coordinates (u,v, w)'. From upper-
right to center: (1) homogeneous vector “x with general and regular covariance
matrix, (2) homogeneous vector x with equivalent covariance matrices, dashed: reg-
ular, solid: singular, normalized such that null-space of X, is x, (3) Euclidean
normalized homogeneous vector “x with w =1 and original covariance matrix from
observations, null-space X e <, is (0,0,1)7, cf. (4) and [25], (4) spherically normal-
ized homogeneous vector °x, null-space of X s s, is x. In principle the distribution
of a homogeneous vector may have any form (cf. point x$): it still is equivalent to
another one, in case after spherical normalization, they have the same distribution,
as only the direction is of concern.

Comment: There is a close relation of this equivalence relation to the equivalence
relation for covariance matrices referring to different gauges (cf. [26]): In both cases
only estimable quantities, i. e. quantities which are estimable are of concern. The
invariance here refers to arbitrary distributions, not only to Gaussians, though the
transformations discussed later all refer to the second moments. The notion of gauge
is known as datum in the geodetic literature (cf. [2] and [12]). Gauge transformations,
due to the special application, are called S-transformations (’S’ from similarity as in
the application in [26]). The problem is already identified 1987 in robotics (cf. [34]).

Bias in Uncertainty Propagation

From table 4 we observe three essential steps where we use an approximation: (1)
generating a homogenous vector from Euclidean coordinates, (2) generating a ho-
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mogenous vector from given ones, and (3) deriving Euclidean parameters for the
geometric entity in concern.

We want to show that in most practical cases the induced bias in mean and
variance is negligible and only in unlikely cases the distribution of the resulting
entities is significantly deviating form a Gaussian. Though this has been discussed
earlier in literature (cf. e. g. [30], [8] or [9]) we present it here for completeness,
adapted to the problem in concern.

Bias in mean and variance

The above mentioned rule for propagating uncertainty (3) results from a Taylor
expansion of the non-linear function y = f(x). Including higher order terms yields
bias terms.

For a scalar function in one variable we obtain the following result: If the pdf
of a stochastical variable z is symmetrical, the mean and the variance for y = f(x)
can be shown to be

B(y) = py = £(1e) + 3£ (1) + 5o fOpa. + 0™ ma) m>4 (10)

and for normally distributed variables, with the central fourth moment pa, = 304

V() = 0} = £ 72+ (£ ) ) + 357 ) ) o2+ O ma) >4

Obviously the bias, i. e. the second term, depends on the variance and the higher
order derivatives: The larger the variance and the higher the curvature or the 3rd
derivative, the higher the bias. Higher order terms depend on derivatives and mo-
ments of order higher than 4.

If the pdf of a stochastical vector x is symmetrical, the mean of the scalar
function y = f(x) can be shown to be

By) = iy = f(,) + goxace(Hlamy, Faa) + O yma), 23 (1)

with the Hessian matrix H = (0f2/0x;0x;) of the function f(z). This is a general-
ization of (10).

We now want to discuss two cases: (1) The product z = zy of two random vari-
ables. This is the most simple case of a bilinear form, occurring when constructing
new geometric elements with homogeneous coordinates, (2) normalizing a vector to
unity °x = x/|x|.

Bias and distribution of the bilinear form z = xy

The Taylor series at the mean in this case is finite. Therefore we can derive rigorous
expressions for the mean for arbitrary distribution M

p: = E(2) = popty + 0ay (12)

As fourth moments are involved in the determination of the variance, we assume
M to be normal. Then we obtain the rigorous expression for the variance of z

02 =V(2) = pyos + p30y + ey oy + 050, + 03y (13)
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Obviously the linear approximation of the mean and the variance are

p = popy 2 = pips + ol 4 2papyoay (14)

The bias in mean is
1
bu. = Mg ) — Mz = —0Ozy (15)
It is zero if the two variables are uncorrelated. The bias in variance is

bz = 020 — 02 = —g%0? — 02, = —oZ02(1 + 42,) (16)

It is not zero for uncorrelated variables. Actually the variance is underestimated if
one relies on classical error propagation, as af(l) < o2 for uncorrelated variables (cf.
[16])
In order to get an impression on the size we assume o, = 0y = 0 and gy =0
and obtain the relative bias in variance
bo’% g 2

= 17
ol pi + py +o? an

T

2
O'z

Thus only in case p2 + pi < o? the relative bias in variance is larger than 50 %
of the variance. This is very unlikely to occur, as the relative precision oy /p, of
homogeneous vectors in computer vision applications usually is better than 1/100.
We finally want to show the type distribution of the product for an extreme case,
especially for p; = py = 0. In case of independent zero mean Gaussian variables

QNN(():UQ) QNN(Ouo'Q)

we find the probability density function of z from

p= [ 2petom (2) u

u
yielding

2

BesselK (0, M)
N9/

p:(2) = o2

with the Bessel function BesselK(z) of the second kind. It definitely is not normally
distributed (cf. fig. 7), but has the variance

V(z) = 2/ 22p.(2)dz = o*
z=0
in accordance with (13).

Bias of spherical normalization

The findings are confirmed when analyzing the bias of normalization of a vector. Let
the vector w ~ N(pu,,, o2 1) be normally distributed with independent components
with the same variance ¢.,; = 0. The normalized vector is determined from

w w

z=— or §=—z
|w| C
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w

X~

Fig. 7. Bessel function of the second kind and Gaussian with the same variance.
The pdf of the product of two zero mean Gaussian random variables is a Bessel
function, thus significantly deviates from a Gaussian pdf.

With (11) this leads to the second order approximation of the mean

© 1 p, - B ( 1 oy )
E(z) = —% — = Y _go = —2 [1—=—"—].
@ = ] " 2 TP 7 Tl U7 2T P

Thus the relative bias, i. e. the bias related to the standard deviation is

1D | —o7 2w
Oz |l~l‘w|

approximately identical to the directional error o./|w,,|, which usually is below
1/100. One can show that also the relative bias in the standard deviation is approx-
imately identical to the directional error

|b0'z| Ow
~N —

Oc., |/J/w| .

Remark: These findings are useful for the constructions, for the tests and for
the estimation procedures discussed below. The strong bias, found by Haddon and
Forsyth [16] refer to partitioning bilinear forms with mean values close to zero. There
the relative errors are large, thus the bias cannot be neglected.

2.2 Estimation

Estimation of unknown parameters is a classical task in statistical inference. Maximum-
likelihood estimation is one of the standard tools.

In our context, many relations are multi-linear, especially they are linear in the
unknown parameters. Therefore direct solutions, minimizing the so-called algebraic
error are frequently used. Though they usually lead to sufficiently good approximate
values, they are suboptimal. Therefore techniques for improving these approxima-
tions have been proposed, such as renormalization [25] and [5], total least squares,
the HEIV-method (heteroscedastic errors in variables, meaning variables with errors
of different weight [28]) and their improvements [6], [7]. The motivation for these
techniques stems from deficiencies in historically older methods: Renormalization
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compensates for bias, total least squares takes the stochastic properties of the co-
efficients in a regression model into account, HEIV takes the correct weights in the
algebraic minimization scheme. All of them are iterative.

We propose to directly use the given constraints and minimize the weighted
sum of residuals of the observations, the weights being inversely proportional to the
covariance matrix. The resulting estimates are local ML-estimates in case the given
observations are Gaussian. We will show, that the HEIV method, in a modified
version, is a special case, and furthermore, the method of minimizing the algebraic
error is a further simplification.

The proposed scheme has two definite advantages:

e It can handle any number of constraints at the same time. In our context, this
allows to simultaneously take into account the fixed length of a homogeneous
vector or matrix and additional constraints, such as the singularity of the funda-
mental matrix or the Pliicker constraint for space lines. Also problems, such as
space-curve fitting for observed space points (z,¥,2);,l = 1,...L, can easily be
handled, e. g. a space conic, being the intersection of a vertical conical cylinder
with the 6 parameters a;;,0 < ¢4+ j < 2 and a plane with the 4 parameters
bijr,0<i+j+k<1via

Z aijziyl =0 Z bijkxfyljzf =0 Z a?j =1 Z bz?jk =

0<it+j<2 0<itj+k<1 i+j<2 i +h<1

including two constraints, guaranteeing the space conic to be parameterized by
8 parameters. The proposed estimation method covers the technique in [36] as
special case.

e It can handle groups of mutually correlated observations. In many cases this
might not be an issue. However, assume space points are derived from a pair of
images by correspondence analysis, including relative orientation and triangu-
lation: then the coordinates of the space points are mutually correlated due to
the common relative orientation, e. g. represented by an estimated fundamental
matrix F. In case these points are used for further processing, e. g. surface or
curve fitting, one may take the mutual correlations of the space coordinates of
all points into account.

Gauf3-Helmert Model

The used mathematical model for the estimation may be partitioned into a functional
model and a stochastical model.

The functional model, the so-called Gaufl-Helmert model, already proposed by
Helmert in 1872 [20], with constraints between the unknown parameters, starts from
G constraints g = (gy) among N observations I = (I,,) and U unknown parameters
x = (x,) with additional H constraints h = (hp) among the unknowns. The con-
straints should hold for the fitted observations I = I + v, including the estimated
corrections ¥ and the estimated parameters Z:

gll+v,2)=0 or gll,z)=0 (18)
h(zZ)=0 (19)
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~ Y . .
Starting from approximate values 2 and f ) by Taylor expansion and neglection
of terms of order higher than 2 one obtains the linear GauBi-Helmert model with
constraints between the unknown parameters

AAz+B o =w, H Az=w, (20)
with the residuals of the constraints and the corrections of the unknown parameters

,\(

~0)
wg = —g(l

PN _BT1-TY), wy=-h@E@®), Az=z-z (21

and the Jacobians evaluated at the approximate values

T
A - 99(Lx) B — <8g(l,w))
1=100) NxG

Gxv Oz ol

- (52)

1=100) UxH oz
0)

z = 2(0) 2=2(0)

The matrices B and H are defined as transposed of the Jacobians, to ensure they
have more rows than columns.

The stochastical model is assumed to be simple: We assume an initial covariance
matrix Z‘l(lo) of the observations I to be known. It may be singular. We assume the

true covariance matrix to be
2 x+(0
Su=03Z0 .

We start the estimation with the initial value ag © = 1, thus start with the approx-
imation X = 2510). Generalizing the stochastical model is straight forward, e. g.
by assuming variance components (cf. [13, 27]

2” = Za%kﬂl(lo,)k .
k

Then, the variance factors oZ; need to be estimated simultaneously with the un-
known parameters x.

ML-Estimation

We now give explicit expressions for the estimated parameters, the covariance matri-
ces of the parameters, the corrections and the fitted observations and the estimated
variance factor.

We derive the locally best linear estimators, i. e. estimators having the smallest
variance in the linearized models. Moreover, in case the observations are samples
from a normal distribution with [ ~ N (i, 37;) the estimates are local Maximum-
Likelihood estimators, local, as they depend on the approximate values, and far-off
the global optimum might exist.

Minimizing the quadratic form

Q=0-0)"Z;0-1 (22)

under the constraints AAz + BT(T— l) = wy and H™ Az = w;, we have to minimize
the form

S=0-1)"Z A1) +22T(AAz + BT(1— 1) — w,) + 2u" (H' Az — w},) ,
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where A and p are Lagrangian multipliers. In case the covariance matrix X of
the observations is singular, one needs to take its pseudo inverse. As Z‘fl' is positive
semidefinite and the constraints are linear we obtain a unique minimum.

Setting the partials of ¢ zero, we obtain with ¥ =1-1

%%:23%+B,\=0 (23)
%%:ATA+H;L=O (24)
%%:—wg+AZE+BTﬁ=0 (25)
%;TQ = —w,+H Az =0 (26)

From (25) follows the relation
B=—3uB\. (27)

When substituting (27) into (25), solving for X yields
A= (B"3,;B) {(AAz — w,) . (28)
Substitution in (26) yields the symmetric normal equation system

AT(B"32;B)"' A H] [ZE] _ [AT(BTZ‘HB)_I“’Q (29)

HT 0 n wh

The Lagrangian multipliers can be obtained from (28) which then yields the esti-
mated residuals in (27).

The estimated variance factor is given by

AT vt
= >
Q(Z) — % ~ Fr oo (30)

with the redundancy
R=G+H-U. (31)

The redundancy R is the difference of the number G + H of constraints and the
number U of of unknown parameters. In case of normally distributed observations 1
and in case the model holds the estimated variance factor is Fisher-distributed with
(R, 00) degrees of freedom. Thus 75> may be used to check the validity of the model.

We finally obtain the estimated covariance matrix

Ys2 = 50 gz (32)
of the estimated parameters, where X3z results from the inverted reduced normal

equation matrix _ 1
am N H
2 5)-[#4
using
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N=A"(B"x;B)'A.
Eq. (33) can be used even if N is singular. The covariance matrix Xz5 has null space
H.
The estimation needs to be iterated using improved approximate values in the
next, say the v + 1. iteration

~(v+1)

B Z 50 4 Az e 3

=17 +3"¥
from (21) and (27). This requires to recompute the Jacobians A, B and H.

We now discuss various specializations of these relations leading to well known
statistical tools.

The Special Case of Implicit Error Propagation

Observe, in case the number G of independent constraints g(I,2) = 0 and the num-
ber U of unknowns is identical, and there are no other constraints, the redundancy
R is zero, the matrices A and B are of size U x U, and the covariance matrix of the
unknown parameters is

e =A'B' X BATT
being the implicit error propagation law. Observe the definition of B as the trans-
posed of the Jacobian of g w. r. t. the observations I.

Relation to Matei/Meer’s HEIV-Method

Up to this point all given derivations are well known. We now want to assume the
constraints g to be linear in the unknown parameters and only the constraint h on
the length of the unknown parameter vector should hold. Thus we have the model
~ ~ 1 1~
g(l,z)=Al)x =0 h=§(a: r—1).
This leads to H = Z. In the case of convergence we have Az =0 and wy = A(D)x
and therefore the first equation of (29) leads to the iteration sequence (cf. [14])

v AT (1) (5 (0) 2" () a0a o

This shows the unknown parameter vector to be an eigenvector of an un-symmetric
matrix. The Jacobian B is to be evaluated at the fitted values Z“ ™", causing the
iteration process. This method is equivalent to Matei/Meer’s HEIV-method [28]. In
case of additional constraints, such as the singularity of the fundamental matrix,
the authors propose to impose these constraints in a second step.

Imposing Constraints onto a Stochastic Vector

Imposing a set of constraints onto a stochastic vector, already tackled by Helmert
in 1872 [20], is a special case of the Gaufi-Helmert model mentioned above and is
used for normalizing a vector or imposing additional constraints onto the vector,
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such as the Pliicker constraint for space lines or the singularity constraint for the
fundamental matrix.

The stochastic vector is treated as observational vector I ~ M (1, 3;). Then we
only have the G constraints

~

gi)=0
as no unknowns are involved. The resulting fitted observations 1 can be derived
iteratively, from (27), (28) and (21)

~(v+1)

; 0)

=1+ =1— 3,B(B"3,B) " (g(@"") + BTa-1""))
or in case of linear constraints from
I=1+%=1-3B(B"3uB) "g(l)

The covariance matrix of the fitted observations Z is

¥;=PpXuPp =%y XuB(B"3;B)"'B" %), = ZuPs (35)
with the V — G rank projection matrix

Pg=1—-B(B"%;B)"'B"3xy

fulfilling PgB = 0, leading to a singular covariance matrix X7 with null-space B.

This is an example, demonstrating the generality of the Gauss-Helmert model.

Minimizing the Algebraic Error

Minimizing the algebraic error wy = A(l)Z under the constraint |Z| = 1 leads to
the simple eigenvalue problem

p = AT (DAI)-Z

demonstrating the neglection of the weighting matrix (BX;;B")™!, when compared
to the rigorous solution.

2.3 Testing

We only need very little from testing theory, namely testing a vector to be zero.
Let the observed n-vector be c. We want to test the null-hypothesis Ho : o, = 0,
that the mean g, of the vector ¢ is zero against the alternative hypothesis H, : pu, #
0 that the mean is not zero. For the test we need the distribution of ¢|Ho of the
vector, provided the hypothesis Hy holds. In case we can assume ¢|Ho ~ N(0, X¢.)
with a full rank covariance matrix, we obtain the test optimal statistic (cf. [27])

T= cTZ‘C_clc ~ Xﬁ
If rank(X..) = r < d then we obtain the test statistic

T = cTZ‘j'cc ~ Xf
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The test compares the test statistic T' with a critical value. Specifying a (smaller)
significance number « or a (large) significance level S = 1 — o one uses the 1 — a-
percentile of the distribution of the test statistic as critical value. If

T > X%,lfa

then we may reject Hy. Thus there is reason to assume that the difference of ¢ from 0
cannot be explained by random errors, leading to deviations of ¢ from 0. Otherwise,
Hj cannot be rejected, i. e. there is no reason to assume Hy to be incorrect. This
does not say, Hy is accepted, as other hypotheses Ho; might be valid, which are not
tested for.

3 Geometric Relations

3.1 Representations

We represent all geometric entities and transformations with homogeneous vectors
or matrices.
Points x and lines 1 in 2D are 3-vectors

u 1 a l1 !

x=|v| =]z :[:EO] and I=|b| = |10 :[h]
2 =2 zh — = lo
w T3 c l

resp.

Sometimes it is useful to distinguish the Euclidean part, indexed 0, and the ho-
mogeneous part, indexed h of a vector or a matrix (cf. [3]): In case the homogeneous
part is normalized to 1, the Euclidean part can be interpreted metrically. In case
the homogeneous part of a geometric entity is zero, the entity is at infinity.

Analogous, in 3D points X and planes A are represented with 4-vectors

U X1 A A
_ Vv _ X [ Xo _ B _ Ao _ A
X‘E_ﬁ_[&] and A‘Q‘ﬁ_[%]'
T X4 D Ay

3D-lines L are represented with so-called Pliicker coordinates
o= 2]

where the first 3-vector Lj, is the direction of the line and the second 3-vector Lg
is the normal on the plane through the line and the origin, such that the three
vectors Ly, Lo and the normal from the origin onto the 3D-line span a right handed
orthogonal coordinate system. Any 6-vector fulfilling the so-called Pliicker constraint

LiLo=0
represents a 3D-line.

Each geometric element g has a dual, denoted by g. Vise versa, g is the dual of
g, thusg=g.
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In 2D the dual X of a point x is the line [u,v,w]" with the same coordinates,
and vice versa, the dual I of a line 1 is the point [a, b, c]’ with the same coordinates:

i:lgx Izlgl

In 3D the dual X of a point X is the plane [U, V, W, T]" with the same coordi-
nates, and vice versa, the dual A of a plane A is the point [A4, B,C, D]" with the
same coordinates:

X=1sX A=14A.

The dual L of a 3D-line L = (L}, Lo)" is the 3D-line (LJ, L])T with the homo-
geneous and the Euclidean part exchanged:

= _ Ly
E-oir- 2]

o
Do = [,3 : ] .

Remark: This representation of 3D-entities is consistent with the geometric al-
gebra G4 (cf. [22]) when using the bases (e1, e2, €3, e4) for 3D-points, (e41, €42, €43,
€23, es1,e12) for 3D-lines and (e234, €314, €124, €321) for planes, which can be easily
verified with the GA-package of Ashdown [1].

with the dualizing matrix

Representation and Visualization of the Uncertainty of Geometric
Entities

All homogenous vectors and matrices involved will get a covariance matrix attached
to it. Thus we obtain the pairs

(E: Emm) ) (l: zlll) ) (Xa EXX) ) (L: ELL) 3 (A, Z‘XX) (36)

for points and lines in 2D and for points, lines and planes in 3D. We will later also
transfer this representation to transformation matrices.

The uncertainty of the geometric entities can be visualized by the confidence
regions. In fig. 3 we already draw confidence regions for 2D-points, being ellipses, and
2D-lines, being hyperbola, namely the set of all one-dimensional confidence regions
of points sitting on the line. They directly transfer to 3D-points, being ellipsoids, and
planes, being hypeboloids of two sheets, cf. fig. 8. The situation is more complicated
for 3D-lines. The set of confidence ellipses of the 3D-points sitting on the 3D-line,
measured across the line, yields a shape as in fig. 9 left. It has different minima in
different planes through the line, thus in general is no hyperboloid of one sheet and
is closely related to the ray configuration of an astigmatism.

3.2 Constructions
Constructions in 2D

Geometric entities easily can be constructed from given ones.
(1) A 2D line 1 joining two points x and y is given by
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i
i

.

Fig. 8. Confidence regions for a 3D-point and a plane. The hyperboloid of two
sheets is the set of the 1D-confidence regions of all points in the plane measured
across the plane.

tangential image sagittal image
(focal line) (focal line)

principal ray
tangential plane

saggital plane

optical system paraxial
object point focal plane

Fig. 9. Confidence region for a 3D-line (left): It is the set of the 2D-confidence
regions of all points on the 3D-line measured across the line. Compare the structure
of the iso-surface with the structure of the bundle of rays for astigmatism (right,
after http://www.mellesgriot.com/): In case the 3D-line only is uncertain in direction,
in general there are two points, where the elliptic confidence region degenerates to
a straight line segment, corresponding to the two focal lines of an astigmatism.
However, the straight line segments need not be perpendicular, whereas the two
focal lines are.

‘l:x/\y:—y/\x: l=xxy=S(x)y=—S(y)x‘ (37)

Herein, we used the Jacobians

5(x)=‘9(’37;” and S(y)z%

and the skew symmetric matrices of a 3-vector, denoted by
0 —T3 I2
Sx)=S:=[x]x =] z3 0 —z1| . (38)

—T2 T1 0

This representation of constructions as matrix-vector products is given ex-
plicitely for the most important constructions in 2D and 3D and very useful for
statistical error propagation.
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(2) The 2D-point x being the intersection of two lines 1 and m is given by

‘x:lﬂm:—mﬂl: x:lmeS(l)m:—S(m)l‘ (39)

Here the Jacobians are

9(1 x m)
Om

The constructions are collected in table 1

O(m x 1)

SM) = a1

and S(m) =

As the expressions for constructions are bilinear we easily can find the covariance
matrix of the generated elements. Therefore, we always give the two expressions

c=U(a)b =V(b)a (40)
for the bilinear form, where the matrices

Oc dc
U(a) = — d V(b) = —
(a)=5, an (b) =24
are the Jacobians of ¢ with respect to b and a resp. They are used to determine
a first order approximation of the covariance matrix X.. of ¢, in case a and b are
given together with their covariance matrices X,, and Xpp:

e 22 2] [0

or
3o = U(a) ZpU(a)" 4+ V(b)X.uV(b)" + U(a) ZpV(b)" + V(b)X,,U(a)"

allowing the given entities to be statistically dependent.

For example, from column 3 in table 1 one easily can read out the Jacobians
being the matrices in the bilinear forms, e. g. for the intersection point x we have
Ox/0m = S(1) and 0x/01 = —S(m), cf. after (39).

Table 1. Construction of new 2D geometric entities. The structure of the matrix
S is given in eq. (38). All forms are linear in the coordinates of the given entities
allowing simple error propagation.

y X |
X I
m
new entity|algebraic construction| eq.
I=xAy|1=S(x)y =-S(y)x |(37)
x=1Nm|x=S1)m = —S(m)1|{(39)
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Constructions in 3D

Here we mention six different cases, which we give without proof.
(1) A 3D-line L joining two 3D-points X and Y is given by

_ _ v _ | XYoo —-YiXo| _ _
L_X/\Y_—Y/\X.L_[ XY ]_W(X)Y_ T(Y)X| (42)
Here the Jacobians are
_0(XAY) _0(Y AX)
mM(X) = vy and Tm(Y) = —ox

or explicitely e. g.

Xs 0 0 |—X1
0 Xy 0 |—Xo
Xnls —Xo _ 0 0 X4 |—X3
[S(Xo) 0 ]_ 0 —X3 Xa2| 0
X3 0 —X3| O
X2 X5 0 0

M(X) =
6x4

(43)

(2) A 3-line L as the intersection of two planes A and B is given by

_ _ . _ Ah X Bh 7T 7T
L=ANnB=-BNA:L= [AoBh —BoAh] =TI(A)B=-TI(B)A| (44)
Here the Jacobians are
= _0(ANnB) = _0BNA)
TT(A) = B and T(B) = oA
or explicitely
= _ _|S(Ar) O
TT(A) = D6TT(A) = [ Aol _Ah] . (45)

Observe, we might have obtained L = TT(A)B from L = TT(X)Y using dualing,
using A = X and B = Y, namely L = TTI(X)Y = D¢L = TT(A)B, and noting
D¢ = Dg'.

Remark: The letter ' P’ in the name ' Pi’ of the Greek capital letter TT indicates
this matrix referring to points and planes.

(3) 3D-point X as intersection of the 3D-line L and the plane A from

Lo x A + AogLy,

X=LNA=ANL:X= ]:FT(L)X='ITT(X)L (46)

—L}A,
The Jacobians are
T _ 8(AﬂL) T B 8(L /\A) - Aols —S(Ah)
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Explicitely we have the Pliicker matrix of the line L

0 Le¢ —Ls|—ILy

_[-S(Lo) —Ln] _|—Le 0 L4 |—L
r(L)_[ Ly 0 | | Ls —Ls 0 |—Ls
Li L Ls| 0

(47)

One can show that the Plicker-matrix of the line L = X AY is the skew-
symmetric form having rank 2

ML) =MXAY)=XY' —YX'. (48)

Remark: The Greek letter I is the mirror of L and indicates it refers to 3D-lines.

(4) Dually, we obtain the plane A joining a 3D-line L and a 3D-point X is given
by

A=LAX=XAL:A= |EnXXotXnlo| _F iy T (x)L| (49)
_L()XO
with the Jacobians
=T . 9(ANL) =T, ., _ OLNA) [=5(Xo) Xul]
and the dual Pliicker-matrix of the 3D-line L
= — [=S(Lx) -L
rw =@ = | 5 ] (50)
0

One can show, the dual Plicker-matrix of the line L = A NB is the skew-symmetric
form of rank 2

T(L)=T(ANB)=AB' —BA". (51)

(5) and (6) Finally we obtain the plane A joining three points X, Y and Z from

[A=XAYAZ=(XAY)AZ] (52)

and the point X as the intersection of three planes A, B and C from

[ X=ANBNC=(ANB)NC| (53)

with similar expressions by cyclic exchange of the geometric entities.

The following tables collects these 6 cases. Observe the similarity in the repre-
sentation with the operators of the Grassman-Cayley algebra and the ease of reading
out the Jacobians for statistical error propagation.
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Table 2. Construction of new 3D geometric entities. The matrices TT, TT, [ and T
are given in egs. (43), (45), (47) and (50) resp. All forms are linear in the coordinates
of the given entities making error propagation easy.

D
R

P
P

>

7

/\

new entity algebraic construction eq.
L=XAY=-YAX L=TI(X)Y = —TTI(Y)X (42)
L=ANB=-BnA L=T(A)B=-TI(B)A (44)
X=LNA=ANL X =" (L)A=TT(A)L (46)
A=LAX=XAL A=T (L)X =T (X)L (49)
A=XAYAZ T (T(X)Y)Z =T (TT(Y)Z)X =T (TT(Z)X)Y|(52)
X=ANBNC T'(TT(A)B)C =T (T(B)C)A =T (TT(C)A)B|(53)

Constructions Containing Mappings

Geometric entities also can be generated by transformations. Table 3 collects the
most important ones useful in geometric reasoning in Computer Vision.

2D-homography H for 2D-points (1) and 2D-lines (2)
3D-homography H for 3D-points (3), planes (4) and 3D-lines (5)
projection P of 3D-points (6) and Q of 3D-lines (7) into an image yielding 2D-
points and 2D-lines

e back-projection of image points (8) and lines (9) yielding projection rays (3D-
lines) and projection planes

e 2D-2D-correlation F (10) for mapping a point of one image to a line in the other,
knowing the epipolar geometry, or the relative orientation via the fundamental
matrix F, used in the epipolar constraint x'' Fx" = 0.

All mappings are bilinear in the given geometric entity and the transformation
matrix. Therefore again we give two relations, making the individual Jacobians
explicit, which are necessary for statistical error propagation.

The table needs some explanations:
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Table 3. Mappings. 2D- and 3D-homographies H for points, homography H;, for
space lines, projection matrices P and Q for points and lines. Projection ray L
and projection plane A;. Fundamental matrix F = Fq2 for coplanarity constraint

x'"Fx" =0
# |mapping relation 1 |relation 2
1 (2D homography x' = Hx x =(l3®x" )vec(H")
2 F'=HTl [I'=(U3x1)vec(H ™)
3 |3D homography X' =HX [X'=(l4®X" )vec(H")
4 A'=H TA|A' = (I5® AT)vec(H™ ")
5 L' =H L |L' = (/¢ ®L")vec(H])
6 [2D-3D projection ¥ =PX [¥ =(l3®@X")vec(P")
7 I =QL I'=(l3 @ L")vec(Q")
8 |3D-2D back-projection| Ay = PTl' [A; = (I'7 ® l4)vec(PT)
9 Ly =Q x |Ly = (x'T ® Dg)vec(QT)
10{2D-2D correlation "=F'x [I"=(x""®Is3)vec(F")

1. We use the vec-operator to represent uncertain homogeneous matrices as uncer-

tain homogeneous vectors, e. g.
h = vec(H")
Thus we might want to work with the pairs

(h: Ehh) ) (hL: EthL) ) (Ea EPP) )

of uncertain transformations collected in table 3.

. We use the Kronecker product, the vec-operator and the rule vec(Ab) = (b’ ®
I)vecA = vec(b"AT) = (I®b" )vec(AT) we can express the result x’ of the 2D-2D
homography as a function of the vector h = vec(H").We obtain

(37 EQQ) 3 (L Eff) .

x =Hx=(l3®x")h

Is is useful for deriving the covariance matrix of the transformed point x’' in
case the covariance matrices X,, and X} of the point x and of the elements
h of H are known

Xty = HEMDHT + (I3 ® XT)Ehh(Is ® X)

in this special case assuming statistical independence of x and H.

. If we want to derive the covariance matrix of transformed 2D-lines, we need
covariance matrix of the transposed inverse M = H~T. This can easily be derived:
From HH™' = | we have dH H™' + H dH™" = 0 thus M" dH MT +dM"™ = 0
therefore with m = vec(MT) = vec(H ) we obtain (M ® M")dh +dm = 0. The
covariance matrix of m therefore is

Xm = M@MN X (M@ MT)

Finally we obtain the covariance matrix of the transformed lines
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S =H T EHT 4+ (1301 Znm (I ®1)
or only in terms of the given values
S =H T H T + (H ' ® IIT)Zhh(H_l ®l)

The 3D-line transformation is not made explicit in the table.

Starting from the transformation X' = HX of 3D-points X, one obtains an ex-
pression for the transformation matrix Hy, for 3D-lines in terms of their Plicker
coordinates

L'=Hy L= (I6 ® LT)vec(HE) (54)

with the transformation matrix (cf. appendix)
1
Hr = EJ}L(H ®H)JrL

using the 16 x 6-Jacobian

Jr = dvec('(L))
16x6 oL

which via L = 1J7; vec(I'(L)) maps the columns of the Pliicker-matrix to the
Pliicker coordinates.

With the Jacobian of the transformed line with respect to the elements h of the
transformation matrix (cf. appendix)

oL’
oh
we obtain the covariance matrix of the transformed line from statistical error
propagation:

Jun =0 = S ha (s @ (FLHT — HIT (1))

Yo = JL/hEth-lr/h + HLELLHE .

Finally we discuss how to derive the covariance matrix of the projection matrix
for space lines Q from the covariance matrix of the projection matrix for space
points P. The projection matrix P for points and its elements row-wise are

AT A
P =BT =vec(P)= | B
3x4 cT 12I:<1 (P C

with the coordinate planes A, B and C of the camera coordinate system, inter-
secting in the projection center Z. The corresponding projection matrix Q for
3D-lines and its elements row-wise are given by

(BAC)" BAC
Q =|(CAA)T q =vec(Q)=|CAA
3x6 (AAB)T 18x1 AAB

with the dual lines BN C, CN A, and A N B of the coordinate axes fo the
camera system.
Therefore
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. XBNC

z
ANB %‘ﬂ oy
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Fig. 10. Single image geometry. Rows of P are coordinate planes, rows of Q are duals
of coordinate axes of the camera coordinate system ( °X, °Y, °Z). The projection
ray L, = DsQ"x’ and the projection plane A; = PT1' can be determined directly
from the image entities using the projection matrices (cf. [11], [18]).

0 -TI(C) TI(B)
Jp =| T(C) 0 -—TI(A)
18x12 | _TI(B) TI(A) O

and thus the covariance matrix of q of the elements of the projection matrix Q
for lines reads as

Ygq = JquppJqu : (55)
In case the projection center of the image is denoted with Z we have
L,=DQ x =Q ¥ =QPX=T(Z)X=ZAX

as the projection line L is the join of projection center with the 3D-point, thus
independent on the other parts of the orientation. Thus

QP=TI(Z).

3.3 Constraints
Constraints Between Geometric Entities in 2D

The incidence of a 2D-point and a 2D-line can be checked using

Tl lT !

c=xX x=0

which should vanish. The identity of two points or two lines can be checked using
the 3-vectors

c =S(x)y = -S(y)x Z0 or ¢ =S()m = —S(m)l 20
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which should vanish in the case of identity. The reasoning behind this type of con-
straint is: in case two points are identical the generating line x x y is not defined,
similarly, in case two lines are identical, the intersection point 1 X m is not defined.

Observe, these are three constraints, but only two of them are independent,
as the skew symmetric matrices have rank 2. One may select those two constraints
(m, n) where the entry Sy, in the skew symmetric matrices is largest absolute value.
Then the independence of the selected constraints is guaranteed. This leads to a set
of reduced constraints, e. g.:

[r] e DT m=1,n=2 | 0 —x3 =2 y1
e =|"TG7|Sx) y=—| GT|Sx " = N y2 | (56)
€n €y z3 0 T
Y3
N———
ST (x)

which are linearly independent, except for points x at infinity, thus in case x3 # 0.
Table 3.3 collects the three cases mentioned.

Table 4. Relationships between points and lines useful for 2D grouping, together
with the degree of freedom and the essential part of the test statistic. The bullet in
the last column indicates, that a selection may be performed.

[No.| 2D-entities [relation|dof]test |select. ||
1| pointsx,y |x=y | 2 |[c=S(x)y = -S(y)x| e
2|point x, linel| xel |1 ]|c=x"1=1"x
3| linesllm [1=m |2 |c=S51)m=—-S(m)l| e

Constraints Between Geometric Entities in 3D

In a similar manner one may construct constraints for geometric relations between
3D entities collected in table 3.3, except for the following cases:

7. The identity of two lines L and M can be checked using the interpretation of
the rows or columns of the Pliicker-matrix and their dual: the rows and columns
of T'(L) are the intersection points of L with the coordinate planes 654) and the
rows and columns of T(L) are the planes parallel to the coordinate axes. As the
intersection points of L with the coordinate planes lie on the planes through
M parallel to the coordinate axes, in case L = M the product C = T(L)[(M)
must vanish.

8. The incidence of two lines L and M can be checked by assuming L = X AY
and M = ZAT. Then |X,Y,Z,T| = “L'M=0 only if the four points are
coplanar.
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Also here selection of constraints can be performed (numbers refer to rows in table

3.3):

4., 10. From the 6 constraints only 3 are independent. One can select those 3 constraints
where the largest element occurs in the matrices TT(X) or TT(A).

5., 9. From the 4 constraints only 2 are independent. One can select those 2 constraints
where the largest element occurs in the matrices T(L) or [(L). The selection

transfers to the corresponding matrices ﬁT() and TT7 (")
7. From the 16 constraints only 4 are independent. They can be selected by taking
the largest element of T(L) with index (m,n) and the largest element of [(M)
with index (k,!) and check the entries {(m, k), (m,1), (n, k), (n,1)}

of C.

Table 5. Relationships between points, lines and planes useful for 3D grouping,
together with the degree of freedom and the essential part of the test statistic. The
bullet in the last column indicates the possibility for the selection of independent

constraints.

L A
X oY
X

-V

INo.]  3D-entities relation [dof|test |select. ]

4| points X, Y X=Y |[3|C=TIX)Y=-TI(Y)X| o

5/ point X, lineL | XeL |2|Cc=TT(X)L=T (L)X | e
6|point X, plane A| X e A [1[c=XTA=ATX

7| lines L, M L=M |4 |C=T(L)[(M) o

8 LOM#0 |1 |c=T'M=M'L

9| lineL,plane A | Le A [2[|[C=TT"(A)L=I"(L)A

10| planes A, B A=B 3|C=T(A)B=-TI(B)A

Constraints Containing Mappings

We now easily can derive arbitrary constraints containing mappings. As an example,

the constraint

c=x xHx=

S(x")Hx =

—S(Hx)x' = (S(x')®x")h =0

would require the mapped point Hx to be identical to x’. The fifth expression uses

h = vec(H").
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Observe, the expression for c is trilinear, here in x, in H and in x’. Therefore we
give three different expressions making the Jacobians of ¢ with respect to the three
generating entities explicit:

Oc , oc _ @_
% = 2(H, e = o(Hx), h =

Other constraints easily can be found by combining the relations given in the
tables. Observe, the constraints involving the mappings with Hz and Q for 3D-lines
are not linear in the corresponding mappings H and P for 3D-points. This leads to
more involving expressions.

The tests involving mappings from 3D to 2D can be read in two ways: testing
incidence in the image or testing incidence in space. As the constraint is the same,
both tests lead to the same result. As an example, take the incidence test of a space
point X and image line I'. It reads as ¢ = 1"PX. If we take the predicted point to
be x;, = PX and the projection plane to be A; = PTI’ then the constraint can be
written as

S(xYex'.

c=1I"x,=0 or c=AlX=0.
which explicitely shows the equivalence of testing the relation in image and 3D-
space. Actually, the relation for the projection plane has been derived from this
identity.

Comments: The essence of the constructions and constraints have been published
at many places, e. g. [33]. They have also been given in [25]. They can also been
found in [18]. The tables in the appendix of [35] give all constructions explicitely,
even for elements in IP°. The representation chosen here, initially given in [15], allows
to easy remember the relations and explicitly have the corresponding Jacobians
available. For space limitations we did not give the relations for geometric entities
to be orthogonal or parallel, werefer to [15].

3.4 Testing Uncertain Geometric Relations

We directly use the mentioned constraints for statistical testing. The idea is to test
the c-quantities in tables 3.3 and 3.3 having different dimensions. In case the relation
holds they should be zero, thus formally, the null-hypothesis Ho : ¢ = 0 is tested
versus the alternative H, : ¢ # 0.

The generic procedure is the following:

1. Determine the difference ¢, using one of the two equations in column 5 in table
3.3o0r3.3

2. If necessary, select independent constraints leading to the reduced vector of
differences ¢’. The number of independent constraints is the degree of freedom,
cf. column 4. The selection is different for the individual tests and indicated in
column 6 where necessary.

3. Determine the covariance matrix of the difference ¢ or the reduced difference
¢ using error propagation (41) and the two Jacobians from table 3.3 or 3.3
in column 5, possibly taking the selection into account. The Jacobians can be
taken from these equations all having the structure of eq. (40).

4. Determine the test statistic T

o2 T
T = o-_é2 NX? or T:C’ Eclilc’ NX: (57)
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being x31- or x2-distributed, the degrees of freedom 7 given in column 4 of tables
3.3 and 3.3.

5. Choose a significance number o and compare T with the critical value x?,l_a- If
T> X3,1—a then the hypothesis that the spatial relation holds can be rejected.

The proposed error propagation in step 3 using (41) is simple; but it only holds
approzimately, in case the tested relation is not fulfilled.

The reason is, that the Jacobians of the bilinear relations are not consistent, as
they depend on the observed entities, not on the true or unbiased estimated entities
as required in (3), p. 6.

A rigorous procedure would be to first impose the constraints of the relation
onto the two observed entities using the estimation procedure of sect. 2.2, p.16 and
test the estimated variance factor 2. This approach has been taken by Kanatani
[25].

In case the test is not rejected, the covariance matrix of the differences, however,
is a very good approximation. It depends on the rigor needed, when applying statis-
tical tests on geometric relations. As the assumed variances of the initial geometric
entities will not be more precise than 10 or 20 %, at the best, the test statistic
also will have this uncertainty. In most applications this paper is motivated by, the
tests will be used for deleting erroneous correspondences or for controlling search in
grouping processes. Especially in the latter application the monotonicity of the test
statistic with respect to the rigorous one is essential. We will discuss this problem
below.

An Example for Testing

We want to demonstrate the test procedure for the point-line incidence. Let the
3D-line L and the 3D-point X be given by:

L=1[3,0,0,0,3,-3]" X=[1,1,1,-1]"

The line is parallel to the X-axis and passes through the point [0, 1, 1]T. The 3D-point
has the Euclidean coordinates [—1, —1, —1]". The distance of X and L therefore is
dxr = 2v/2 ~ 2.8. For demonstration purposes we assume the covariance matrices
to be a multiple of the unit matrix:

X =4lg Yxx =4

This the standard deviations of the homogeneous point coordinates are 1, thus the
standard deviations of the Euclidean coordinates are larger than 1, which could be
verified by applying error propagation to X = U/W etc. The line has a similar
precision in the vicinity of the origin of the coordinate system, however, a very large
uncertainty in direction. This could be verified by intersecting the line with the
planes X = 0 and X = —1, being parallel to the Y Z-plane, and determining the
standard deviations of the Y- and Z-coordinate of the intersection points. Thus we
can expect the distance of 2.8 not to be significant.
We now follow the above mentioned steps:

1. The difference ¢ is



34 Wolfgang Forstner

00 0 O 1
=T 00 -33 1
e=TMX=153 ¢ 3|1
0-33 0 -1
3
01 -1-10 0 0 0
=T -10 1 0-10 0 -6
STTEXL=1 1 1000 -1]|o]| |6
0 0 0 -1-1-1 3 0
-3
2. We select rows 3 and 4, as Ls = —3 does not vanish (We could have taken rows

2 and 3 or rows 2 and 4 also.). Thus we obtain the reduced vector

0
¢ = RTem elMT e 00107 6| _T6
T T et looo1f| 6| [0
0
with the reduction matrix R" = [eg‘l), ef)].
3. The covariance matrix of ¢’ is obtained from
Yoo =RT (FT(L)EXXF(L) +7 ﬁT(x)ELLﬁ(X)) R= [E% gg]

4. The test statistic is 9216
T=¢ 3¢ ="2~122
€ See® T 175
It is x3-distributed.
5. We choose a significance number o = 0.05. The critical value is x2,1—o = 5.99.
As T is smaller than the critical value, we have no reason to reject the hypothesis,

that the point X sits on the line L.

An Example for Setting up the Estimation

We want to demonstrate the use of the mentioned relations for the estimation task
in fig. 2 right, p.2. We assume the orientation of the images to be given. Here we
only need the 4 projection matrices Q;, for space lines.

We have N = 12 observations, namely the 4 homogeneous 3-vectors of the image
points x’ and lines 1 in the four images and and U = 6 unknown for the Pliicker
coordinates Ls of the 3D-line. Thus, referring to the Gauss-Helmert model, we have
the vector [ of the observations and the vector @ of the unknown parameters:

’
X11
i
52
I = ’ T =L5 -
12x1 Xo3 6x1

I
54

There are 2 constraints for the measured image points and 2 x 2 = 4 independent
constraints for the observed image lines, using the reduced skew symmetric matrices
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SI1(.) (cf. (56)), altogether yielding 6 constraints g between the observations and the
unknown parameters. Moreover we have 2 constraints h on the unknown parameters,
namely the length constraint and the Pliicker constraint on Ls. Thus we obtain the
Gauss-Helmert model for this estimation task, where all relations should hold for
the fitted, i. e. estimated values:

[3‘;’11—1Q1L5 L ( T )
st ( ’52)Q2L5 3 (LsLs —1

l,m = =0 h(x) = — =
g(6><1 ) x33QsLs 2(><1) %L;L

SII(154)QqLs

The three Jacobians A, B and H, for solving for the ML-estimates using the Gauf}-
Helmert model, can easily be derived using the tables given above. The initial so-
lution #© for = Ls can be obtained from the right eigenvector of A. Then the
Jacobians can be evaluated at approximate values. In the first iteration one uses
/lw) = 1 and the initial solution Z*. In the following iterations the Jacobians have
to be evaluated at the fitted observations and unknown parameters in order to avoid
bias and the necessity to renormalize (cf. [24]). The redundancy of the system is
R=G+H—-U =6+2—6 = 2. Obviously the setup can directly be transferred to
the other two problems shown in figs. 1 and 2.

4 Conditioning and Normalization

There are three reasons why a blind use of the approach described so far may
lead to problems: (1) entries in the homogeneous vectors or matrices with highly
different orders of magnitude lead to numerical instability, (2) when testing extreme
deviations from the null-hypothesis leads to wrong test statistics, and (3) large
deviations from the null-hypothesis may lead to test statistics which do not increase
monotonically with the geometric distance of the involved entities.

These problems can be cured by conditioning and normalization:

1. Conditioning, as the name indicates, aims at improving the condition numbers
of the matrices in concern. It is achieved by centering and scaling the data
such that the Euclidean coordinates of points are in the range [—k, +k|. Hartley
[17]? proposed k = 1. The monotonicity of the test statistic with the geometric
distance is guaranteed when choosing k < 1, e. g. kK =1/3, cf. [23].

2. Normalization effects at least the covariance matrix of uncertain homogeneous
entities. It imposes the constraints on the length of the complete vector or on
the Euclidean part of the vector. Thus for some uncertain homogeneous vector
x = (z,,x,)" with Euclidean part x, and homogenous part o we have the
constraint (cf. [23])

x| =[x| or |&,|=|®al.

In addition we might have the Pliicker constraint L'L = 0 for 3D-lines or the
singularity constraint |F| = 0 for the fundamental matrix. When imposing these
constraints the resulting covariance matrix can be determined from (35), p. 19.
Kanatani [25] applied the Euclidean normalization together with a scaling to of
the Euclidean part of points to 1.

2 calling this procedure normalization
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5 Conclusions

The paper discussed (1) an approach for uncertain geometric reasoning, which tries
to keep as close to algebraic projective geometry as possible and (2) a generic esti-
mation scheme for uncertain geometric entities and transformation which can handle
any number of constraints. Though the various ingredients are well known, build-
ing a software system is simplified by using the presented representations, both, in
geometry and statistics.

The basic idea behind the approach is to exploit the multi-linearity of all geo-
metric constructions and constraints. As these multi-linearities are to be found also
in all variations of geometric algebra, e. g. the conformal geometric algebra [32],
it appears to be feasible to reformulate the geometric expressions in terms of co-
ordinate vectors with a covariance matrix attached to it, and thus to extend the
approach to a much wider field than projective geometry.

6 Appendix

Uncertainty of Tranformed 3D-Lines

Starting from the transformation X’ = HX of 3D-points X, we observe
M(L') = HI(L)H" (58)

as HXYT — YXT)HT = X'Y'T — Y'X'T = ['(L'). This shows, the transformation
of lines is quadratic in the entries of the transformation matrix H for points.

We now first derive an expression for the transformation matrix Hz for 3D-
lines in terms of their Pliicker coordinates L' = HrL, and then derive the the
Jacobians which are necessary to derive the covariance matrix of the transformed
line L' The transformation (58) may be written in terms of the elements of (L)
vec(l(L')) = (H ® H)vec([(L)) containing the Pliicker coordinates of the lines. We
now map the 16 values of vec(I'(L)) to the 6-Pliicker-vector L using the 16 x 6-
Jacobian iIﬁp% = Ovec(['(L))/OL. Then we have

X

L= %J}Lvec(r(L)) and  veo(T(L)) = JroL (59)
and obtain the transformation
L' =Hy L = (l¢ ® L")vec(HL) (60)

with the 6 x 6-transformation matrix for 3D-lines Hy = %J}L(H ® H)Jrr. We now
want to determine the Jacobians J.r;, = OL'/0h. We start from the differential of
M(L') in (58) dI(L') = dHI(L)HT 4+ HI(dL)H" + HI(L)dH". With (59) we obtain

1
dL' = iJ}L vec(dr(L'))
1 1 1
= 3Je(a @ T(LH)dh + ZJFL(H @ H)Jrs dL + 5 J71 (s ® HT(L))dh

1 1
= 3JFL(la ® ((WHT —HIT(L))) dh+ S JFo(H © H)Jr. dL

~ /
-~ -

Jpm Jpip=Hg
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or short

dL' = Jppdh+HpdL  with  Jpp, = %J}L(u ® (ML)H" — HI'(L)))

which we can use for statistical error propagation:

X = JLIhEthE/h + HLELLH}:
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