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Abstract. ! The paper discusses the notion scale within geosciences.
The high complexity of the developed models and the wide range of
participating disciplines goes along with different notions of scale used
during data acquisition and model building. The paper collects the dif-
ferent notions of scale shows the close relations between the different
notions: map scale, resolution, window size, averqage wavelength, level
of aggregation, level of abstraction. Finally the problem of identifying
scale in models is discussed. A synopsis of the continuous measures for
scale links the different notions.

1 Preface

The notion scale regularly is used in geosciences referring to the large variety of
size in space and time of events, phenomena, patterns or even notions.

This paper is motivated by the diversity of notions of scale and the diversity
of problems related to scale which hinder a seamless communication among
geoscientists. The problem is of scientific value as any formalization establishing
progress needs to clarify the relation between old and new terms used.

Each notion of scale is model related as it is just another parameter and as
nature is silent and does not tell us its internal model. The notion scale therefore
only seemingly refers to objects, phenomena or patterns in reality. Actually it
refers to models of these objects, phenomena or patterns and to data acquired
to establish or prove models about objects, phenomena or patterns.

Each formalized model needs to adequately reflect the phenomena in con-
cern, thus a mathematical model used in geoscience has no value in its own.
The diversity of notions of scale therefore is no indication of conflicting models
but of different views of reality. Integrating or even fusing models of the same
phenomenon but referring to different notions of scale requires a very careful
analysis of the used notion scale.

As there is no a priory notion of scale, integrating models with different
notions of scale may result in new models with a new notion of scale, only being
equivalent to the old notions in special cases. This effect is nothing new and well
known in physics, where e.g. the transition from the deterministic Newtonian
model of gravity to the probabilistic model of quantum physics lead to new
notions of space and time.
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We distinguish two notions of the term model:

1. model of the first type: The notion model may mean a general model, e.g.
a mathematical model, a law of nature, thus refer to a class of phenomena,
such as the models in physics. This type of model is denoted as model of the
first type or mathematical or generic model, depending on the context.

2. model of the second type: the notion model may mean a description of a
phenomenon being in some way similar to reality, thus refer to a specific
phenomenon, such as a digital elevation model. This type of model is denoted
as model of the second type or specific model.

Modeling means building a model. It therefore also has two meanings: building
a model of the first type, thus finding or combining rules, relations or law of
natures, e. g. when specifying a process model; and building a model of the second
type, thus developing a description of a situation, e.g. the layered structure of
sediments in a certain area.

Scale may directly appear in general models models, e.g. a wavelength. It
seems not to appear in descriptions, thus models of the second type, e.g. in a
digital elevation model consisting of a set of points z(z;,y;). However, it appears
in the structures used for describing a phenomenon or in parameters derived
from the descriptions, e.g. the point density of the points of a digital elevation
model.

As the notion scale is model related we describe the different notions of scale
as they are used in the different steps of modeling in geosciences and try to
show their mutual relations. The paper is meant to collect well known tools and
notions which may help mutual understanding within neighbored disciplines.
The paper tries to formalize the used notions as far as possible using a minimum
of mathematical tools.

We first want to discuss crisp and well defined notions of scale all referring to
observations. Later we will discuss notions which are semiformal or even without
an explicit numerical relation to the size of the object in concern, which how-
ever, are important in modeling structures. Finally we will discuss the problems
occurring with the notion scale in process models.

2 Continuous Measures of Scale

There exist a number of well definable continuous numerical measures of scale,
which we want to discuss first. They all describe data, thus models of the second
type. They refer to different notions of scale. But there are close functional
relationships, which we collect in a synopsis.

2.1 Scale in Maps

Scale in cartography certainly is the oldest notion. Other notions of scale can be
seen as generalizations of this basic notion. The reason is the strong tendency
of humans to visualize concepts in space, usually 2D space, e.g. using maps,
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sketches or in other graphical forms for easing understanding and communica-
tion.
Maps are specific models of reality and comparable to observations or data.
The map scale refers to the ratio of lengths I’ in the map to the corresponding
lengths [ in reality:

!

5= 1] )

It is a dimensionless quantity. A large scale map, e. g. 1 : 1,000 shows much detail,
a certain area in the map corresponds to a small detail in reality. Small scale
maps, e.g. 1 : 1,000,000 show few details, a certain area in the map corresponds
to a large area in reality.

The scale number

s=-1 @

behaves the opposite way.

In maps of the earth, e.g. topographic or geological maps, the scale is ap-
proximately constant only in small areas. This is due to the impossibility to map
the earths surface onto a plane with constant scale.

One therefore has to expect scale to vary from position to position. Therefore
scale in general is inhomogeneous over space . The spatial variation of scale may
be described by a scale function:

dl'(z',y")
di(z,y)

This implicitly assumes the ratio of lengths to be invariant to direction. This
invariance w. r. t. direction is called isotropy. Maps with isotropic scale behaviour
are called conformal. Conformal maps of a sphere can be realized and are called.
The Gauss-Kriiger-mapping and the stereographic mapping of the earth are
conformal, in contrast to the gnomonic mapping.

In general scale is not only inhomogeneous thus spatially varying but also
varies with the direction. Then scale is called anisotropic . The ratio of a small
length in the map to its corresponding length in reality then depends on the
direction «

s=s(a',y") =

dl'(«',y',a')
di(z,y,a)

e. g. the map of the geographical coordinates (A, ¢) directly into (z,y)-coordinates
by

s=s(z',y, ) =

=\ y=2ae

shows strong differences in scale in areas close to the poles as there the y-
coordinate overemphasizes the distance of points with the same latitude A (cf.
fig. 2 left).

The four possible cases are shown in fig. 1.
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Fig. 1. Homogeneous isotropic scale, homogeneous anisotropic scale, inhomogeneous
isotropic scale and inhomogeneous anisotropic scale

We will show how to formalize the concept of anisotropy and inhomogeneity
when discussing scale as window size during analysis.

Here we only want to mention the so-called indicatriz of Tissot (cf. (Tissot
1881 ), pp- 20 ff and (Snyder 1987 ), pp. 20): It is the image of a differentially
small circle. In the case of a mapping from one plane to another it can be
determined from the mapping equations

(-G

y' Y (z,y)
_ | 0z Oy

J(z,y) = 6_y’ 3_1//

thus the differentially local mapping (dz’,dy’)" = J(dzx,dy)" Then the differ-
entially small circle in the local (dz,dy)-coordinate system dz? + dy? = 1 is
mapped to the differentially small ellipse, namely Tissot’s indicatrix, in the lo-
cal (dz',dy’)-coordinate system

with the Jacobian

(@0’ @) T () =1

In case of map projections from a curved surface to plane or a curved surface
the equations are slightly different. Examples for this detailed scale analysis for
two classical map projections are shown in fig. 2.

We will observe inhomogeneity and anisotropy also when analyzing other
notions of scale and formalize the concept of anisotropy and inhomogeneity when
discussing scale as window size during analysis.

2.2 Resolution

Resolution often is used to refer to the scale of gridded data, representing
modelss, either in time or space. It refers to the smallest unit of discourse or the
least distinguishable unit.
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Fig.2. Map scale for three map projections with Tissot’s indicatrices indicat-
ing the local scale distortions. Left: equirectangular projection (anisotropic and
inhomogeneous). Middel: Hammers projection (anisotropic and inhomogeneous).
Right: Lambert conic conformal projection (isotropic and inhomogeneous), cf.
http://www.ftss.ilstu.edu/microcam/graphics.htm#tissot. [Datum]

It therefore also can be generalized to non spatial concepts, as e.g. when
resolving differences of species of plants during their classification.
Resolution of gridded data refers to the grid width in space and time:

Az [m] or At [s] (3)

The grid size Az standing also for Ay or Az in case of two-dimensional or
threed-imensional data. Resolution obviously has a dimension. High resolution
refers to small grid widths, low resolution to large grid widths.

This notion is also used in case of data given up to a certain digit, e.g. the
height 12.3m indicates the resolution to be Az = 1dm.

Resolution in case of gridded data often is linked to the envisaged application.
It often reflects the accuracy of the model behind the data or for which the data
are used.

This implicit assumption leads to confusion or even to severe errors in case
the meta information of the data, i.e. the purpose and the instrumentation of
the data acquisition is not known or given. The resolution, in the sense of the
last digit, therefore should reflect the underlying accuracy, 12.4km obviously not
saying the same as 12.40km or even 12.400km.

The sampling theorem inherently limits the reconstruction of the underlying
high resolution signal from sampled data. If the underlying signal is band-limited,
i.e. is smooth to some degree measured by the wavelength of the smallest detail,
the grid width should be adapted to the smallest detail, namely being not larger
than half the minimum wave length Amin/2. Practically one should take the
socalled Kell-factor K = 0.7 — 0.8 into account, which states that the grid size
should be KApin/2 in order to capture the smallest details, This especially is
important for signals with isolated undulations, which in case of homogeneous
sampling dictate the grid width.

Again resolution may be inhomogeneous and anisotropic:

Geological models (Siehl 1993 ) usually have a much higher resolution Az in
z-direction than in (z,y)-direction (Az, Ay) reflecting the different variability
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of the phenomena in planimetry and height. They are highly anisotropic. This
can also be seen from the usually small slope, i.e. the small height variations of
the terrain w. r. t. to the planar grid size.

On the other hand if the data are not given in a regular grid they may show
large differences in density e.g. where undulations in the surface are locally
higher. Binary, Quad- or octrees (Samet 1989 ) or triangular irregular networks
usually show a high degree of inhomogeneity .

2.3 Window Size for Smoothing

When characterizing phenomena by local features or properties being below the
minimum size they either are

1. of no interest or
2. aggregated from a higher resolution.

Therefore the window size used for determining local properties of a signal
often can be a measure for scale.

We want to take the example of smoothing to show one way of formalizing
inhomogeneity and anisotropy already discussed before and depicted in fig. 1.

Averaging all data within a neighborhood with a representative radius r leads
to a smoothed signal with an inherent scale r. Several weighting schemes are in
use: unit weight for all observations leads to a rectangular type window for one-
dimensional signals, or top box or cylindrical type window for two-dimensional
signals. In case points further away from the center of the window one might
use triangular ore bell-shaped weighting functions in 1D or cone-shaped or bell-
shaped weighting functions in 2D. We will derive a measure, denoted as

Oz [m] or Ot [S] (4)

in space or time signals, which is more suitable for describing the scale of a
window, as it refers to the average radius taking the weighting scheme into
account.

In case the window is given by the weighting function w(z) or the weights
w'(z) with the sum of all weights being 1, the scale can be computed from

Op = /$2 w(z) dr or Op = /ZwQ w' () (5)

depending on whether the window is continuous or discrete. Obviously the scale
corresponds to the standard deviation of the function when interpreted as a
probability density function.

When using a box filter , thus a filter with constant weight 1/r within a
window (—r/2,r/2) we obtain

L (6)
OBox = r
Bo: 12
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Fig. 3. Windows for one and two dimensional signals having the same width, thus
leading to the same scale during sampling. As smoothing with box-type and bell-
shaped windows with the same width leads to the same degree of smoothing, we obtain
the relation between resolution, representing a box-type window, and window-size.
Observe, the radius of the window, where the weight is non-zero is not a suitable
measure, as it theoretical would be infinite for Gaussian windows.

When using a Gaussian bell shaped weighting function G, (z) as filter the
scale is identical to the parameter o of the Gaussian function (cf. fig. 3, left).

In two dimensions the circular symmetric Gaussian is given by G, (x,y) =
G- ()G, (y) It can be represented by a circle with radius s. Usually a homo-
geneous weighting is used to derive smoothed versions of a signal, e.g. when
smoothing height or temperature data.

Inhomogeneous windowing can be achieved by spatially varying o (z,y). This
allows to preserve finer structures by locally applying weights with smaller win-
dows.

As soon as the window needs to be anisotropic, i.e. elliptic there is not one
scalar describing the local scale. In case of different scales in z- and y-direction
one may use the Gaussian: G, , (%,y) = G, (v) G, (y) which shows just to use
different window sizes in z- and y-direction. This type of anisotropic smoothing
only is adequate if the spatial structure is parallel to one of the two coordinate
systems. It can be represented by an ellipse Because the anisotropy usually is
not parallel to the reference coordinate system one in general needs a rotational
term.

This can be achieved by generalizing the scalar value of the scale to a 2x2
matrix X representing an ellipse: (z y)X ™" (z y)T = 1 which in case the scale
matrix X = Diag(o2,07) contains the squares of the scales in z-and y-direction
reduces to the special case above. Because of symmetry the scale matrix is defined
by three values:

1. the larger scale o
2. the smaller scale o4
3. the direction « in which the larger scale is valid

We then have
. 2 . T
_ [cosa —sina o; 0 cosa —sina (7)
sina cosa 0 o2 sina cos«

with the rotation matrix indicating the azimuth a of the most dominant scale.
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We now can explicitely represent anisotropic inhomogeneous scale by a spa-
tially varying scale matriz: X = X(z,y). This makes the visualization of the
different situations of inhomogeneity and anisotropy in fig. 1 objective.

y

2

Fig. 4. Left: An anisotropic Gaussian window. It may directly related to the local form
of a surface indicating its orientation and its two scales in the two principle directions.
Right: Parameters for descibing the anisotropic scale.

An example for an anisotropic window is given in fig. 4. Observe the form
to be similar to a small hill having different width in the principle directions
and not being oriented parallel to the coordinate system. This enables to link
the window size and form with the intended scale of the analysis, e.g. when
analyzing landforms.

2.4 Average Wavelength

The notion scale often is used to indicate the average size of objects or phenom-
ena in concern, both in space and time. Though the average size usually is not a
very precise value and depends on the crispness of the context the value as such
can be defined well and thus related to other concepts of scale.

In case we have onedimensional signals with a dominant wavelength we may
identify the scale of that signal with the average wavelength

A [m] or A [s] (8)

Fig. 5 and 6 show two simulated signals with dominant wavelength, one with
average wavelength A = 40 the other with A\ = 160.

As the wavelength A [m] or A [s] of a periodic signal z(z) or z(¢) is A =1/f,
where f [1/m] or f [Hz] is the frequency we could also average the frequency.
This should take the amplitudes of the periodic signals into account.

In case we take the quadratic mean, weight it with the squared magnitude
Z(f) of the amplitude spectrum?, thus with the power spectrum P, (f) = |Z(f)|?

? We use the Fourier transform F(u) = [ exp(—j2ruz)f(z)dz according to (Castleman
1996 ).
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Fig. 5. A signal with short wavelength, A = 40 (above) together with its amplitude
spectrum (below). It is a profile generated using an autoregressive process (cf. below
sect. 4.1). The amplitude spectrum shows two peaks, symmetric with respect to the
origin, which is in the middle of the graph. The distance between the peaks is large
(compared to the following figure) indicating a large frequency, thus a short wavelength.

(Castleman 1996) and normalize, we obtain the effective bandwidth (Ryan et al.
1980 ) assuming independent and homogeneous noise

T f2P.(f) df
I P.F) df

It can easily be derived from the original signal without performing a spectral
analysis:

1 o,
b=—
27 0,
where
1 N
o, = ) (z(m;) — p2)? and

=1

are the standard deviations of the signal and its derivative, assuming the mean
of the slope to be zero.
Thus we may derive an estimate for the signal internal scale, namely the
average wavelength from
— [o2%

=21

9

= ©)
This is intuitive, as a signal with given amplitude, thus given ¢,, has longer
average wavelength if it is less sloped. Of course this is only meaningful in case
there is a dominant wavelenth.
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Fig. 6. A signal with long wavelength, A = 160 (above) together with its amplitude
spectrum (below). It is a profile generated using an autoregressive process (cf. below).
The amplitude spectrum shows two peaks, symmetric with respect to the origin, which
is in the middle of the graph. The distance between the peaks is small (compared to
the previous figure) indicating a small frequency, thus a long wavelength.

For regularily spaced data we may determine the standard deviation of the
signal and the slope from:

1 N 1 N—d 2 2 2
= |— )2 U DU Zitd — Zid
0% = N—1;(z’ LS N—2d.§1< 2d >(10)
= =

showing no systematic error if N is large enough, say N > 40. One may need to
smooth the data before calculating the derivative. The distance d for calculating
the slope can be used to apply some (crude) smoothing.

For two-dimensional data z = z(x,y) we can also derive the data internal
scale , which now may be anisotropic, as we have discussed above. We obtain a
2x2-matrix for the average squared wavelength for two-dimensional data

A=4n2o2 3} (11)

22!

O'gz Oz,2
Ez’zl = (Uszy Uzyy)

containing the variances o7, and o2  of the slopes z, = 0z/0z and z, = 8z/0x
and their covariance o, .,. The wavelength in general will be anisotropic, thus
depend on the direction. The maximum and the minimum wavelength show in
two perpendicular directions. Their value results from the square-roots of the
eigenvalues of A. The direction of the largest wavelength can be determined in
analogy to (9) from

with the matrix

1 - _
o= 531]3112(2/112, A11 - Azg)
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being an inversion of (7).
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Fig. 7. Wavelengths and orientation estimated from an image of a ripple structure.
The derivatives are calculated similar to (10) with d = 5. The wavelength of the ripples
corresponds to the shorter diameter of the scale-ellipse. It locally is a bit larger, as it
has been calculated from the complete image shown.

As an example, the data inherent scale matrix has been calculated from the
ripple image fig. 7. The ellipse visualizes the scale in the different directions.
The diameters indicate the the estimated wavelength in that orientation. The
wavelength of the ripples is approximated by the shorter diameter, which appears
to be a fairly good approximation. The wavelength in the direction along the
ripples would only be infinity, in case the ripples would be perfectly straight,
thus the directional variation of the ripples leads to a finite, but long estimated
wavelength.

2.5 Smoothness

In contrast to the previous notions of scale which are related to the extension of
the object in space or time we also use the notion scale related to the smoothness
of the object.

Objects loose crispness in case they are viewed from further away in space
or are further in the past. We use the notion of a coarser scale if we talk about
objects, in case we are not interested in the details, even if we do not change
map scale or the grid size when presenting the object. Objects then appear
generalized.

In case smoothness is achieved by an averaging process we may formalize this
by linking it to the used window size Az or At.
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Assume a surface is rough or noisy with a certain standard deviation o,,.
Smoothing the data with a window size of width o, or o; reduces the roughness
of the noise by a factor

Oy Ot
=12 =+v12—— 12
k Am() or k Ato ( )

Thus the smoothing factor k is the larger the larger the smoothing is. The degree
of smoothing is directly related to the scale parameter induced by the size of the
smoothing window. Obviously this is a relative measure and requires to define
a basic unit in which o, or oy is measured. In case of gridded data this is the
basic resolution Azy or Aty of the data. Smoothing then would lead to data
which have less resolution, thus could be represented with a coarser grid with
grid width Az or At.

This relation easily can be derived from analyzing the effect of smoothing
gridded data z(z,y) with a box filter. Assuming the data to have random errors
and have the same standard deviation o,, then smoothing with a r x r-window
leads to a standard deviation of the smoothed data, assuming Azg = 1 for this

derivation
z4+r/2  y+r/2

o) =5 Y Y, Aw-uy-v)

u=z—r/2v=y—r/2

which is the average of 72 values which therefore has standard deviation

1 1
0s=-0,= —0,
T V12 o,

where the window-size /12 o, of the box filter from (6) is used. Thus the noise
is reduced by a factor k =~ 3.50,.

The relation only holds for noise in the data. In case the data are already
smooth and are further smoothed the relations are more complicated.

2.6 Synopsis of Continuous Scale Measures

We now want to find the relations between these continuous measures.
We want to distinguish:

1. Map scale s as dimension-less quantity indicating the zooming factor usually
being much smaller than 1, thus indicating a reduction.

2. Map scale number S as dimensionless quantity indicating the reduction fac-
tor usually being much larger than 1.

3. Resolution Az or At as spacing of gridded data also the smallest distinguish-
able unit in the data.

4. Window-size o, or o; as average radius of function for averaging or smooth-
ing data. The value is identical to the standard deviation of a Gaussian
window.

5. Average wavelength ), or ); for signals with a repetitive structure.
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6. Relative smoothness k of the data referring to smoothness of original data.

Having six measures we need at least five relations in order to be able to derive
one from another. We have the following relations, which only hold in certain
contexts, which are indicated in the equations:

1. Map scale and map scale number (table 1, row 3, col. 3)

1
S=-
s
This relation is generaly valid.
2. Resolution and window size (table 1, row 4, col. 4)

s |1
=4/ —Az ~ 0.28A
Og 12 T =~ 0.28Ax

A rectangular window with width Az has the same effect in smoothing as a
Gaussian window with prameter o,. The notion resolution A, refers to the
width of a rectangular window whereas the notion window size refers to the
parameter of a Gaussian window of equivalent smoothing effect.

Obviously, the relation between resolution and windowsize is made via the
effect of smoothing, indicated by the s above the equal sign.

3. Map scale and resolution can be linked in case we define the basic resolution
Axmap of a map. This may e.g. relate to the printing resolution, e.g. 600
dpi, leading to a resolution of Azma, = 25.6 [mm]/600 ~ 40 pm. As this
resolution is on the printed map, thus at map scale we have the relation
(table 1, row 5, col. 5)

s = Az'map

Az

where Az now relates to the resolution in object space, e.g. for a map of
scale 1:10,000 printed with 600 dpi we have Az ~ 40 cm.
This relation is generally valid.

4. Average wavelenth X, and window-size o, can be linked the following way:
In case we smooth a pure noise signal the resulting signal will be smooth.
Its average wavelength is (table 1, row 6, col. 6)

X2 o2n o, 290,

The reason is: The Gaussian window function G, (z) has effective bandwidth

b=1/2v/27 0,. The graph in fig. 8 indicates this relation between window

size and average wavelength to be plausible.

Obviously, the relation between wavelength and window size is made via the

effect of smoothing white noise, indicated by the sw above the equal sign.
5. Relative smoothness k and window size o, can be linked if we refer to some

basic resolution Axg. It is defined as that resolution, where the data show
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Fig. 8. Gauss function 8-G1(z) with ¢ = 1 in the range [—v/2m, V27| ~ [—4.5, 4.5]. It
appears as one wave with length A = 227 = 9.

most detail, thus show highest roughness or have original uncorrelated mea-
surement errors. Then we have an increase k of smoothness or a reduction
1/k of noise. Thus we have (table 1, row 7, col. 6)

sw Og
= V12
k A.’E(]

The definition of this notion of scale refers to gridded data, but can also
be used for non gridded data, e.g. when reducing the density of data, then
indicating the ratio of the average point distance after and before the data
reduction.

Obviously, the relation between relative smoothness and windowsize is made
via the effect of smoothing white noise.

Obviously we have three scale measures being proportional, namely resolution,
window size and average wavelength, related by

N sw 8 2 ~ sw 8
)\m:2\/§7ra$:\/;7rAa: or Ae R 90, = 2.56 Az ~ 1.3 (2 Ax)

The factor 1.3 indicates, that waves of length A do not need 2 samples but by a
factor 1.3 more (table 1, row 6, col. 5). This corresponds to experience that the
actual resolution Az, of gridded data is by a factor K less, thus Az, = Az/K
than the Nyquist theorem (Castleman 1996) in case of band limited signals would
say, namely Az, the Kell factor K which is between 0.7 and 0.8.

Using these five relations we can derive all possible relations between the
numerical measures for scale. They are collected in the following table. The
guiding relations are shown in bold face letters.

Comments: We want to discuss the relevance of the other relations between
the different measures of scale , this will make their dependency on the contest
explicit:

— map scale/window size s = 0.28 AzZmap /0, (table 1, row 2, col. 6):
In order to visualize the details in the map at the required resolution Azmpap
and in case one has taken averages of the objects details with a window of
size 0, then one should take a map scale of approx. s. The map resolution
in this case needs not be the printing resolution, but the minimum size of
details in the map to be shown separately.
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Table 1. Relations between numerical notions of scale. Each row contains the name,
the symbol and the dimension of each measure of scale. In the 6 last columns each
measure is expressed as a function of the others, the relations either hold generally,
refer to smoothing (), or refer to smoothing white noise or detail of highest roughness
() Constants: ¢1 = 1/v/12 = 0.288, ¢» = 227 ~ 8.89, thus ¢ ' ~ 3.45, ¢; ' ~ 0.112,
cic2 & 2.56, ¢y tey ' & 0.390

1 2 3 4 5 6 7

1|notion dim. s S Az O s k
map scale (sw) (sw) (sw)

2 1 — % AT map 2 clAwmapé c1cZAwmapi AZ’:OaP i
map scale (sw) (sw) (sw)

3|number S 1 1 — Az.lnap Az ClA;mnp O C1C2A12map As Aﬁ:’ap
resolution [m], (s) (sw) (sw)

4| Az [s] Awmap% AXmap S — cl_lmE cflcglxm Azxo k
window [m], (sw) (sw) (s) (sw) (sw)

5|size o2 [s] c1 Awmap% c1AZmap S c1Ax — 02_1 Az c1Azo k
average [m], (sw) (sw) (sw) (sw) (sw)

6|wavelength Ae| [s] ||c1c2AZTmap L |c1c2ATmap S| c1c2Az C20x — cice2 Azok
relative (sw) (sw) (sw) (sw) (sw)

7|smoothness k | 1 AZ;“:" 1 AZ';‘;‘" S | 54T | iAxgox clcglAmo Ao —

E. g. if the map should show a resolution of Azmap = 1 mm and the smooth-
ing window size at object scale is o, = 10m one should choose a map scale
s = 0.281/10,000 =~ 1 : 35,000).

Vise versa, a map showing details at a separation distance of Az, can be
assume to have been generated by averaging object details with a window
of size o,

map scale/average wavelength s = 2.56 AZmap/Az (table 1, row 2, col. 7):
This relation is similar to the previous one: If details have wavelength A, and
one wants to visualize them in the map at the required resolution Azp,ap,
then one should take a map scale of approx. s.

map scale/smoothing factor s = Axg/Azmap k (table 1, row 2, col. 8):

In case one filters a signal with basic resolution Axg with a smoothing factor
k and wants to show it in a map with a resoultion Az then one should choose
a scale s.

Vices versa (table 1, row 6, col. 3), if one wants to show a signal with basic
resolution of Azg in a map at scale s with a reslution in that map of Az one
should apply a smoothing with faktor k.

resolution/smoothing factor Az = Axg k (table 1, row 4, col. 8):

This important relations states, that a signal with resolution Az that is
smoothed with a smoothing factor &, can be resampled with Az. Vice versa
(table 1, row 7, col. 5) in case one wants to decrease resolution from Axg
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to Az one needs to smooth with a smooting factor k, being realizable by a
smoothing filter with window size o, = 0.28Azok (table 1, row 5, col. 8).

Obviously, the relations hold under specific conditions, thus one needs to take
the individual context of the derivation of the relations into account.

3 Discrete Measures of Scale

Taking the average size of an object as measure for scale already contains un-
certainty in its definition. Though the notion of a window size is well defined
the average size of objects usually is not. Moreover there are applications where
even the average size of a set of phenomena is not adequate to represent the
scale on which the phenomena are handled. Generalization of river networks or
the interpretation of sets of bore holes in no way can be adequately characterized
by the above mentioned measures. Therefore there exist other notions of scale
used in geosciences. Two are collected in the following.

3.1 Level of Aggregation

One of the main properties of spatial objects is the ability to partition them
into parts or aggregate them into large units. In object oriented modeling these
relations are represented in aggregation or is-part-of hierarchies.

Examples are manifold: The aggregation level of spatial political units as
states, counties, towns or of time domains in geology.

In hydrology e.g. the scale of the modeling might be reflected in the size
of catchments. Taking an average size of catchements would correspond to the
window size mentioned above. However, there is no unique way to average. Tak-
ing the minimum size of the catchments as characteristics reflects the resolution.
Again, there is a conceptual difference as the compartment sizes are not multi-
ples of the minimum size, unless the basis for the definition are raster data. Also
maximum sizes or the size range may be used to characterize scale of modeling.

3.2 Level of Abstraction

An even more general way to perceive scale is the property of an object to be a
special case of another one or to generalize a set of objects. In object oriented
modeling these relations are represented in specialization or is-a hierarchies.

Examples again are manifold: species on biology are classified in a is-a-
hierarchy, phenomena in meteorology or geophysics are also classified in spe-
cialization hierarchies. Obviously referring to a more general class of objects is
using a coarser scale in reasoning, while referring to very specific objects is us-
ing a fine scale in reasoning. This type of scale selection often is used to guide
modeling and may lead to specific types of mathematical relations, e. g. different
types of partial differential equations.

As the different scale types — aggregation and abstraction — interfere and
directly relate to the used ontology, one could use the term ontological scale
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to indicate the scale depending on the different types of hierarchies. Though
it is a notion of scale with quite some degree of uncertainty in its definition, it
covers all legends of maps including the abstraction hierarchies of different object
types and at the same time the spatial extent of the shown objects reflected in
the different signatures, enabling a differentiated description: e.g. large cities
are shown with an approximation of their boundary, small are shown with a
circle as symbol, principal cities are given an underlined name, other cities not
underlined.

The relations between the very different notions of scale are by far not un-
derstood enough to guarantee clear specifications for data acquisition, to allow
formalization of simulation models or to enable generalization for generating
maps on demand.

4 Scale Defining Parameters in Models

The notions discussed so far all refer to description of reality either in observa-
tions or data or in models of the second type. Scale also appears in models of the
first typeaiming at explaining observations. Fourier techniques are the classical
tool to represent and analyze scale.

The goal of this subsection is to show the difficulty of predicting scale in
models.

Mathematical models, thus models of the first type, contain variables, such
as pressure or velocity, which change over space and time, and parameters which
are constant. Moreover, boundary conditions heavily influence the behavior over
space and time. The notion of scale of a phenomenon is depending on the parame-
ters and the boundary conditions. Thus without a specification of the parameters
or the boundary conditions a scale of the phenomenon cannot be told. In non-
linear models even small changes of the parameters may change the type of the
generated process. Unfortunately there is no canonical way how a scale of the
phenomenon is related to the parameters or the boundary conditions. Moreover,
the notion of scale in models shows the same variety as in data.

Two examples want to demonstrate the difficulty of identifying some scale
in models: both are recursive processes, where the current state z; depends only
on one or a few, say K, previous values

Xr; = f({.’l?i_k},pj), 1= 1, ...,I;j = 1, ...,J;k = 1, ...,K

The J parameters p; specify the underlying the process.

4.1 Parameters in Autoregressive Models

In the first example we only deal with a linear relationship, which allows to use
the powerful tools of linear system theory. Autoregressive (AR) models are one
of the best understood models for one dimensional signals, such as time processes
or terrain profiles. For the underlying theory is found in (Box and Jenkins 1976
), (Liicker 1980 ).
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We want to demonstrate the ability to generate models for time series with a
given spectral content and the difficulty to interprete the parameters. The mod-
els shown here explicitely contain a stochastic component to generalize specific
signals.

The most simple AR-model is given by the recursive generation:

T; =axri—1 + €;

of the sequence {z;},7 = 0,1,... The parameter a influences the general appear-
ance of the process. The sequence {¢;} of random values defines the actual form
of the sequence. The distribution of € may be characterized by its standard de-
viation o.. Fig. 9 shows two samples of such AR-processes, one with a = 0.95
one with a = 0.99. Obviously the parameter a controls the appearance, larger a
lead to longer dependencies, thus subjectively to a larger scale, thus to higher
smoothness. However, the roughness of the signals does not allow to talk about
a typical wavelength, i.e. representative value for the scale.

2]
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—41

Fig. 9. Top: AR-process with a = 0.95. Bottom: AR-process with a = 0.99. In both
cases g, = 0.25

Signals with a predominant wavelength can be achieved with higher order
AR-process:

K
€xr; = E ApTi—k + €
k=1

where K is the order of the AR-process. Again the parameters a control the
behavior.

For second order processes we are able to choose parameters a; and as which
lead to signals with one predominant scale, i.e. wavelength. In the top of the
three figures 5, 6, shown above, and 10 we observe three signals with typical
wavelengths 40, 160 and 40 resp.
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Obviously the first two profiles differ in their dominance of a specific wave-
length, the last profile is more noisy than the first. The bottom of the three
profiles shows the theoretical Fourier spectrum®. One can easily identify two
peaks. Their distance is inversely proportional to the wavelength.

This shows, that it has been quite reasonable to identify the average wave-
length X = % derived from the average frequency as natural scale of a signal. In
the examples, shown so far, however, we are able to predict the scale from the
parameters of the underlying process.

4
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Fig. 10. Top: A rough AR-process with short wavelength. Bottom: Amplitude spec-
trum.

If we now have a look at the parameters a; and a in the following table they
do not immediately show us the structure of the signals. In this special case of
a linear system, one however is able to tell the properties of the signal, namely
its roughness and average periodicity.*

[Profile[fig.|| r N a as |
1 5 1(0.99 40(/1.9556229 -.98010000
2 6 1{0.99 160||1.9784734 -.98010000
3 10{/0.95 40]{1.8766078 -.90250000

We are also able to generate signals with two specific scales using higher
order AR-processes. Figure 11 shows two signals each containing two different
wavelengths, namely 10 and 40 (first two rows) and 6 and 80 (last two rows),
together with their Fourier spectra. The two dominant wavelengths are clearly
visible in the signals, and the Fourier spectra tell which wavelengths are present.

3 The theoretical Fourier or amplitude spectrum is only depending on the process
parameters a and o. and given by o./|1 —a exp(j2x f)| (Liicker 1980). The empirical
Fourier spectrum is given by the Fourier transform of the signal.

4 By looking at the roots of the polynomial P(z) =1 — a1z — a22>.
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Again the parameters a;, a2, az and a4 collected in the following table do
not tell anything immediately about the structure. Linear systems theory allows
to predict the behavior of the signal also in this case.’

|Pr0ﬁle| ﬁg || T1 )\1| T2 /\2” ai as as a4 |
1 |11 top||0.99 40]|0.99 10||3.5574765 -5.0928217 3.4866827 —.96059601|
2 |11 bot.||0.99 80]0.99 6 [|2.9684734 -3.9188887 2.9094008 —.96059601|

The example intensionally is chosen such that there is no unique natural scale
or average wavelength.

In this case theory is available to analyze the signal in detail and understand
its behavior. This theory is restricted to one-dimensional signals generated by a
linear system. The theory for two-dimensional signals already is quite difficult
and cumbersome.

4.2 Scale in non-linear models

The second example wants to demonstrate the inability to predict the behavior
of a nonlinear system, containing only one parameter.
The well known logistic map (Kneubiihl 1995 )

Tr = a Tp-1(1 — Tp—1)

is fully deterministic. It shows all types of behavior, fixed points, periodic se-
quences as well as chaotic i.e. non predictable sequences for a > 3.5699. .. (cf.
figure 12). Though this sequence is well studied it has the flavor of non linear
systems which need to be studied individually and only in special cases allow
prediction of their behavior without simulation studies. This is in contrast to
one-dimensional linear systems, which are theoretically fully understood.

The examples of this section give a clear message: In case the system can be
adequately modeled as a linear system, one should exploit the power of linear
systems theory. This especially holds, if reality is modeled phenomenologically
or only simple linear physical laws are involved. Even in case the approximation
is crude, it helps making predictions. However, all real systems are likely to be
nonlinear, which makes the theory based definition of a scale very difficult.

4.3 Omni-scale models

Real data ofte show no dominant scale, i. e. one dominant wavelength. They often
show a continuum of wavelenths, i.e. the height z(z) is composed of sinewaves
of all frequencies:

z(x) = Z hi sin(kz + pr)
k

where the phases pr and especially the amplitudes h; depend on the frequency.

5 Again by analysing the roots of a polynomial P(z) =1 — ", axz".
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Fig. 11. Two profiles, each with two wavelengths and their theoretical Fourier spectrum
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Fig. 12. Sequences of the logistic map with a = 1, 2.5, 2.8, 3.1, 3.4, 3.5, 3.6 and 3.7

Terrain data have been analysed by (Mandelbrot 1980 ). In case of terrain
profiles (Frederiksen et al. 1985 ) often found a linear dependency

loghy =c—alogk

between the logarithmic amplitude hj and the logarithmic frequancy k. Thus
often all frequencies are present in terrain profiles, there is no specific wavelength
or scale in the data.

The slope « is large for smooth terrain, e.g. in the range of a ~ 2.5, the
slope is small for rough terrain, e.g. in the range a & 2 or less.

5 Conclusions and Outlook

The paper discussed the various notions of scale resulting from the diversity of
the disciplines within the geosciences. They refer to data and to models and
appear in several degrees of crispness.

There seem to be basically two different crisp types of notions of scale in use:

1. scale as the ratio between model and reality. The only application of this
notion is the scale in map scale.

2. scale as a measure of the extent of an object on space or time. This holds
for nearly all notions, quantitative and qualitative.

The other notions qualitatively refer to the size of the data set in concern. There
are quite some close relations between the crisp notions of scale, all referring in
some way to linear systems theory. Their use definitely is promising and helps
getting a first insight into geoprocesses.

In contrast to this coherence, however, there are only few crisp relations
between the more qualitative notions, which hinders a smooth communication.
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Taking the complexity of geoprocesses into account one needs to discuss how
far a crisp notion of scale actually carries research and at which steps within
modeling more detailed concepts need to support the description of the inherent
structure of natural processes. These concepts definitely refer to the used quali-
tative notions of scale in some way, but they certainly will be more adequate.
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