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Abstract. The paper describes the automatic learning of parameters
for self-diagnosis of a system for automatic orientation of single aerial
images used by the State Survey Department of Northrhine-Westfalia.
The orientation is based on 3D lines as ground control features, and
uses a sequence of probabilistic clustering, search and ML-estimation for
robustly estimating the 6 parameters of the exterior orientation of an
aerial image. The system is interpreted as a classifier, making an inter-
nal evaluation of its success. The classification is based on a number of
parameters possibly relevant for self-diagnosis. A hand designed classi-
fier reached 11 % false negatives and 2 % false positives on appr. 17 000
images. A first version of a new classifier using support vector machines
is evaluated. Based on appr. 650 images the classifier reaches 2 % false
negatives and 4 % false positives, indicating an increase in performance.

1 Motivation and Goal

Vision systems are nearly always embedded systems and are often the bottle
neck of an automation chain. Their performance therefore is crucial for their
usefulness within the embedding system. Independent of the output type of the
vision system, e. g. reading bar codes, detecting passengers, tracking objects, or
determining ego-motion, the vision system may be successful and produce one of
these outputs, or it may fail and not deliver its output. Acceptable failure rates
of systems may vary between 25 % e. g. in automatic image retrieval, and 0.0001
% in visual control of production processes. Many applications allow an efficient
reaction to self-diagnosis of the vision system. Self-diagnosis is the internal eval-
uation of the system based on redundant information within the image analysis
process. However, often such redundancy is intentionally introduced into the
design of the vision system only to enable self-diagnosis.

An increase in efficiency of a system with self-diagnosis could be achieved by
eliminating failures in case the system actually predicts a failure based on inter-
nal self-diagnosis. A system with self-diagnosis therefore can be interpreted as a
classifier with respect to its ability to succeed or to fail, independent of the type
of its output within the embedding system. The situation is sketched in fig. 1.
A vision module in a first instance uses input data, preferably with measures on



their quality and - using a vision algorithm - produces output data, preferably
with measures on their quality, which allows chaining of vision modules based
on the exchange of evaluated data. Decisions to use certain modules need to be
made subject to the success of the module, this would require active checking.
Using an algorithm for self-diagnosis could produce values characterizing the
internal prediction of success, again preferably with quality measures. Together
with the quality of the output data, the self-diagnosis can be used by the control
module. The distinction between the quality of the output data and the result
of the self-diagnosis algorithm is motivated by the inability or reduced ability of
the control module to interpret the details of the output characteristics of the
vision module.

vision module
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Fig. 1. Components of a vision module with self-diagnostic capabilities.

Characterizing the performance of a system therefore may also refer to char-
acterizing the performance of its self-diagnostic abilities, on top of the perfor-
mance of the output of the vision system as such.

We are concerned with the automatic determination of the parameters of the
exterior orientation of single aerial images being the basis for ortho-photo maps.
Being able to orient single images avoids the need for digitizing all images of a
flight for bundle block adjustment, but enables to restrict digitization and stor-
age to a single image (appr. 25 Mbyte) per map sheet (cf. fig. 2). In a country
like Nordrhein-Westfalen, with appr. 8 000 map sheets in 1 : 5 000 this is a sig-
nificant cost saving. The orientation of aerial images is supported by the global
positioning system (GPS) giving sufficiently accurate projection centers, how-
ever allows no precise determination of the rotation parameters. As ortho-photo
map update is done on a regular basis, the Survey Department already decided
to build up a control point data base in the 70’s, mainly consisting of buildings,
especially the 3D coordinates of two of their roof points. Automating the process
of ortho-photo production requires automation of the up to recently manual ori-
entation procedure. The database therefore has been newly built up in the years
1992-1996, each control point consisting of a set of 3D line segments for each
building, actually being derived from a manually measured wire-frame model of
the buildings. The matching of the 3D line segments with 2D image line seg-
ments allows to determine the orientation parameters automatically (SESTER &
FORSTNER 1989). The system has recently been integrated and now is in use at
the Survey Department.
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Fig. 2. Left: Setup of externally checking a procedure for automatic orientation of aerial
images. Given: Images Io,..., control points (reference coordinates Y;) (black filled
triangle), terrain surface. In practice every second image is oriented and rectified. Here
we orient all images individually by automatic mensuration of the control points. The
same images and manually measured control points are used for a bundle adjustment.
Evaluation is based on the difference of ground point coordinates X,, (black circle)
determined with single image orientation and bundle orientation. Right: Structure of
a control point. Set of 3D-line segments {M;; } and reference point Yj.

This paper reports attempts to evaluate the self-diagnostic tools of the system
and to improve them by automatic learning techniques, while not changing the
automatic procedure for orientation. The paper is organized as follows: Section
2 describes the system, however, only to such a detail that the reader can locate
and assess the self-diagnosis within the system. The manually designed self-
diagnosis and its evaluation, based on 17 000 images is discussed in Section 3.
Learning the relevant criteria for self-diagnosis is the topic of Section 4. Based
on appr. 650 images it is shown that an improvement of the self-diagnosis can
be achieved by using the result of a support vector machine classifier.

2 The System for Automatic Model Based Orientation

The core algorithm of the system for automatic model based orientation of aerial
images consists of three robust techniques. A feature extraction procedure pre-
cedes these steps, the self-diagnosis finalizes the processing chain.

2.1 Preprocessing

Prediction of approximate image coordinates: Based on approximate val-
ues for the orientation of the aerial image the system selects those control points
which are likely to appear in the image. The approximate projection matrix P
is derived from the GPS-coordinates, the calibration parameters of the cameras
and the knowledge, that the viewing direction is nearly towards nadir. Each
control point P; consists of a set {M;;} = {(Ys,YEg);;} of 3D-line segments
M;; and has a reference point Y; = (X,Y, Z,1);" attached to it. It predicts the
image coordinates y; = PY; of the reference point Y; and of all starting and
end points y§;; and yf;;, leading to predicted 2D-line segments m;, .

Line segment extraction: In a pre-defined window around the predicted ref-
erence point y}, with 250% pixel covering appr. 0.3 % of the image area, a set
{L,,} = {(xl5,x%5)ir} of line segments are extracted. No correspondence to the



control point line segments M,; is available at this stage. Their quality is char-
acterized by the standard deviations of their position component orthogonal to
the line segment and of their direction. In a first approximation the standard de-
viation of their position component is o, /v/1 and of their direction o,//12/13,
where o, is the positional accuracy of an edge pixel, say 0.3 [pel], and [ is the
length of the line segment measured in pixels.

2.2 Automatic Orientation

1. step: Probabilistic clustering. For finding good approximate values for
the projected control point features a probabilistic clustering, described in (SES-
TER & FORSTNER 1989) determines the position ¥; of each individual reference
point separately. This is achieved by integrating, realized by an accumulator, the
likelihoods of each observed image segment 1}, matching to each projected model
line segment m;] In this context a parallel projection for the small image win-
dows is sufficient, and only a translation t, between the predicted model set and
the observed segments is determined. Only line segments (1j;, m;;) with similar
direction give rise to a range of translation values t; their likelihood depending
on the length difference, on the uncertainty of the observed line segments and
on the assumed uncertainty of the translational model.

2. step: Orientation with points. The resulting set {¥;} of estimated refer-
ence points may contain blunders. This mostly occurs due to similar line segment
patterns in the vicinity of the building caused by shadows or due to bad image
contrast. Using these initial matches {Y;,¥;}, namely the reference coordinates
Y; of each control point and its measured image coordinates y}, we determine
the six orientation parameters. Here we implemented two versions:

A For all quadruples of control points we determined the orientation parameters
by minimizing the reprojection error using a bundle adjustment. In case the
geometric configuration is acceptable (see sect. 2.3) the smallest robust sum
>, min(€7,t2) of the square of all remaining residuals €; indicated the most
likely set of outliers, which then do not take part in the last step. The
tolerance t, was set to 10 pixels. In this version the initial approximate
values or the orientation parameters are used for the final step 3.

B Here we attempt to perform a complete search for the erroneous control
points. In case of N control points this requires M = Eé\;l (M) =2N-(1+
N + (5) + (§)) trials, as a minimum of 4 points is necessary to obtain a
check on errors. In order to reduce the number of trials, we first compute
the exterior orientation with all N control points. If this rectification yields
an acceptable precision, i. e. the estimated reprojection standard deviation
0 < 1.5 [pel], the search is stopped and no error has been found. In all
other cases we continue to evaluate all N cases with N — 1 control points
(and one error), then all (];] ) cases with N — 2 points, etc. until the threshold
1.5 [pel] has been reached.

All erroneous control points are re-projected by using the determined ori-
entation to get a new set of matching image line segments for these control



point models. The resulting orientation parameters are used as initial values
for the following final step.

3. step: Estimation for orientation with line segments. In the last step
we use all the line segments 1}, of all control point models and perform a ro-
bust maximum-likelihood-type bundle adjustment for the image, minimizing the
weighted reprojection error. The re-weighting scheme of the ML-estimation is re-
quired in order to eliminate wrong matches of line segments. The weights of the
line segments are taken from the feature extraction. All available information is
used, not only the reference points as in the last step.

2.3 Self-diagnosis

Self-diagnosis requires performance measures and criteria for their evaluation.
The following two types of measures can be used for both steps, the estimation
with points and the estimation with line segments, cf. (FORSTNER 2001):

Measuring the precision for self-diagnosis: The first performance measure
reflects the achieved precision, namely the influence of random errors between
observations and assumed model. The estimated variance factor G2 is derived

from the reprojection errors by (MIKHAIL & ACKERMANN 1976)
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where €;;, is the reprojection error of the k-th image feature, point or line seg-
ment, at control point ¢, X, ;, the a priori covariance matrix of the image
feature, again point or line segment, and R = rank(X};) — 6 the redundancy of
the single image bundle adjustment.

In case the coordinates of the observed features are normally distributed,
the a priori covariance matrix is chosen realistically, and the model x' = PX
holds, the estimated variance factor will have an expected value 1, following
a FR, distribution. However, as all types of errors in the underlying model
may have an influence on the estimated variance factor and the model only
holds approximately, the Fisher-test, if applied rigorously, almost always leads
to a rejection of the model. It has been found empirically, that assuming the
standard deviation o, to be larger by a factor 2 or 3 is reasonable.

o0 <Tp (1)

Measuring the quality of the configuration for self-diagnosis: The sec-
ond performance measure evaluates the difference between the geometric con-
figuration of the control point models and a reference configuration. It actually
measures the closeness of the geometric configuration to a critical configuration.

The standard reference configuration for this application consists of 4 control
points located in the corners of the image. This configuration would guarantees
a reliable determination of the exterior orientation. The measure compares the

expected precision reachable with both configurations. It uses the largest possible

variance o**Y? of a function g = £7p (BAARDA 1973)
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of the orientation parameters p in relation to that variance ag”f )2 reachable with

the reference configuration i. e. with covariance matrix > The maximum

at the same time is the maximum eigenvalue of the matrix ngt) [Z‘I();ef -1

In case the configuration is close to a critical one, then Amax would be very
large. A threshold T = 10 for the configuration measure Amax has been found
to be reasonable, as then the achievable standard deviations stay below approx. 3
times the standard deviations of the desired reference situation, being consistent
with a three-fold larger measuring standard deviation o, above.

3 Evaluation of the Manually Designed Self-diagnosis

3.1 External Evaluation

In order to decide, whether the self-diagnosis was successful or not one needs an
external reference, or ground truth. To establish a reference data set playing the
role of ground truth is usually an enormous effort. Here we evaluated the auto-
matic procedure with the result of a simultaneous bundle block adjustment of all
available images, and manually measured ground control points. The complete
set of images shows an overlap of at least 60 %, not only of about 20 %, as this
is the case for the images used for ortho-photo production, which, when used
alone, would not allow a bundle adjustment. This reference bundle adjustment
results in highly reliable orientation parameters.

As the final goal is the computation of ortho-photos, i. e. the rectification of
the aerial images to the geometr(y of the map, we measure the mazimum of the
planimetric distortion AX = X(¢*8 — x(undle) a¢ the ground by re-projecting
a 3x3-grid from the images to the ground (cf. fig. 2) using both the orientation
parameters f)(”t) of the automatic procedure and the orientation parameters
punde) of the complete bundle adjustment:

Dmax = max \/(ngt) _ Xgundle))Q + (Yn(weSt) . Yélbundle))Q Dmax < Tl§3)

Following the requirements of the application, the average planimetric distortion
should not exceed Tp =1.5 m.

3.2 Empirical Evaluation of the Self-diagnosis

A first evaluation of the quality of the self-diagnosis used the two criteria for pre-
cision and configuration in version A, thus just the thresholded mean reprojection
errors and the thresholded configuration measure. The external evaluation was
based on the distortion.

The result of appr. 17 000 samples, i. e. image orientations is shown in the
following table: 69 % orientations were correct and this was reported by the self-
diagnosis. In 18 % of the cases the orientation was incorrect, which was detected
by the analysis. The percentage of false negatives with 11 % is high. Though the



Table 1. Result of an empirical test using appr. 17000 aerial images.

reality
correct wrong

69 % 2%

(correct decision)| (false positives)
11 % 18 %

(false negatives) |(correct decision)

correct

self-diagnosis
wrong

percentage of false positives with 2 % is quite low, this still represents appr. 340
images!

In nearly all cases, the wrong orientations resulted from errors in the second
step (cf. sect. 2.2), namely the error detection using the reference coordinates of
the control points.

This result, especially the low success rate of 69 %, was the motivation to
increase the quality of the self-diagnosis.

4 Learning Criteria for Self-diagnosis Using SVM

In order to improve the performance of the orientation procedure we tried to use
the result of the second step, i. e. the orientation with points, to predict the final
result and at the same time to automatically learn the criteria for self-diagnosis
using support vector machines (SVM, (SCHOLKOPF et al. 1998)). We also used
version B, i. e. all meaningful orientations per image.
For finding a good predictor we used the following four features

x = (z1,T2,23,74)", which are available after the second step, and which can
be expected to be useful for predicting the final result:

1. x;: the number N of control points in the image, because we expect larger
numbers N to increase the performance

2. x3:the number F of control points eliminated for the final estimation process,
as we expect smaller numbers E to increase the performance.

3. x3: the precision measure oy , as we expect smaller oy to increase the per-
formance. Actually we used logarithm, which is identical to the negative
self-information —1(gy) = logap.

4. x4: the configuration measure Amax, as we assume smaller Amax to increase
the performance. In this case we actually used the logarithm log(Amax) too.

For training we used all M trials of the orientation with points in step 2. They
are used for determining the best decision function d(z) for a given sample
(x,y);- For labeling the images as y =correct or y =wrong we performed the
ML-estimation of step 3 and evaluated the orientation using the distortion Dy, ax
at ground level.

We used the support vector machine implementation LIBSVM of Chang and
Lin (CHANG & LIN 2002) for determining a decision function d(z). As it is a
binary decision problem, the decision function determines an optimal evaluation



using the score function s(x) = abs(d(z)), thus thresholding at 0: if d(z) < 0
the case is wrong, otherwise it is correct. The resultant support vector classifier
determines whether a sample is correct or wrong.

Actually we are not interested in the classification of each of the M trials
per image, but only in the best achievable result per image. Looking for the best
score per image leads to an unacceptable result, as some of the M cases get a
very high score for being wrong, which might be higher than the maximum score
of the correct cases.

Therefore we use the original decision function d(x) for classification. Instead
of thresholding at 0, we choose a threshold 7} leading to the classifier:

y = correct, if d(x) > Ty, el sewrong 4)

The choice of Ty can be used to optimize the classifier, e. g. minimizing expected
costs for the classification result.
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Fig. 3. The procedure for optimizing self-diagnosis: for each image ¢ a set of alternative
orientations is calculated in steps 1 and 2 of the procedure, using the NN reference
points of the control points. The result depends on the number E of eliminated control
points. The numbers N and E and the two performance measures oo and Amax for
precision and configuration are used to automatically determine a decision function
d(z) using binary support vector machines. The best orientation per image is used for
classification, leading to a binary y;, thus y; € {correct, wrong}.

4.1 Empirical Accuracy of the Self-diagnosis Based on SVM
Decision Function

We tested this procedure on two sets of images of blocks with 60 % overlap
covering two areas in Nordrhein-Westfalen. The 436 images from Area I show
good quality, in the sense that all images are of good quality and contain enough
control points, whereas the 243 images from Area II do not have good image
quality and partially contain badly identifiable control points.

As we now have one free parameter for classification, namely the threshold
T, for deciding between correct and wrong orientations we give the confusion
tables for four values of T}.

We give the result as confusion tables with the number of images for the four
cases (sel fdiagnosis : correct|reality : correct), (sel fdiagnosis : correct|reality :



wrong) etc. The confusion tables are obtained by using approximately half the
data set for training of the SVM and the other half for testing.

To evaluate the quality of the resulting confusion tables we might use the
expected cost. They depend on the costs for each case {cc,cw, we,ww} (abbre-
viating the labels). The expected cost is

E(C) = PCCCCC + Pc’chw + P’U}CC’IUC + P’u)'u)wa

which requires a specification by the user. For a first evaluation we use the
additional costs Cee = 0, Ceyy = 40, Cye = 5, Ciyww = 10. The expected cost is
given below the confusion tables.

Tey=0 Tg=1 Tg=2 Te=3

clw clw clw [ w

1—2 c|173|21 c|172(17 c|166| 5 c|140 5
0| 2 w| 1/ 6 7|18 w| 33 18

E(C)=4.39 E(C)=3.80 E(C)=2.11 E(C)=2.78

clw clw clw [ w

2—1 c|233| 7 c|229] 6 c|217] 5 c|172 0
wl 0] 0 w| 4| 1 w| 16| 2 w| 61 7
E(C)=1.17 E(C)=1.13 E(C)=1.25 E(C)=1.56

Table 2. Results from Area I. In each table, column index (¢, w): result of self-
diagnosis, row index (¢, w): reference. Changing the threshold T; may be used to
increase performance, e. g. by reducing the number of false positives (upper right).
Expected cost below tables. First row of tables: training data set: 240 images, test set:
196 images. Second row of tables: exchange of test and training data.

Choosing a threshold of T; = 2 appears to be optimal. The expected cost,
averaged over both versions 1—2 and 2—1, with E(C) = 1.64 is lower than the
expected cost for the earlier version of the classification, where the expected cost
is E(C) = 3.15. The result for the image set II shows significant worse results
(cf. table 3). There appears to be no clear minimum of the expected cost in
that range of thresholds. We also investigated whether the classifiers could be
generalized to other data sets. We trained the classifier with one data set, I or I,
and tested it on the other one. The two data sets turned out to be too different.

Ta=0 Ta=1 Tqg=2 Ti=3
Clw Clw Clw C w
1—2 c|72(35 c (64|21 c|45|10 c|25 4
1|16 w| 9(30 w|28(41 w48 47
E(C)=12.62 E(C)=9.55 E(C)=7.66 E(C)=7.01
Clw Clw Clw C w
2—1 c|66(18 c|b5| 9 c|21| 4 cl 1 0
1|14 w(12|23 w|46(28 w |66 32
E(C)=8.74 E(C)=6.56 E(C)=6.76 E(C)=6.56

Table 3. Results from Area II. For each confusion table, column: result of self-diagnosis,
row: reference. Expected cost below tables. First row of tables: training data set: 99
images, test set: 124 images. Second row of tables: exchange of test and training data.



4.2 Simplifying the Classifier

The scatterplots of pairs of features suggest that the two performance measures
for precision and configuration might be sufficient. The scatterplot for these two
features shows that a linear decision boundary with a slope of -0.5 might do.
The normal of this line approximately is w = (2,1). Therefore we investigated
the following single feature x = 2x3 + x4 = 2log o + log Amax = log(G2 Amax)-
This appears reasonable, as 63 Amax is the maximum increase in variance com-
pared to the reference configuration due to both the estimated precision and the
configuration.

g
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Fig. 4. Cluster of log go (right) and log Amax (up)

However, using only this feature for classification leads to slightly worse re-
sults: The expected cost in the good data set decreased by nearly a factor 2,
whereas the expected cost in the bad data set II did not change very much.

5 Conclusions

Integrating self-diagnosis into a system for automatic orientation enabled to
increase its performance by training the self-diagnosis using support vector ma-
chines. The setup appears general enough and may be transferred to any type
of vision system, even if its primary output is not the result of a classifier.
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