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Abstract:

The paper presents a new technique for optimal estimation for statistically uncertain
geometric entites. It is an extension of the classical eigenvector solution technique
but takes the full covariance information into account to arrive at a ML-estimate. The
proposed solution is significantly more transparent than the solution for estimation un-
der heteroscedasticity proposed by Leedan, Matei and Meer (LEEDAN 1997, MATEI &
MEER 1997). We give a new representation of algebraic projective geometry easing
statistical reasoning. We show how the setup can be used in object reconstruction,
especially when estimating points and edges of polyhedra. We explicitely give an ex-
ample for estimating 3D-points and 3D-lines from image points and image lines. The

direct solutions do practically require no approximate values.
1 MOTIVATION

The task of estimating 3D points from image points is a classical one in Computer Vi-
sion. Automatic image processing allows to easily extract image line segments enabling
to reconstruct 3D lines, besides points. In case of polyhedra, which may be used for a
large class of man made objects, image line segments may also be used to determine
3D points and image points may be used to determine 3D lines. Moreover, grouping
of 3D-points, 3D-lines and planes for reconstructing polyhedra requires the estimation

of 3D points, lines and planes from given 3D points, lines and planes.

These reconstruction tasks have to cope with two problems: (1) optimal estimation
taking all available information about the uncertainty of the geometric entities and the
spatial relations into account and (2) means for direct optimal or suboptimal solutions,
leading to approximate estimates, as the spatial relations are nonlinear. Both problems

have been in the focus of research.



Nonlinear estimation techniques have been analysed and adapted to geometric prob-
lems, bundle adjustment (TRIGGS ET AL. 2000) becoming a standard reference for
object reconstruction and camera calibration (cf. e. g. (FITZGIBBON & ZISSERMAN

2000)). However, nonlinear estimation techniques require good approximate values.

Direct solutions, often based on an eigenvector analysis, are commonly used, either in
their original form minimizing the algebraic error or in modified versions leading to
least squares estimates. Recently Leedan, Matei and Meer (LEEDAN 1997, MATEI &
MEER 1997) extended the eigenvector method to heteroscedastic observations, i. e. to
observations which groupwise may be statistically fully correlated. Their approach (1)
yields ML-estimates, (2) is based on the solution of a generalized eigenvalue problem
which is practically a direct solution, and (3) has shown to be superior to renormal-
ization techniques proposed by Kanatani (KANATANI 1996). However, their approach

leads to quite complex expressions.

Algebraic projective geometry, promoted in the last decade (cf. (FAUGERAS & PaA-
PADOPOULO 1998, HARTLEY & ZISSERMAN 2000)), allows to represent 2D points and
lines, and 3D points, lines and planes in a consistent way which significantly simplifies
geometric reasoning. It also was the basis for direct estimation procedures for camera
calibration. The main reason why direct eigenvector methods are feasible is that alge-
braic projective geometry leads to geometric contraints where the unknown parameters
appear linearily, e. g. when estimating the projection matrix or the fundamental ma-
trix. However, statistical spatial reasoning based on algebraic projective geometry has

not been presented up to now.

The work closest to ours is the monography by Kanatani (cf. (KANATANI 1996), who
presents techniques for statistical geometric reasoning using homogeneous representa-
tions of geometric entities, however, does not make use of the neat formulations of

algebraic geometry, which leads to cumbersome expressions.

The paper has two goals: (1) it presents a new technique for direct optimal estimation,
significantly simplifying the method of Leedan, Matei and Meer, (2) it presents alge-
braic projective geometry in a way which makes the linearity of the relations explicit,
providing the Jacobians which allows rigorous error propagation, and shows that it
also significantly simplifies the expressions for statistical estimation. The paper’s focus
therefore is to simplify computation for statistically uncertain geometric entities and
make all relations as transparent as possible.

As a field of application we use the estimation of 3D points and lines, as it is required



in all 3D reconstruction and grouping processes. We specifically discuss the optimal
estimation of 3D points and lines from image points and lines taking the full covariance
information from the feature extraction into account and demonstrate the feasibility

with a real example from object reconstruction.

The paper is organized as follows: Section 2 collects the necessary relations from al-
gebraic projective geometry including analytical geometry in 2D and 3D as well as
modelling the imaging process. It puts them into a consistent form, largely inspired
by the paper (FAUGERAS & PAPADOPOULO 1998) and makes all relations directly
accessible to statistical reasoning. Section 3 presents the new technique for optimal
estimation, relating it to the classical, suboptimal eigenvector solution minimizing the
algebraic error. Section 4 links the result of sections 2 and 3 and presents the estima-
tion of 3D points and 3D lines from image points and lines in detail. Section 5 discusses
an example with real data in detail.

Notation: We denote coordinate vectors of planar geometric objects with small bold
face letters, e. g. @, in 3D space with capital bold face letters, e. g. X. Vectors
and matrices are denoted with slanted letters, thus  or R. Homogeneous vectors
and matrices are denoted with upright letters, e. g. x, A or TI. Proportionality
is denoted with = e. g. x = Ax. We use the skew matrix S(x) = [x]x of a 3-
vector x = (1,72, 23)" in order to represent the cross product by a x b = S(a)b =
—b xa = —S(b)a. We will use the vec-operator collecting the columns of a matrix into
a vector, thus vecA = vec(ay, ay,...) = (a],aj,...)T, and use the relation vec(ABC) =

(CT ® A)vecB" with the Kronecker product A ® B = {a;;B}.
2 Representations

The goal of this section is to provide the necessary tools from algebraic projective
geometry. It gives a representation which eases computation of statistically uncertain
geometric entities.

We represent all geometric entities with homogeneous coordinates. We use two basic
operations to derive one geometric entity 7 from two others o and 3: The join vy = aAp
of two entities o and ( yields the linear space containing both entities. E. g. a line in
2D or 3D can be interpreted as the join of two points. The intersection 6 = N G of
two entities yields the common linear subspace of both entities. E. g. a line in 3D can
be seen as the intersection of two planes.



2.1 Points, Lines and Planes

Points x' = (x§,zs) and lines 1 = (I},l;) in the plane are represented with 3-
vectors, splitted into their homogeneous part, indexed with A, and non-homogeneous
part indexed with 0. Points X = (X, X,) and planes A = (A}, Ay) in 3D space
are represented similarily. Lines L in 3D are represented with their Plicker coordi-
nates LT = (L}, L]). It can be derived from two points X and Y by the direction
L, =Y,X,— X,Y of the line and the normal Ly = Xy x Y of the plane through
the line and the origin. We will need the dual 3D-line L' = (Ly, L}) which has
homogeneous and non-homogeneous part interchanged. This can also be written as

L=CL with CZ(O I)
/I 0

As C? = I we have L = L. The line parameters have to fulfill the Plicker constraint

1

|
LiLy+ LyLs + LyLg = L Ly = §LTL = 5LTCL =0 (1)

which is clear, as L = Y, X, — XY is orthogonal to Ly = Xy x Y. All 6-vectors
L # 0 fullfilling the Pliicker constraint represent a 3D line.

2.2 Relations between Geometric Entities

All links between two geometric elements are bilinear in their homogeneous coordinates,
an example being the line joining two points in 3D . Thus the coordinates of new entities

can be written in the form

¥ = A(@)B = B(B)a g—g —~Ale) 3-8

Thus the matrices A(a) and B(3) have entries being linear in the coordinates o and
B. At the same time they are the Jacobians of ~.

We then may use error propagation or the propagation of covariances of linear y = Ax
functions of & with covariance matrix 3,, leading to 3,, = AX,. AT to obtain rigorous

expressions for the covariance matrices of constructed entities ~y:
Dy = Ale)ZgpA (@) + B(B)ZaaB' (B)

in case of stochastic independence.



The construction of new entities are collected in table 1. There we need the two

matrices!:

T(X)

:8X/\Y:<Xhl —X0> o)

oY Sx, O

useful for 3D-points and planes (hence the name TT) and the Pliicker matrix?

L) = OLAX _ ( S., Ly ) T .

0X ~L; O

useful for 3D lines L (hence the name I') and their duals

T(X) = CTT(X) and [(L) =(CL) = (L)
The possible constraints between pairs of entities are collected in table 2. There we
need the inner products which are definded by
<x,1>=x"l <X,A>=XTA <LM>=L'CM=L"™M

for 2D points and lines, 3D points and planes, and for 3D lines. Observe, the Pliicker
constraint can be written as < L,L >= 0

Table 1: Construction of new geometric entities. The matrices TT, TTI, [ and [ are
given in egs. (2) and (3) resp. All forms are linear in the coordinates of the given
entities allowing rigorous error propagation.

link expression
l=xAy 1=S(x)y = —S(y)x
x=1Nm x =S(1)m = —S(m)l1
L=XAY |L=T(X)Y=-T(Y)X
L=ANB|L=T(A)B=-TI(B)A
A=LAX| A=TL)X=T (X)L
X=LNA| X=T(L)A=TT(A)L

DFor an interpretation of these two matrices see (HEUEL 2000)
2)This is one of several possible conventions, in (HARTLEY & ZISSERMAN 2000) the dual matrix is
taken as the Pliicker matrix. This has no effect on the relations discussed below.



Table 2: shows incidence constraints between pairs of entities and their algebraic repre-
sentation. The inner product for lines requires uses C as weight matrixz. The relations
for the last two contraints use the algebraic expressions in table 1.

constraint | representation
x €l <x,1>=0
XeA <X,A>=0

LOM#0D| <L, M>=0
XeL XAL=0
LeA LNA=0

2.3 Projection and Inverse Projection
2.3.1 Points

The projection of a 3D point P(X) onto the image plane yields the image point p'(x’)

via a direct linear transformation (cf. Fig. 1).

X' =PX=(l3®X")p with  p = vecP'

or
u! 17 <1,X> XT o' of 1
v =1 2" | X=] <2, X> |=| o X" o
w' 3T <3,X> o' o' XT 3
with the projection matrix
ox’'
P=—"— =KR(I| - X,
5% = KRU|— X,)

It is directly related to the parameters of the interior and exterior orientation, the
calibration matrix K, the rotation matrix R and the projection centre X,, a relation
which we, however, do not need in our context. The matrix P at the same time is one

of the two Jacobians, the other one is

ox'
— =LeX'
p 3 &

The projection matrix in general has rank 3 and the null space of its transpose is the
homogeneous vector X, of the projection centre as PX, = 0. Therefore the three row
vectors 1, 2 and 3 of the projection matrix P can be interpreted as the parameters
of the planes of the camera coordiante system (cf. the discussion in (HARTLEY &
ZISSERMAN 2000)).



2N 3
3Nn1

1INn2

Figure 1: shows the geometric situation for the projection of a 3D point X and a 3D
line L into one image, yielding the image point x' = PX and the image line 1 = PL. The
projection ray L' = P'x' and the projection plane A' = PTl' can easily be determined using
the projection matrices for points and lines.

2.3.2 Lines

A similar projection relation holds for 3D lines. We obtain the direct linear transfor-
mation of 3D lines (FAUGERAS & PAPADOPOULO 1998, FORSTNER 2000)

'=QL=(I3® fT)q with q=vec(Q") (4)
or T
a it <i,L> L 0" of 1
vy |=| 3" |ZL=| <3L>|=] o T" o D)
d 37 <3L> o7 o L 3

with the 3 x 6 projection matrix® Q

a1 (2n3)7T
Q=—==| Bn1T (5)
oL
(1n2)T

at the same time being one of the two Jacobians, the other being

ol T
— = L
oq 3

3called P in (FAUGERAS & PAPADOPOULO 1998) where the projection is given as product of P with
the line L instead of its dual L as in (4).



The three rows of Q are 6-vectors representing 3D lines, namely the intersections of

the principle planes, thus the three coordinate axes of the camera system.

2.3.3 Inversion

Inversion of the projection leads to projection rays L’ for image points x’
L'=Qx =ul1+v2+uw3=x"0®l)q=u2N3+v'3N1+w'1Nn2 (6)

The expression for L’ results from the incidence relation x’ Tl = 0 for all lines I’ = QL
passing through x’, leading to (x''Q) L = < L/,L >= 0. Observe the two Jacobians

to be oL/ oL
i T IR XIT ® I6

ox! dq

A similar expression can be given for the projection planes A’ for image lines I
A=PN=d1+02+3=01"1I,)p (7)
The expression results from the incidence relation I''x’ = 0 for all points x' = PX on
the line I, leading to (I'"P) X =< A/, X >= 0. The two Jacobians therefore are
oA" pT 0A’

— 1Tl
ar op ©

2.3.4 Relation between the Projection Matrices

We also will need the Jacobian of Q with respect to P. It is given by the explicit
expression of the vector q = vec(Q") as a function of p = vec(Q") using ANB =
TT(A)B in table 1:

2N3 0 0 TI(2 1
g=| 3n1 = T3) o0 0 2
1Nn2 0 TI(1) o 3
0 -T(3) o 1
= 0 0 -TI(1) 2
—TT(2) 0 0 3
therefore
5 0 -—TI(3) TI(2)
=1 TEe o T ®)
P\ T2 Tw) o



Summarizing this section, all mentioned relations appeared to be bilinear, resulting
from consequently using algebraic projective geometry. This results in rigorous expres-

sions for all Jacobians and allows rigorous error propagation.

3 ESTIMATION
3.1 Best Estimates

The task is to estimate best fits of unknown parameters from observed values having
known stochastic properties. We assume our estimation problem to have a special

structure:

1. We want to determine U unknown parameters 53,,u = 1,...,U, collected in the
vector 3. We have I groups of observations y,,? = 1, ..., I having n; observations
each. They may be collected in the vector y with length N = )" n,.

2. In our application we assume each of the I groups of observations to be linked
with the unknown parameters 8 by a set of m; constraints w;;,j = 1,...,m;

collected in the vector

wi(y;, B) = A;r(?/z') B=0 (9)
leading to the M = )".m,; constraints
w(y,8)=A"(y) B=0 (10)

The essential part is the linearity of these constraints in the unknown parameters
and their homogeneity®. We later assume the constraints also to depend linearily

on the observations, thus being of the structure

wi(y;,8) = Ai(y;)B =Bi(B)y; =0 (11)

The constraints are supposed to be valid for the true values of the unknown
parameters and the observations. They should also hold for the fitted values y
and B. With the matrices

AT(y) = (Al (y1),--,A[(y;))  B(B) = Diag(Bi(B))

the bilinear constraints can be written as

w(y,B8) =A(y)B=B(B)y=0

Yn case they are not homogeneous, the following expressions become more involved (MATEI &
MEER 1997)



3. Due to the homogeneity of the constraints (9) we need the additional constraint

between the unknown parameters only

BTB=1 (12)

4. In addition to the homogeneity constraint, we might need more constraints for
the unkown parameters. Here we only discuss one of them. In case of estimated
3D lines we in addition have the Pliicker condition LTL = 0 being a constraint

of the form

1
§ﬂT CB=0 (13)
5. The observed values are uncertain, their uncertainty is given by

Yy~ N(y, 2yy) = N{9:}, Diag(zyiyi))

stating the groups to be mutually independent, however allow for full covariance
matrices among the observations within the groups y;, the tilde ™ indicating the

true value.

The optimal estimate E for B is given by finding the minimum

I
Q=(y— ’y)TE;,Fy("/J\ —y) = Z@z - yi)ng—;yi Y — vs) (14)

i=1
under the given constraints. It is known to be the ML-estimate in case the random
perturbations of the observed values are normally distributed. If we do not impose
this assumption, one knows it is the best linear unbiased estimate. Observe, we allow
the observations to be correlated with a covariance matrix not having full rank. The

effective number of observations then will be lower than N namely ). rk (X,,,,).

We will split the estimation problem into two steps: The first one takes only the
basic constraints (10) and the normalization constraint (12) into account. Instead of
iteratively solving a set of normal equations we iteratively solve an eigenvalue problem,
which practically needs no approximate values. The solution is a direct generalization
of the classical procedure for directly solving a problem of type (9) with constraint
groups of size 1. The second step then updates this estimate based on the additional

constraints (13).

This two step procedure is also given in (MATEI & MEER 1997, LEEDAN 1997).



3.2 Minimizing the Algebraic Distance

We first give the classical solution which does not take the uncertainty of the observed
values and the additional constraint into account. In order to show the simplicity of

the extension we write this well known solution more in detail.

We give a solution to the problem
~ 3 ~T~
Al@)B=0,1=1,..1 BB=1
The first constraint will not be fulfilled by the given observations y,; leading to the
residuals w; of the constraints

wi=w(y,B)=Al(y)B,i=1,..,1

Therefore we minimize the algebraic distance
I I
Q=) wiwi=8" (Z Aily,) AJ(yi)) B unde BTA=1
i=1 i=1

This minimization problem leads to the solution: 8 = €;(A;)|A;(M) = min stating the

optimal estimate B to be the smallest normalized eigenvector of the matrix

M=) Ai(y:) Al (y;) = Aly) A" (y)

i=1
This is a direct solution, as no approximate values are necessary. This solution can
also be used in case the constraints are linear only in the unknown parameters but
possibly nonlinear in the observations (cf. (DUDA & HART 1973), pp. 332, pp. 377
and (TAUBIN 1993)).

The solution obviously is suboptimal as it depends on the mutual scaling of the ob-
servations and does not take into account their uncertainty. Taubin gives a solution
which is invariant to the scaling of the variables (TAUBIN 1993), which is identical to
the optimal solution for uncorrelated observations with the same variance. Matei and
Meer (MATEI & MEER 1997) give a solution to the case of observations of different
weights.



3.3 Minimizing the Weighted Algebraic Distance

The following solution is equivalent to the one of Matei and Meer %, but it is much

simpler.

We just need to take the uncertainty of the residuals w;(y,, B) of the constraints into

account. The covariance matrix follows from (9) and is given by

.
awi yi7 /8
) S (7; : ) (15)
y=5,8=B Yi  ly=5,8=5

This leads to the following optimization problem which in case of normally distributed

o Jy;

observations yields the ML-estimate: Minimize the form

i

I
Q=w'S,w=> w/= w; — min (16)
i=1

under the given constraints. The pseudo inverse is to be taken in case the constraints
are linearily dependent. It is known from estimation theory, that the minimum of

PN B N, 2
l=e X, e=wik w

from (14) is identical to the minimum of € in (16) in case the same constraints are

used.

3.4 Specialization to bilinear constraints

We now specialize to the structure of our constraints. Together with the factorization

of w we therefore need to find the optimal value for B minimizing

+

Q=p8"TAT(y) (B(ﬁ)zyyBT(ﬁ)) Aly) B

~T A~ ~
under the constraint 8 B = 1. This leads to the optimal estimate 3 being the normal-
ized eigenvector corresponding to the smallest eigenvalue of the matrix® (FORSTNER
2001)

M =A"(@) (BB=,8"B) Aw

5)except for the bias, which is taken into account in theirs, which, however, according to a personal
communication with P. Meer, has only minor influence on the result.

6)Matai and Meer first take the Jacobian of  with respect to the unknowns 8 and from that derive
a generalized eigenvalue problem to solve for 3. Here we obtain an ordinary eigenvalue problem.



Observe, we need the estimated values B for the error propagation of w(y,B) in
B(,@)EyyBT(,@) and the fitted observations g in the left factor AT(g). Therefore we

~(rv—1
need to iterate. This is done by using the unknown parameters ,8( ) and the fitted

(

. ~(v—1 . . . . .. .
observations y'” ) from the previous iteration and determine the minimum eigenvector

A(y

B of

(v-1) ~(v—1)

)Zy,B' (8

> ~)

) Aw) B =B (17)

ATG*™) (B(A

The fitted values of the observations can be determined individually from

~(v—1)

~(v— ~v-1)
yz(' = (I - zyiyiBZT(ﬁ

) (88" )%,,8TE" ) BB ) )| (9

Taking the constraint BTE = 1 into account we also can determine the covariance
matrix X5 of the estimated value from g5 = AT (7) (B(,@)EyyBT(E)>+ A(y)]" using
its null space ,@ The estimated variance factor is given by 62 = Q/R. The optimum
value of € is taken from (16) and the redundancy R is the number of effective constraints
G off reduced by the number of effective unknowns U — 1, i. e. R =} 1k (Zyw;) —
(U — 1) the number of unknown parameters 3; being U. In case the redundancy is
large enough, say > 30, this can be used to determine the estimated covariance matrix
of the unknown parameters

o e
Yig5 = 00253

3.5 Further Constraints

In case of further constraints are to be fullfilled we need to update the estimate. This is
performed by taking the estimates ,@ as observations and impose the desired constraints
(cf. (MATEI & MEER 1997) leading to new estimates B.

4 Estimates for 3D Lines

We now present estimates for 3D lines, the procedures for points are similar (FORSTNER
2001).

4.1 Minimizing the Algebraic Distance for Estimating 3D Lines

We want to determine the coordinates of a 3D line (cf. Fig. 4.1). We assume I image

points x}, and J image lines lg-k to be observed in up to K images, the second index



indicating the image in which the feature has been observed. The observed lines are

images of parts of the 3D line, the observed points are images of 3D points sitting on

AXOZ

the 3D line.

Xoa

Figure 2: 3D line L; observed from j cameras. In two of the images the line is observed,
namely 1, in image 2 and 1}, in image 4. In the other two images 1 and 3 two points X,
and X, on Ls are observed leading to x|, and x};. Estimation of L; uses the incidence
of the projecting lines L}, and L}; and of the projecting planes AL, and Al, with the 3D
line Ls.

We first want to give the solution for a 3D line L when minimizing the algebraic

distance.

In case we observe the j-th line I, in image k£ we have the line-plane constraint, namely
the projecting plane A’ to pass through the 3D line

0=wj,=Aj NL=TT(A))L
where the projecting plane again can be determined from A%, = Py Tk

In case we have the image point x;, of a 3D point lying on the unknown 3D line we have

the line-line constraint, namely the projection ray L, to pass through he unknown line
—'T
. . . . . =T c e .
where again the projecting line can be determined from L;, = P, x/,. Minimizing

_ § : 2 § : T
Q= Wik + ij.ij
ik ik



is identical to minimizing

R
Q=L" (Z L, L'y + Z TT( ;'k)]TT( ;k)) L
ik ik

under the constraints LTL = 1 and LTL = 0. The direct L solution for L without the
second constraint is given by the normalized smallest eigenvector of

_,
N = Z L, L, + Z TT(A%,)TTT(A%) (19)
ik ik

The final solution, which takes the Pliicker constraint into account is given by

X A~ 1 =~ ~T = e
L=L- EEZEL(L EEEL) <L,L>
Iteration might be neccessary as the correction of the line due to the Pliicker constraint

changes the matrix N. A second iteration has been shown to be sufficient.

4.2 Minimal Solutions

The above mentioned direct solution require a minimum number of observations to be

available.
The estimation of the 3D line is possible if we have
1. at least two non parallel projecting planes A’ or

2. at least one projecting plane A’ and two projecting lines L” which are not parallel
to A’ and do not meet the plane in the same 3D point or

3. at least 5 (!) linearily independent projecting lines L.
Then the rank of the matrix N is five.

Actually there is also a minimal solution for the 3D line, having four degrees of freedom,
in case of only four lines meeting it. The matrix N in general then has rank 4, thus
there is no unique eigenvector corresponding to the smallest eigenvalue. If the nullspace

of N is spanned by the two vectors e; and e, the unknown 3D line is
L=Xe+(1—-M\e
for some A. The Pliicker condition
L'CL=0

leads to a quadratic condition for A\, which then yields two solutions for the unknown

line. This special solution, however, is not contained in the general setup.



4.3 Optimal Estimation of 3D Lines

Now we take covariances of the observation into account.

The covariance of the j-th residual w;, = TI'T(A;-,C)L = —F(L)A;-k of the line-plane
constraint is given by
»® =TI N, T T(L)

WKWk

where the Jacobian 0w /0y = F(L(”)) needs to be evaluated at the estimated 3D line.

The covariance matrix of the projecting plane A;- can be determined from
T
S, = PESu, e, Prt (e ® 1), (15 @ 4) (20)

assuming independence of 1;, and P, and the index p = vec(P") indicating the vector
containing the elements of the projection matrix P row-wise. The variance oiik of the

i-th residual wy, = L' ;';CL of the line-line constraint is given by

, ~)\ " ~(v)
Ty = | L Yy | L

The covariance matrix of the projection line L], can be determined from
T
By = Qp Zager, Qr + (xie © 16) (X3, © L) (21)

with the index q = vec(Q") indicating the elements of the projection matrix Q collected
row-wise. The covariance matrix ¥_, can be determined from the covariance matrix

3, using the Jacobian (8). Omitting the iteration index we need to minimize Q =
2 T s+
> ik wik/awfk + Zj Wj/czwjkwjkwjk or

L, LT
_ 71T ik™ ik + T
R DA L PO

ik Wik ik

under the constraints LTL =1 and LTCL =0

When only taking the first constraint into account we therefore obtain the estimate L
as the smallest normalized eigenvalue of

LZLZ +
N= 30 2t 4 S TR (MD)Ba,4, T (@) AL (22)
FLmgul

Observe, the determination of the matrices I(L) in N needs to be based on the fitted

values L sz and A’ initiating an iteration scheme.

jk?



Figure 3: three images of a polyhedron. In each image the four points X;,i = 1,2,3,4
and the three lines L;,j = 1,2,3 have been observed. Based on hypotheses about the
object, image points may be used to determine the geometry of the 3D line and image
line segments can be used to determine 3D points. Observe, point 1 in the right image
3 does mnot correspond to the others. The coordinate system is in the centre of the
polyhedron. On the right hand the numbering of the points and lines is given together
with the coordinate system.

Taking the Pliicker constraint into account we obtain the final estimate

~ ~T —~

= ~ 1 ~ =~To
L=L- 5N+ (L N'L)"'L L

The covariance matrix of the final estimate now is

~~T 9
=X;; — ZpzLL Xzp/0
using X7z = N (cf. 22) with its nullspace L.

For determining the pseudoinverse of 3, = s (X)2 L TT(X) we need its rank. The
point-point constraint w = 0 has two degrees of freedom, which easily can be seen in
case the line is approximately parallel to the Z-axis through the origin: then a point
in the X'Y-plane close to the origin lies on the line if its two coordinates are identical
with those of the intersection point of the line with the XY-plane. Therefore the rank
of 3., is 2, and the null space has dimension 2.

5 Example

Fig. 3 shows three images of a polyhedron. The three projection matrices P; for points
have been estimated using a DLT based on 13 observed points exploiting the special
structure of the polyhedron. The object coordinate system is in the centre of the
polyhedron with the axes as shown in the figure.



The covariance matrices for the image points and the image lines are given by the
feature extraction program. The image coordinates of the points are measured with
a standard deviation of 0.2 to 0.3 pixels. The lines are measured with a standard
deviation in the position across the line between 0.2 and 0.9 pixels and a standard
deviation in direction between 0.5° and 2°, except for the two short lines 1 in image 2
and 3, which have a standard deviation of appr. 10° and 20° in direction.

We give the results for the estimated points, once when minimizing the algebraic error,
once when using the ML-estimate. In all cases we assumed the orientation of the
cameras to be error free. As point 1 in image 3 is not corresponding to the points in
the other images, it is not used. We also give the estimated o, being the factor by
which the standard deviations provided by the feature extraction are too optimistic.
The results for 3D points are:

point | type | X [mm] Y [mm] Z [mm]| |red. &y[l] | 0% [mm] oy [mm] o [mm]

1 alg. 3.90 -0.16 -0.14 | 4
opt. 4.20 0.03 0.09| 4 1.56 0.35 0.27 0.31

2 alg. 1.95 -0.09 -0.06 | 12
opt. 1.99 -0.01 -0.07 | 12 2.08 0.88 0.70 0.96

3 alg. 2.04 1.89 -0.07| 6
opt. 2.13 1.95 0.03| 6 3.92 0.57 0.46 0.62

4 alg. 2.25 0.14 2211 6
opt. 2.08 0.04 1.04 | 6 4.41 0.49 0.41 0.58

The ML-estimates appear to be better than the algebraic estimates. This is confirmed
by the average of the 6 normalized distances compared with their mean. The r. m.
s. distance reduces from 1.31 mm to 0.96 mm. The estimated values for & are in the
range of 1.5 to 4.5 which suggests the estimates of the feature extraction to be a bit
optimistic. The standard deviations of the estimated 3D coordinates are in the range

betweeen 0.3 and 1.0 mm, point 1 being most precise and point 2 being worst.

The results for 3D lines are:



line | type | Li[1] Lo [1] L3 [l] L4 [mm] Ls[mm] Lg[mm] |red. 7,[1]

1 alg. | 0.999 0.009 0.008 0.000 -0.157 0.187| 8
opt. | 0.993 0.041 0.105 -0.007 0.443 0.238 | 8 2.10

2 alg. | -0.024 -1.000 0.019 -0.042 -0.378 -1.981 | 8
opt. | -0.081 -0.995 -0.062 -0.146 0.131 -1.908 | 8 1.02

3 | alg. | 0.102 0.067 0.992 -0.011 -2.018 0.138 | 8
opt. | 0.072 0.047 0.996 0.054 -2.085 0.095 | 8 2.00

The average angular between all pairs of 3D lines error increases from 5.58°™ to 6.48°1,
The reason might be, that the precision of the observed edges is not very high in this
case, but due to the non adequate weighting in the algebraic minimization do not
influence the result, as the coefficients L;; are two orders of magnitude lower than the
corresponding coefficients TT (A ;).

The results suggests that the a priori estimates for the variances of the lines might be

too optimistic.
6 Conclusions

The paper presented a new technique for nearly direct optimal estimation and thus
significantly simplified the procedure by Leedan, Matei and Meer. It gave a new rep-
resentation for geometric relations in the framework of algebraic projective geometry.
This allows to exploit the bilinearity of all geometric relations in an explicit manner and
to perform rigorous error propagation of variances and covariances. The observations
may be arbitrary correlated, even may have singular covariance matrix. An example
with real data demonstrates the feasibility of the approach.

The results can be transferred to all estimation problems where the unknown parame-
ters appear linearily in the constraints, such as the estimation of the projection matrix
or the fundamental matrix, but also for general estimation of points, lines and planes

for given points, lines and planes incident to the unknown entities.

In all cases the solution can be initiated by the algebraic minimization, practically
providing direct optimal estimates. Finally, the estimates yield estimated covariances,
which may be used to characterize the statistical uncertainty of the result.
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