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Abstract. This paper integrates statistical reasoning and Grassmann-
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The multi-linearity of the forms allows rigorous error propagation and
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all objects in homogeneous coordinates and expressing all relations using
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1 Motivation

Many Computer Vision tasks involve grouping of geometric elements within one
image or in 3D space. This requires testing geometric relations such as iden-
tity, incidence, parallelity or orthogonality. Due to uncertainty of the elements,
checking these relation requires thresholds which in general are difficult to set.

The goal of this paper is to integrate statistical and geometric reasoning by in-
tegrating statistical testing theory and Grassmann-Cayley algebra. Grassmann-
Cayley algebra has been introduced by [1] and [2] and showed to be useful for
analyzing the geometry of image triplets [3]. Representing geometric entities
in projective space, thus using homogeneous coordinates, leads to less singular
cases, includes entities at infinity and in most cases leads to multi-linear rela-
tions, which itself allows to perform error propagation rigorously. On the other
hand there is a profound knowledge about optimal hypothesis testing [9, 7] which
is appropriate for checking the validity of geometric relations. The use of sta-
tistical testing theory reduces the choice of thresholds to the choice of a single
value, the significance level.

What is lacking, is the integration of both concepts. This paper integrates
statistical reasoning and Grassmann-Cayley algebra for making 2D and 3D geo-
metric reasoning practical. The multi-linearity of the forms allows rigorous error
propagation and statistical testing of geometric relations. This is achieved by
representing all objects in homogeneous coordinates and expressing all relations
using standard matrix calculus. The goal is to derive a simple rule for testing
the basic relations between 2D points and lines, and 3D points, lines and planes,
namely identity, incidence, parallelity and orthogonality.

The solution proposed have been developed parallel to the one given in [6].
They are equivalent to those but much more transparent.
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2 Geometric Elements and their Relations
2.1 Representation of Geometric Elements

We deal with points, (infinite) lines and planes in 2D and 3D space and represent
them in projective space so that entities at infinity can be used, too. Because
we are in projective space, we will use homogeneous vectors, denoted as “v”
in upright bold letters, then Av represents the same element as v. Euclidean
vectors will be used with italic bold letters “v”. Furthermore we will use the
convention that homogeneous resp. euclidean matrices are denoted as sans serif
letters “S”,“S”.

Elements in 2D have lowercase letters “v”, “v”; elements in 3D have upper-
case letters “V”, “V”. For points we use the letters “x”, “y”, “X”, “Y”, for

lines “17, “m”, “L”, “M” and for planes “A”, “B”. The notation is shown in
table 1.
[ | 2D | 3D |
point | x' = (u,v;0) = (z8,2) | ___ X = (U, V,W;7) = (Xq, X)
line | 1" =(a,b;¢) = ({",lo) | LT = (L1, La,Ls; La,Ls, L) = (LT, L{)
plane - AT =(A,B,C;D)= (AT, A)

Table 1. Homogeneous representation of points, lines and planes in 2D and 3D. A line
in 3D is represented with Pliicker coordinates, see text for details.

Note that a 3D line L is represented in Pliicker coordinates yielding a homo-
geneous vector L = (LT, L) which has to fulfill the Pliicker condition

LiLy+ LoLs+ L3lg=L"Lo=0 (1)

From the construction of a line given two points, cf. sec. 2.2, the interpretation of
the line coordinates will be clear: the vector L = (L1, Lo, L3)T is the direction of
the line and the vector Ly = (L4, Ls, Lg) T is the normal of the plane through the
line and the origin. The Pliicker condition expresses the orthogonality condition
of these two vectors.

The dual of a geometric entity is overlined, so that e.g. the dual of a line L
is denoted as L, which is defined as

=T . . (01
L' = (L4, Ls,Le; L1, Ly, L3) = (QL)" = (L, L") with Q= (I 0) 2)

The index zero in the definition of the geometric entities in table 1 is chosen
such that the distance d, ¢ of the objects to the origin are:

- [Xol Aozw dL0=—|LOI
X T 1A T L]

dzo = — dip =7 dx,o

2.2 Construction of Geometric Entities

We use two basic operations to construct a new geometric entity u from two
given entities vy and va: (i) the join u = vy A vy yields the minimal linear space
containing both entities v; and v3, e. g. a line can be the join of two given points.



(ii) the intersection u = v1 N v, yields the maximal common linear subspace of
vy ad va, e. g. a point can be the intersection of two given lines. Note that join
and intersection are dual operators, i. e. u = v; Avs & U=V N V2.

2D Entities. We can construct a 2D line 1 as the join of two points x and y
and a point x as the intersection of two lines 1 and m

l=xAy=xxy=Sx)y =-S(y)x=-yAx (3)
x=l"m=1xm=5()m=-S(m)l=-mAl 4)
with the skew matrix S(x) of a 3-vector x and its nullspace N (S(x))
0 —w v
s = BNV g N(S(x)) = x (5)
dy
v u 0

Eq. (4) follows from (3), because of duality: 1 = x Ay < 1 = xNy. The matrix
S(x) induces the cross product and at the same time is equal to the Jacobian of
the cross product useful for error propagation.

3D Entities. We can construct a 3D line L as a join of two points or as inter-
section of two planes with the antisymmetric forms

L=XAY= MTX)Y =-T(Y)X=-YAX (6)
L=ANB=AAB=QAAB)=TI(A)B=-T(B)A=-BnA (7)

with Q from (2), the Jacobians and the nullspace of its transpose

LAXAY) [ XI -X 3
mx = 0800 - (5%, DY) MmED=x @)
6x4
a) = AP _ qura) NATA)=A )

Observe T (X)X = 0,VX and rkTT(X) = 3. The line coordinates obviously are
bilinear in the homogeneous coordinates for points and for planes. Setting the
fourth coordinate of the two homogeneous vectors to 1, we find L =Y — X and
Ly = X xY with the Euclidean coordinates X and Y of the two points. Eq. (7)
follows from (6) because of duality reasons.

We also obtain the intersection of a line and a plane and the join of a point
and a line with anti-symmetric forms

X=ANL=TT(A)L=-T(L)A=T (L)A=-LNA (10)
A:X/\L:ﬁT(X)L: —ML)X=rL)X=-LAX (11)
with the skew symmetric Jacobians and their null space
rwy = 5 = (T3 ) vy = (ghi) e
4x4
= _8(LOA)_ — _ L()L()XL
rm = 2204 ) wrm) = (5S57E) o




Again eq. (11) follows from (10) because of duality.
If the line is given by the intersection of two planes L = A N B we have the
anti-symmetric matrix

MANB)=AB" —-BAT=—-(BNnA) (14)

which can be easily verified using (7) and (9). Observe the null space of the
matrices to be of rank 2, therefore rkI"(L) = rkl (L) = 2, and T(L)[(L) = 0,
due to (1).

Finally we have two constructors using three entities: determining a plane A
from three points X, Y and Z resp. a point X from three planes A, B and C
leads to the trilinear forms:

A=(YAZ)AX=T(TT(Y)Z) X =[(TMZ)X) Y =(MX)Y)Z (15)
X =(BNC)NA =T (TT(B)C) A = (TT(C)A) B=T(TT(A)B) C (16)

Table 2 summarizes the expressions for constructing new geometric entities.

entities construction expression eq.
points x,y l=xAy 1=S(x)y = -S(y)x 3)
lines 1, m x=1Nm x = S(I)m = —S(m)1 (3)
points X, Y L=XAY L=T(X)Y = —T(Y)X (6)
planes A, B L=ANB L=T(A)B=-TT(B)A (7),(2)
point X, line L| A=XAL A =TT (X)L=-ML)X (11)
plane A lineL| X=ANL X =TT(A)L=-T(L)A (10)
points X, Y, Z | A=XAYAZ|ITXAY)Z=T(YANZ)X=T(ZAX)Y | (15)
planes A,B,C | X=ANBNC|[(ANB)C=T(BNC)A=T(CNA)B| (16)

Table 2. Construction of new geometric entities. The matrices S, T, T, T and T are
given in egs. (5), (8), (9), (12) and (13) resp. All forms are linear in the coordinates
of the given entities allowing rigorous error propagation.

2.3 Geometric Relations between Entities

We explore four types of geometric relationships between entities: identity, inci-
dence, parallelity and orthogonality. Identity can be checked by the difference of
the vectors representing the entities, parallelity and orthogonality can be checked
easily using the direction vectors of the lines and planes, see table 3. Here we
want to focus on possible incidence relations.

Incidence of two objects can use the inner products, namely for points and
lines in the plane, for points and planes in 3D-space and for pairs of lines

<x1>=x"1=0 <X,A>=X"A=0 <LM>=L™M =0 (17)

The first two relations directly follow from the Hessian form of the 2D line and
the plane. We can prove the last relation < L,M >= 0 easily: let L the join
L =XAY = —T(Y)X. Then the intersection condition is equivalent to the
condition that the point X to lie in the plane A = Y AM = T''(Y)M which
leads to XTA = (XTTTT(Y)) M=-L™™M =0.



Finally we want to test if two lines intersect, in case they are given by two
points X,Y or two planes A, B, being 4-linear forms

IX1,X2,X3,X4| =0  |A1,As,A3,A4/=0 X'(AB"-BAT)Y =0

The first and second condition results from the coplanarity of the points or
from the intersection condition for four planes. The last condition uses X TR =
XT(-M(L)Y) = 0 where the plane R = Y AL is the join of Y and L = AN B.

3 Statistical Tests

3.1 Error Propagation

We represent the uncertainty of a vector & using the second moments of its
probability distribution, namely its covariance matrix ¥,, = E[(x — u;)(x —
pz) 7] and write its first and second moments as £ ~ M (u,, X;;).

The covariance matrix contains on its diagonals the variances 02, = X,.,,,
with standard deviations o,, and covariances 0,;; describing the mutual sta-
tistical dependencies, observe Ui,- =0gu;-

We use the standard technique for error propagation: Given a stochastical
vector with first and second moments y ~ M(u,, ¥,,;) and a vector valued

function y = f(z) with Jacobian J = (0f(x)/0z) then the second moments of
yarey ~ M(f(i,),JE22t7) (cf. [7], eq. 233.2).

"~ Our tests all work on bilinear functions z = z (z,y) of two stochastical vectors
z~ M(p,,X,,) and Yy~ M(uy, Xyy). They can be written in the form

z=Uy)z =V(z)y (18)

and give the Jacobians U = (9z(z,y))/0x and V = (0z(z,y))/0y (cf. ta-
ble 3, column 5). For uncorrelated vectors & and y we therefore have ¥,, =

Ulpy) X e UT(p,y) + V(uy)SnyT(uy). If the vectors ¢ and y are observed,
then these are best estimators for their means p, and p,, therefore

.. = Uy) ZoaUT(y) + V(@) 5,V () (19)
For trilinear forms u = U(y, z)z = V(z, z)y = W(z,y)z we obtain by analogy

Y= U, U +VE, VWS, WT

which can be used to derive the uncertainty of planes from three points or of the
point from three planes.

3.2 Uncertainty of Homogeneous Coordinates

Homogeneous vectors x represent the same object if multiplied with an arbitrary
factor A # 0. We do not want to normalize during geometric reasoning. But we
need to fix the length of the vector in order the elements not to be uncertain due
to scaling. For 3D-lines we in addition have to take the Pliicker condition into
account. As we need covariances and their inverse we have to solve two tasks:
(i) impose restrictions on a given covariance matrix and (ii) impose restrictions
on the inverse of a given covariance matrix.



In both cases it is of advantage to know the nullspace H of the matrices in
advance. We just assume, that either each given covariance matrix has full rank
or its nullspace is contained in the required nullspace. This assumption will be
no restriction.

Imposing restrictions onto a covariance matrix: Given a stochastic vector
z2© ~ M (ug)), Z‘fgg) and constraints g(z(?)) = 0, determine the vector = and
its covariance matrix X, fulfilling these constraints

dg(z)

9z (0
Obviously X,, has null space N(X,;) = H. The results follow from [7], eq.
355.2, observing that in [7] 4 are the residuals of the estimates.

We use this relation to force a covariance matrix to have the correct nullspace
and thus the correct rank, namely for points, planes and lines

5o = P,EOP,, with Py=1—HH H)"'H" and HT = (20)

N(Ze)=x, N(Zu)=1, N(Zxx)=X, N(Za4)=A, N(Zr1)=(L,L) (21)

The parts x, 1, X, A and L in the null spaces result from the constraint %gTz =c
with d(3x"x)/9x = x etc. The additional part L in the nullspace of ¥, results
from the Pliicker condition (1). In our application we only force the length of the
vectors to be non-stochastic, thus the vectors are not changed in value, they just
obtain the correct stochastic properties, i. e. covariance matrix. We also assume
the Pliicker condition to hold for a given line vector.

Imposing restrictions onto the inverse of a covariance matrix: Given a
stochastic vector z ~ M(p,, X'z,) fulfilling constraints g(z) = 0 determine the
pseudoinverse X of its covariance matrix (cf.[7], eq. 155.21):

=t HH'H)\ _ (B H\ ' : _ 9g(x)
((HTH)HT 0 >_(HT 0) with  H' = S (22)

We use this procedure for inverting a singular matrix with known nullspace and
for inverting a matrix while imposing the given nullspace and rank condition
onto it. I. e. (22) can also be used if X, has full rank and we would like to
impose the rank condition with the correct null space onto its pseudo inverse.

3.3 Testing with Singular Covariance Matrices of Known Nullspace

In the follwing we assume all variables to be normally distributed, replacing
M(p,, ¥:z) by N(p,, Xzz). This is reasonable as long as the random errors
are small and follows from the maximum entropy principle if only the first and
second moments are known.

We use the following theorem from statistical testing theory (cf. [7], sect. 272):
Test of £ = p: Given a n-vector & with normal distribution & ~ N(u,X),
rk¥ = r < n, and known nullspace N'(X) = H, being a n x (n — r)-matrix, the
the optimal test statistic for the hypothesis H, : ® = p is given by

T=(x—p)'ZHz-p ~x (23)



where x2 denotes the x2-distribution with r degrees of freedom and the pseudo
inverse is determined from (22). In the case of full rank the pseudo inverse is
to be replaced by the normal inverse. In case of n = 1 the test statistic may be

replaced by ¢ = Z— s N(0,1)

T

4 Testing Geometric Relations
4.1 The Tests

Tests based on an Inner Product: Tests based on an inner product are used
to check incidence or orthogonality of vectors (cf. table 3): no. 2 x € 1, no. 5
1l mno.8X €A, no. 11TLNAM#P,no. 12L 1L M, no. 15 L || A, no. 18
A 1 B.

Test of the Identity of two Homogeneous Vectors: Identity of two ho-
mogeneous n-vectors is equivalent to checking U = AV or UA 'V = 0 It thus
can be based on proportionality or on the outer product of the vectors which
should be zero. The outer product has dimension (%) containing all different
2 x 2 subdeterminants of (U, V).

(1) In the simplest case n = 2 of checking the parallelity of two 2D-lines 1 || m,
no. 4 in table 3 we use the determinant of the two not necessarily normalized
2D-directions I and m

d= |l,m| = albm — ambl = (—bl,al)m = —(—bm,am)l = (lJ‘)Tm = (mJ‘)Tl
inducing the vectors I and m™' being perpendicular to I and m.

(ii) The case n = 3 occurs when checking the identity of 2D lines and points
and when checking the parallelity of 3D vectors. Here we also check the outer
product, equivalent to the cross product of the entities, cf. tests no. 1 x =y,
no.31=m,no. 10L || M, no. 14 L L A and no. 17 A || B in table 3 using
the skew matrix S(z) of a 3-vector from eq. (5).

(iii) The case n > 3 occurs when checking the identity of 3D points no. 6
X =Y, 3D planes no. 16 A = B and 3D lines no. 9 L = M. Then we would
need to check 6- or 15-vectors of all 2 x 2 subdeterminants contained in the
outer product. But the tests actually have only 3 and 4 degrees of freedom resp.,
indicating all these determinants to be statistically dependent. We therefore
develop a test statistic with lower dimension based on the proportionality but
taking all elements of U and V into account, in order to obtain a sufficient test
statistic (cf. [9]). This way, we gain numerical efficiency at the expense of some
symmetry in the test.

We choose an index ¢ € (1,...,n) such that |U;V;| >> 0 and solve for A
yielding A = U;/V;. Then we determine the bilinear form

D=V,U-UYV with  E(D)=0
The Jacobians 0D/0V = C;(U) and 9D /90U = —C;(V) can be used to write
D = C;(U)V = —C;(V)U with C;(U) = Ue] — Ui/ and e;=(0,...,1,...,0)

%



The covariance matrix of D is Xpp = C;(U)ZyyC] (U) 4+ C;(V)ZyrCl (V
Observe, in general it has null space e; (cf. table 3, rows 6 and 16) as e] C;(X) =
07, VX For 3D-lines we in addition have L' C;(L) = M Cy(L) = A\ LT
AuMT, VL if < L,M >= 0, which then are in the null space of X; and

X na- Thus we have null space (e;, L) or (e;, M) (cf. table 3, line 9).

1 2 3 4705 6
No. entities relation |dof|test nullspace of X 44

1| points x,y X=y 2 |d =S5(x)y = —S(y)x xory
2| point x, line 1 xe€l 1ld=x"1=1"x
3| lines I,m I=m |2 |d=S1)m=-S(m)l lor m
4 I|lm |1]|d=(""m=—-(m%)"I
5 11lm 1ld=U"m=m"l
6| points X, ¥ | X=Y |3 |D=C(X)Y =-C;(Y)X e;
7|point X, line L| XeL |2 |D=T (X)L=-ML)X| ((Z7,07,X)
8|point X, line Al XecA [1[d=XTA=ATX
9| lines L,M L=M |4|D=C(L)M=-C;(M)L|(e;,L) or (e;, M)

10 L|M |2|D=SL)M=-SM)L Lor M

11 LAM#£0|1|d=L'M=M 'L

12 LIM |1|d=L"M=M'L

13[line L, plane A| Lec A [2|D=T"(A)L=-T(IL)A| ((L{,0)",A)

14 LLA |2|D=S(L)A=-S(A)L Aor L

15 L||A |1|d=L"A=A"L

16| planes A,B A=B |3 | D=C(A)B=-C;(B)A e;

17 A|B |2|D=SA)B=-5B)A Aor B

18 AIlB |1d=A"TB=B"A

Table 3. shows 18 relationships between points, lines and planes useful for 2D and 3D
grouping, together with the degrees of freedom (dof) and the essential part of the test
statistic. The index i in the condition X = Y, L = M and A = B is to be chosen
such that | X;Y;| >> 0 etc. Observe, all tests are bilinear in the coordinates of the
involved entities, thus allow rigorous error propagation. Column five implicitly contains
the Jacobians of the differences d etc. as all are of the form z = U(y)z = V(a)y,

cf (18).

Checking Line-Point and Line-Plane-Incidence: Checking 3D line-point
and line-plane incidence (line 7 and 13 in table 3) require some elaboration. The
idea is to check whether the join Dx = X A L or the intersection Dy = ANL
yields an undefined object, plane or point resp., i. e. the resulting entity is O.
Both conditions have 2 degrees of freedom. This can be seen if we choose the 3D
line to be the X-axis. Then the point needs to have coordinates (1) Y = 0 and
(2) Z = 0, whereas the plane needs (1) to be parallel to the line and (2) have
distance 0 to the origin. The nullspaces of ¥p, p, and ¥ p,p, therefore have
dimension 2. We easily can verify that

(%) s

(L7,0) (LT,0)

o ) ML) =0



For the point X we have TT(X)X = 0 and '(L)X = 0. This proves X €
N(ZDpypy)- On the other hand we have (LT,0)7 (L) = 0 and — with some
intermediate steps — (LT, 0)TT(X) = L which is in the nullspace of X7, due to
(21). A similar reasoning holds for the plane parameters A.

4.2 Performing the Statistical Tests

We are now able to give a general scheme for testing geometric relations. For
any test do the following

1. determine the difference d, d, D or D using one of the two equations in
column 5 in table 3.

2. determine the covariance matrices of the two geometric entities by imposing
the length and for 3D lines the Pliicker constraint following eq. (20) using
(21). This is not necessary if the covariance matrix already has the correct
rank and nullspace.

3. determine the covariance matrix of the difference d, d, D or D using eq. (19)
and the Jacobians from table 3 in column 5. The Jacobians can be taken
from these equations all having the structure of eq. (18).

4. determine the inverse covariance matrix, either by direct inversion of the
variance or using eq. (22) and the null space given in column 6 of table 3.

5. determine the test statistic 7' from eq. (23) being x2-distributed with the
degrees of freedom (dof) r given in column 4 of table 3.

6. choose a significance number o and compare T' with the critical value x? . If
T> X72",a then the hypothesis that the spatial relation holds can be rejected.

It is advisable to normalize the coordinates of the entities such that the homoge-
nous coordinates are of comparable magnitude, compare the discussion in [4].

5 Example and Conclusions

We are working on reconstructing polyhedral objects from multiple images,
cf. [5]. After feature extraction we first determine 3D nodes by stereo analy-
sis, (cf. fig. 1(a),(b)) where nodes are corner points with two or more half lines.
Then we start with a 3D grouping process on these nodes to find polyhedral
surfaces. We use both the neighborhood relations from the feature extraction
and the stereo analysis and the geometric relations of the various involved 3D
entities, namely points, lines and planes.

During the grouping process we sequentially perform various geometric tests,
which are induced by the known neighborhood relations. We first test the copla-
narity of pairs of planes, where each plane is induced by a corner point and two
half lines. We then search for additional half lines belonging to such a plane. We
finally test for collinearity of half lines belonging to two different 3D nodes in
order to merge those half lines to edges of the polyhedral, cf. fig. 1(c).

As the used points and lines are uncertain one needs thresholds for testing.
Experiences showed that an adhoc definition of these thresholds gives unsatis-
factory results, namely inconsistencies, asymmetries of the decisions and unpre-
dictable dependencies of the results on the choice of the thresholds. Last not
least new datasets required new settings.



Fig.1. 3D grouping of 3D nodes (b) extracted from multiple images (a), cf. [8], (c)
shows resulting planar surfaces of two buildings.

Using the proposed statistical tests greatly simplifies the control of the group-
ing process as only the significance level has to be fixed.

Observe, statistical tests in general only answer the question whether the
hypotheses should be rejected. Thus we only get objective arguments against
grouping hypotheses, but no positive confirmation. Thus the function of the
statistical tests can be seen as a filter rejecting wrong grouping hypotheses.
An example are short nearly collinear line segments which are very far apart:
though the statistical test might result in a small, i. e. statistically insignificant
test statistic, one might not like to group them to one long straight line. The
decision on such two line segments needs to be based on other criteria.

The proposed tools have been implemented in C++ and used within our
grouping software. The current version only works on unconstraint geometric
entities and in case the coordinate systems of the entities including their covari-
ance matrices are consistent. We are currently extending the software to handle
these cases.
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