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Abstract. Optimally reconstructing the geometry of image triplets from
point correspondences requires a proper weighting or selection of the
used constraints between observed coordinates and unknown parame-
ters. By analysing the ML-estimation process the paper solves a set of
yet unsolved problems: (1) The minimal set of four linearily independent
trilinearities (Shashua 1995, Hartley 1995) actually imposes only three
constraints onto the geometry of the image triplet. The seeming contra-
diction between the number of used constraints, three vs. four, can be
explained naturally using the normal equations. (2) Direct application of
such an estimation suggests a pseudoinverse of a 4 × 4-matix having rank
3 which contains the covariance matrix of the homologeous image points
to be the optimal weight matrix. (3) Instead of using this singluar weight
matrix one could select three linearily dependent constraints. This is dis-
cussed for the two classical cases of forward and lateral motion, and clar-
ifies the algebraic analyis of dependencies between trilinear constraints
by Faugeras 1995.
Results of an image sequence with 800 images and an Euclidean parametri-
zation of the trifocal tensor demonstrate the feasibility of the approach.

1 Motivation and Problem

Image triplets reveal quite some advantage over image pairs for geometric image
analysis. Though the geometry of the image triplet is studied quite well, im-
plementing an optimal estimation procedure for recovering the orientation and
calibration of the three images from point, and possibly line, correspondencies
still has to cope with a number of problems.

1.1 The Task

This paper discusses the role of the trilinear constraints between observed coor-
dinates and unknown parameters [12, 13, 2, 8, 16] within an optimal estimation
process for the orientation of the image triplet and shows an application within
image sequence analysis.

The task formally can be described as following. We assume to have observed
J sets (P ′(x′, y′), P ′′(x′′, y′′), P ′′′(x′′′, y′′′))j , j = 1, ..., J of corresponding points
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in an image triplet. For each set of six coordinates yj = (x′, y′, x′′, y′′, x′′′, y′′′)T
j

of three corresponding points we have a set of Gj generally nonlinear constraints,
here the trilinear constraints gj(yj ,β) = 0, which link the observed coordinates
with the U parameters β of the orientation of the image triplet, specifically the
U = 27 elements [16] of a 3 × 3 × 3 tensor, termed trifocal tensor by [8]. There
may be additional H constraints h(β) = 0 on the parameters alone, which in
our case reduce the number of degrees of freedom of the trifocal tensor to 18
[8, 21, 3]. The task is to find optimal estimates for the parameters taking the
uncertainty of the observed coordinates, e. g. captured in a covariance matrix
Σyy, into account.

In this work, we are primarily interested in the optimal determination of
the orientation and calibration of the three cameras, not in the elements of
the trifocal tensor per se. We also assume some approximate values for the
parameters to be known either by the camera setup, as e. g. in motion analysis
or by some direct solutions. This is no severe restriction, as such techniques
are available for a large class of setups. However, the optimal estimation of the
orientation and calibration parameters, though used in [21], has not been treated
in depth up to now.

1.2 Problems

There is a set of yet unsolved problems which are sketched here but worked out
later:

P1: The number Gj of constraints: Shashua [16] showed that there exists
a set of Gj = 9 constraints gj with unique properties: They are linear in
the coordinates of the three homologeous points and in the elements of the
trifocal tensor. Up to four of them are linearily independent. However, as
six coordiates are used to determine the three coordinates of the 3D-point
only three of them actually constrain the orientation of the image triplet.
Therefore the number of constraints to be used should be Gj = 3. Thus
there seems to be a contradiction in counting independent constraints.

P2: Choosing Gj constraints: As the choice of these, three or four constraints
depends on the numbering of the images we alltogether have 12 constraints.
In addition we also could use the 3 epipolar constraints, being bilinear in the
coordinates, for constraining the orientation. Though the algebraic relations
between these constraints are analysed in [2], no generally valid rule is known
how to select constraints. Therefore we have the problem to choose a small
subset of Gj = 3 constraints from a total of 15, for determination of the
orientation, thus, presuming problem P1 has been clarified. The problem is
non trivial because a subset, which is well suited in one geometric situation
may be unfavorable in another, leading to singularities.

P3: Weighting the constraints: Another way to look at the problem is to
ask for the optimal weighting of the constraints, being more general than
choosing [15]. Then the question arizes where to obtain the weights from,
how to take the geometry into account, how to deal with singular cases and
how to integrate the uncertainty of the matching procedure.
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P4: Modelling and optimally estimating the geometry: There are sev-
eral possibilities to model the geometry of the image triplet: (a) using the
unconstrained U = 27 elements of the trifocal tensor as unknown param-
eters, (b) using the U = 27 elements of the trilinear tensor as parameters
with H = 9 constraints on the parameters, (c) using a minimal parametriza-
tion with H = 18 parameters or (d) even restricting the geomtry to that of
calibrated cameras, leading to an Euclidean version [13, 17] of the trifocal
tensor involving U = 11 parameters for the relative orientation of the first
two images and the 6 parameters of the orientation of the third image. The
question then arises how an optimal estimation could be performed in each
case, and how and under which conditions the estimates differ. Moreover,
how are the above mentioned problems effected by the choice of the model?

We want to discuss these problems in detail.

1.3 Outline of the Paper

We first (section 2.1) present a generic model for representing parameter esti-
mation problems. The resulting normal equation matrix, which represents the
weights of the resulting parameters, can be used to analyse the quality of the
result. The trilinear constraints on the observed coordinates can be interpreted
geometrically (sect. 2.2) and allow a transparent visualization of the constriants
within an image triplet (sect. 2.3). Based on different models for the image triplet
(sect. 3.1) we discuss the number and the weighting of the contraints (sect. 3.2)
and the optimal choice of the constraints for the classical cases of lateral and
forward motion, leading to general selection rules (sect. 3.3). Sect. 4 presents an
example on real data to prove the concept using a metric version of the trifocal
tensor.

Notation: Normal vectors x and X and matrices R are given in italics, homoge-
neous vectors x and X and matrices P in upright letters. If necessary for clarity,
stochastical variables are underscored, e. g. x being the model variable for the
observed value x. True values are indicated with a tilde, e. g. x̃.

2 Basics

2.1 Modelling and Estimation

In this section we describe a broad class of estimation problems (cf. [20]) whose
solution is obtained by solving an optimization problem of the same general
form. In all cases the task is to infer the values of U non observable quantities
β̃u from N given observations yn fulfilling the constraints given by the geomet-
rical, physical or other known relations. We treat these quantities as stochastic
variables in order to be able to describe their uncertainty. As this takes place
in our model of the actual setup, we distinguish stochastic variables x and their
realizations (observed instances) x.
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Modeling the Observation Process We assume that there are two vectors
of unknown quantities, the N vector ỹ = (ỹ1, ..., ỹn, ..., ỹN)T, and the U vector
β̃ = (β̃1, ..., β̃u, ..., β̃U )T participating in the G relations

g(ỹ, β̃) = 0 (1)

whose structural form is known. The values ỹn represent the true values for
the observations, which according to the model are intended to be made. The
parameters β̃u are assumed not to be directly observable. In our application
these constraints are the trilinearities between observed image coordiantes and
parameters of the geometry of the image triplet, worked out later.

In addition, it may be that the unknown parameters β have to fulfill certain
constraints, e. g. βTβ = 1. We represent these H constraints by

h(β̃) = 0 (2)

In our application these may be 9 constraints on the 27 elements of the trifocal
tensor (cf. [8]), to completely model the image geometry.

We now observe randomly perturbed values y of the unknown vector ỹ. We
model the random perturbation as an additive random perturbation assuming
the random noise vector e is assumed to be normally distributed with mean 0
and covariance matrix Σee = σ2Q ee

y = ỹ + e e ∼ N(0,Σee) = N(0, σ2Q ee) (3)

The covariance matrix Σee is separated in two factors: a positive definite sym-
metric matrix Q ee, also called the cofactor matrix (cf. Mikhail & Ackermann
1976) being an initial covariance matrix, giving the structure of Σee, and the
multiplicative variance factor σ2 to be estimated.

This separations has two reasons: One often only knows the ratios between
the variances of the different observations and under certain conditions the es-
timation process is independent on the variance factor. The initial covariance
matrix Q ee is fixed and assumed to be known. It may result from previous
experiments involving the same kinds of observations involved in the current
observation. The initial covariance matrix Q ee contains within it the scaling of
the variables, their units, and the correlation structure of the observed variables.
The variance factor σ2 is an unknown variable for the multiplier on the known
initial covariance matrix. It will be estimated using current data.

The complete model, represented by (1), (2) and (3), is called the Gauss-
Helmert-model (cf. [9])

There are various special cases of this model. The most important one is the
socalled Gauss-Markoff-model, ỹ = g(β̃) (cf. [6], p. 213, [11], p. 218) where
the observation process is made explicit, like in classical regression problems.

We will apply the complete model here for using the trilinear constraints on
the coefficients of the trifocal tensor for estimating the relative orientation of the
image triplet and especially for analysing the ranks of the matrices involved for
discussing the number of necessary constraints.

Estimating Parameters The estimation problem we wish to solve now
is: Given y, estimate ŷ, β̂, and σ̂2 the most probable values for ỹ, β̃ and σ̃2.
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We solve this problem by finding the value (ŷ, β̂) for (ỹ, β̃) that minimizes
the weighted sum of squares of residuals, the weight matrix being the inverse
covariance matrix φ(y, ỹ) = 1/2 (y − ỹ)TQ

−1
yy (y − ỹ) subject to the constraints

g(ỹ, β̃) = 0 and h(β̃) = 0. This is equivalent to finding the minimum of

Φ(ỹ,β,λ,µ) =
1

2
(y − ỹ)TQ

−1
yy (y − ỹ) + λTg(ỹ, β̃) + µTh(β̃) (4)

where λ and µ are G and H-vectors of Lagrangian multipliers. The solution
is the ML-estimate, in case observations actually follow a normal distribution.
Otherwise they are (locally) best linear unbiased estimates, i. e. estimates with
smallest variance. The general solution of this optimization problem is given in
the appendix.

We only need the normal equation matrix N here, which contains the covari-
nace matrix Σ

β̂β̂
of the estimated unknown parameters β̂ in its inverse. With the

Jacobians A and B of g with respect to the unknowns and the observations, and
the Jacobian H of h with respect to the unknown parameters and the assump-
tions that these matrices have full rank we obtain the normal equation matrix

N =

(
A

T(BQ yyB
T)−1A H

T

H 0

)
=

(
N H

T

H 0

)
= σ−2

(
Σ

β̂β̂
S

T

S T

)−1

(5)

with some matrices S and T , cf. (28) appendix.
We will be able to identify the rows of the matrix A with the Jacobian of

the trilinear constraints w. r. t. the elements of the trifocal tensor, the matrix
(BQ yyB

T)−1 with the sought weight matrix for the trilinearities containing the
(initial) covariance matrix Q yy of the observed coordintes and analyse the rank
of these matrices.

2.2 Projection Matrices and their Interpretation

The geometric setup of three images is given by

xi = PiX i = 1, 2, 3 (6)

which relate the coordinates XT = (X,Y, Z, 1) of the object point to the three
sets of coordiantes xT

i = (ui, vi, wi) with the (Euclidean) image coordinates
x′ = u1/w1, y′ = v1/w1, x′′ = u2/w2, etc. The three projection matrices are

P1 =

1T

2T

3T

 , P2 =

4T

5T

6T

 , P3 =

7T

8T

9T

 (7)

where the rows are indicated with bold face numbers. With the standard parame-
trization of the projection matrices

Pi = KiR i(I | −Xoi) (8)
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Eq. (6) relates Euclidean object-space to Euclidean image space, capturing the
(Euclidean) object coordiantes Xo of the projection centre, the rotation R and
the calibration K, being an upper triangular matrix with 5 free parameters.

We now describe the geometry of the image triplet using the vectors 1, 2
etc. in detail. We use the following interpretation of the rows 1, 2 etc. of the
projection matrices (cf. [2]): In case u1 = 0 and (v1, w1) arbitrary, we have
1·X = 0, thus the vector 1 represents the homogeneous coordinates of the plane
passing through the y′- and the z′-axis in the first camera; in the special case of
K = Diag(c1, c2, 1), i. e. reduced image coordinates but arbitrary focal lengths ci,
they are perpendicular to the x′-axis. By analogy, 4 and 7 are planes containing
the y(i)- and the z(i)-axes in the second and the third camera, 2, 5 and 8 are
planes containing the x(i)- and the z(i)-axes, and 3, 6 and 9 are planes containing
the x(i)- and the y(i)-axes in the three cameras. Observe, all these planes pass
through the corresponding projection centre.

As u1 : v1 : w1 = (1·X) : (2·X) : (3·X) and correspondingly for the other
cameras, we have the following equivalent homogeneous constraints for the image
coordinates:

AT
1

BT
1

DT
1

AT
2

BT
2

DT
2

AT
3

BT
3

DT
3


X

.
=



u13
T − w11

T

v13
T − w12

T

u12
T − v11

T

u26
T − w24

T

v26
T − w25

T

u25
T − v24

T

u39
T − w37

T

v39
T − w38

T

u38
T − v37

T


X ∼=



x′3T − 1T

y′3T − 2T

x′2T − y′1T

x′′6T − 4T

y′′6T − 5T

x′′5T − y′′4T

x′′′9T − 7T

y′′′9T − 8T

x′′′8T − y′′′7T


X = 0 (9)

The vectors Ai, Bi, Di have a specific geometric meaning [18]:

The vectors Ai represent planes through the origin of the i-th camera, as
they are linear combinations of the plane vectors; they pass through the vi-
axis of the i-th camera, as it is contained in both planes 1 and 3; they pass
through the image point Pi, due to eq. (9); therefore they intersect the image
plane in the line ui = const. The vectors Bi represent planes through the origin
of the i-th camera, pass through the x(i)-axis of the i-th camera, pass through
the image point Pi and thus intersect the image plane in the line vi = const.
Now, the vectors Di represent planes through the origin of the i-th camera,
pass through the z(i)-axis of the i-th camera, pass through the image point Pi

and thus intersect the image plane radially, fixing the direction, motivating the
notation.

Observe, the planes Di are not defined or are instable for points identical or
close to the origin (0, 0). Thus, planes Ai, Bi and Di fix the x(i)-, the y(i)- and
the ’directional’ coordinate. Only two of the three constraints for each camera
are independent.
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2.3 Constraints between Points of an Image Triplet

Shashua’s Four Constraints on the Trifocal Tensor Elements We now
easily can write down Shashua’s constraints [16]. They can be formulated using
the above mentioned planes, by establishing quadrupels of planes which should
intersect in a 3D point, which is equivalent to requiring the 4×4 matrix of the 4
plane coordinate vectors to be singular or its determinant to vanish:

DS
1

.
= |A1B1A2A3| = 0, DS

2
.
= |A1B1A2B3| = 0 (10)

DS
3

.
= |A1B1B2A3| = 0 DS

4
.
= |A1B1B2B3| = 0 (11)

where |····| denotes the determinant of the vectors. The point-line-line constraint
results from the fact that the first two vectors A1 and B1 fix the ray through
the point in the first image and the two other vectors represent lines through the
points in the second and the third image each (cf. the geometric interpretation
above)1.

Observe that these constraints are linear in all image coordinates, as each of
these coordinates appears only once in the determinants and the wi-coordinate
can be set to 1 for all image image points, cf. (9c).
Shashua moreover showed that the constraints (10), (11) can be written as

linear functions of the 27 entries of a 3× 3× 3 tensor with elements t, thus each
is of the form

DS
lj = αS

lj
T t = 0 l = 1, 2, 3, 4 (12)

where the 27-vector αS
lj

.
= αS

l (yj) only depends on the six coordinates of the
point triple collected in the 6-vector yj (here indexed with j to indicate the
used point triple), and the 27-vector t contains the tensor coefficients. Shashua
showed the 27 × 4 matrix

A
S
j = (αS

1j ,α
S
2j ,α

S
3j ,α

S
4j) =

(
∂DS

lj

∂tk

)T
k = 1, ..., 27; j = 1, ..., J

l = 1, ...4 (13)

to have rank four. Observe that A S
j is the transposed Jacobian of the constraints

(10 ff.) with respect to the parameters t.
This suggests 4 constraints are necessary if one wants to exploit the full

information of the image points for recovering the geometry of the image triplet.

Three Constraints between the Observations and the Triplet’s Geom-
etry However, we could argue only to need three constraints:

If one solves the basic projection equations (6) for the 6 observed coordinates
one obtains 6 inhomogeneous equations. One now can take three of them and
solve for the 3 coordinates of the object point. Substituting these object coor-
dinates into the other three inhomogeneous equations yields three constraints
between the six imge coordinates and the parameters of the geometry of the

1 The four constraints correspond to those given in [8]:
∑

k
u′
k(u

′′
i u

′′′
j Tk33 − u′′′

j Tki3 −
u′′
i Tk3j + Tkij) = 0 with the combinations (1, 1), (1, 2), (2, 1), (2, 2), for the indices i

and j and homogeneous coordinates (u′1, u
′
2, u

′
3) and u′

3 = 1 etc.
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image triplet, independent on the parametrization. Thus there can only be 3
independent constraints between the observed image coordiantes and the pa-
rameters of the geometry of the image triplet.

In a general setup one could argue that 1.) between the first two points
P1 and P2 the epipolar constraints should be valid and that 2.) the 3D point,
determined from the first two images, should map into the third image. This
prediction was the basis for the derivation of the trifocal tensor in [8].

The epipolar constraint then reads as2

DI
1

.
= |A1 B1A2B2| = 0 (14)

The first two vectors A1 and B1 span the ray in the first image, whereas the last
two vectors span the the ray in the second image, which should intersect. The
3D point from the first two images could be determined as the intersection of
the planes A1, B1 and A2 which should ly in the two planes A3 and B3, which
gives rise to two further constraints, namely:

DI
2

.
= |A1B1A2A3| = 0, DI

3
.
= |A1B1A2B3| = 0 (15)

which are identical to the first two DS
1 and DS

2 of Shashua’s constraints3.

Singular Cases Unfortunately this set of constraints does not work in general.
First, assume the three images have collinear projection centres, establishing

the X-axis in 3D and the rotation matrices are R i = I . Then the two planes A1

and A2 intersect in a line parallel to the Y -axis, which, when intersected with
B1 yields a well defined 3D point.

Now, if the three projection centres establish the Y -axis the two planes A1

and A2 are identical, as they are epipolar planes. Thus the 3D point cannot be
determined using these two planes. In case the constraints DI

2 and DI
3 would

be replaced by the last two constraints (11) of Shashua, we would be able to
determine and predict the 3D-point in this case, but not in the previous one.

We therefore need to clarify the number of necessary constraints and discuss
the selection or, more general, the weighing of the constraints.

3 Constraints within the Estimation Process

We now want to establish a statistical interpretation of such dependencies.
Therefore we follow sect. (2.1), and model the reconstruction of the geometry of
the image triplet.

3.1 Models

We distinguish three parametrizations:

M1: Tensor coefficients: We use the 27 elements t of the trifocal tensor as
parameters to desrcibe the geometry. We therefore use (12) as constraints
for each point triplet. We have to distinguish this model from the following:

2 The superscript I indicates case I in the analysis later.
3 and to Hartley’s constraints with indices (1, 1) and (1, 2) cf. previous footnote .
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M2: Projective parametrization: We use a minimal parametrization of the
trifocal tensor with 18 parameters (cf. e. g. [21]). This leads to a projective
reconstruction. We need not specify the parametrization for our analysis.
Instead, we also could use the U=27 tensor coefficients and H=9 appropriate
constraints between these parameters (cf. [3]).

M3: metric parametrization: We use a metric parametrization of the trifocal
tensor with only 11 parameters in order to achieve an Euclidean reconstruc-
tion. The reason is: in our special application of image sequence analysis,
we are able to calibrate the cameras in beforehand. Therefore we only have
11 parameters to specify the geometry of the image triplet, namely the 5
parameters of the relative orientation of the first two cameras as above and
the 6 parameters of the exterior orientation of the third camera (cf. [12, 13,
17]). In our implementation we actually parametrize the orientation by the
two translation vectors Xo2 and Xo3, and the two quaterions q2 and q3

for the rotations, fixing Xo1 = 0, and yielding U = 14 parameters with the

H = 3 constraints X̃
T

o2X̃o2 = 1, q̃T
2 q̃2 = 1 and q̃T

3 q̃3 = 1. This model will
be used in the example.

In the last two cases M2 and M3 we may use the same constraints as above, by
just replacing the 27 elements tk of the trifocal tensor by 27 functions tk(β) of
the 18 and 14 unknown parameters, thus the constraints (12) now read as

gSlj(ỹj , β̃) = DS
l (ỹj , β̃) = αS

l (ỹj)
T t(β̃) = 0 l = 1, 2, 3, 4 (16)

The corresponding contraints of set A (14), (15) read as:

gAlj(ỹj , β̃) = DA
l (ỹj , β̃) = αA

l (ỹj)
T t(β̃) = 0 l = 1, 2, 3 (17)

In case of model 3 we in addition have the H = 3 constraints between the
parameters only:

hT(β̃) = (X̃
T

o2X̃o2 − 1 q̃T
2 q̃2 − 1 q̃T

3 q̃3 − 1) = 0 (18)

3.2 Number and Weighting of Constraints

We now discuss the left upper submatrix N from (5) in our context. In case of
j = 1, ..., J statistically independent triplets of points, thus Qyy = Diag(Q yjyj

),
which is no restriction in practical cases, it can be written as

N =
J∑

j=1

N j =
J∑

j=1

A jW jA
T
j =

J∑
j=1

A j(B
T
j Q yjyj

B j)
−1A

T
j (19)

using A = (A T
j ) and B = (B T

j ).

Each part N j depends on three matrices, A j , B j and Q yjyj
. They have a

very specific semantics. They give the key to the solution of the stated problems:
Coefficient matrix A j: The matrix A j is the Jacobian of the constraints
gj(yj ,β) with repect to the unknown parameters evaluated at the fitted values

β̂ and ŷj of the parameters and the observations resp. (cf. App.).
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In case the constraints are linear in the unknown parameters the matrix A j

only depends on the fitted coordinates ŷj . Moreover, then one may use them for
a direct solution of the unknowns β being the eigenvector corresponding to the
smallest eigenvalue of Ṅ = A

T
A =

∑
j A jA

T
j minimizing the algebraic distance.

This shows the close relation between the optimal nonlinear estimation and the
direct solution: The constraints are not weighted; the direct solution obviously
is an approximation. The weights W j depend on B j , which itself depends on
the unknown parameters, thus are not available in a one-step solution. Due to
the linear independency of the 4 constraints per point triplet, at least 7 points
are necessary (cf. [16]) for the determination of the 27 tensor elements.

In case of 18 parameters the Jacobian A j turns out have rank 3 in general, as
can be shown using Maple. This is due to the projection of the 27 dimensional
space of tensor parameters t to the 18 dimensional space of parameters β.

This can be geometrically visualized as follws: Without posing restrictions,
assume the translation vector Xo2 = (Xo2, 0, 0)T, and calibrated cameras with
K i = I , R i = I . Then the two last constraints DS

3 and DS
4 both constrain the

two first rays to follow the epipolar geometry, if the object point is in general
position: this is because, A1 and B1 and the last plane A3 or B3 in (10) fix the
object point. The plane B2 determined by the y2-coordinate then has to pass
through that point, in all three cases yielding the same constraint y′′ − y′ = 0.

Analytically, the two constraints in general are polynomials, which factor
into, say, u3v3 and u4v4, where in general position of the point the first factors
u3 and u4 are non zero and the second factors are identical, v3 ≡ v4, thus both
constraints, though algebraically different, impose the same restrictions onto the
image geometry.

This shows the two geometric setups, with 27 and 18 parameters resp., to
differ in essence, solving problem P1, and explains why there is no real contradic-
tion between the number of necessary constraints: Shashua’s set of 4 constraints
is necessary for estimating the geometry coded in the elements of the trifocal
tensor, whereas only 3 constraints are necessary in case one wants to determine
the projective geometry of the image triplet with 18 parameters. Observe, in this
case one also could take the 27 elements of the trifocal tensor as unknowns β
and introduce 9 constraints h on these parameters alone, this would not change
the reasoning.
Coefficient matrix B j: The matrix B j is the Jacobian of the constraints

with repect to the observations evaluated at the fitted values β̂ and ŷj of the
parameters and the observations resp. (cf. App.).

It is implicitely used in the solution to determine the (preliminary ) covari-

ance matrix Q gjgj = B
T
j Q yjyj

B j of the contadictions c = gj(yj
,β(0)) �= 0,

i. e. the deviation of the constraint evaluated at the observations y
j

and the

approximate values β(0) of the parameters by error propagation. The weightma-
trix W j = Q

−1
gjgj , being the inverse of this covariance matrix, therefore is the

optimal choice. This solves problem P2, namely the choice of the weight matrix.
If model M1 with the 27 tensor coefficients as unknowns is chosen, the rank

of this weight matrix in general is four, indicating that all 4 constraints actually
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are relevant and can be adequately weighted. However, for models M2 and M3
with 18 or less parameters describing the projective or Euklidean geometry the
weightmatrix in general has rank 3. This confirms the fact that only three inde-
pendent constraints are available. The Jacobians A j and B j have the same null
space. Taking some generalized inverse

W j = Q
−
gjgj = (B T

j Q yjyj
B j)

− (20)

when using more than 3 constraints does not lead to a different solution of the
estimation problem.

This type of weighting with W j has been used by [21]. The Jacobian B

corresponds to Jacobian J in their eq. (20), which they state to have rank 3.
They use the pseudo inverse (JΣ1,2,3

x J
T)+ (24) (via a SVD) instead of the normal

inverse (B jΣyyB
T)−1 of a minimal set. This is more time consuming, compared

to inverting a regular 3 × 3-matrix, especially if the number of used constraints
is much larger than 3, as this computation has to be performed for every point
triple in every iteration, which may be essential in real time applications.

However, the analysis confirms the direct 6-point solution of [21]to be a solu-
tion for the minimal number of points, as the number of free parameters of the
trifocal tensor is 18 [16].

The weighing proposed in [15] is only an approximation as the rank of the
weight matrix there is 4 instead of 3.
Covariance matrix Q yjyj

: As to expected, the weighting of the constraints
depends on the uncertainty of the feature points or generally of the matching
procedure. This uncertainty can be captured in the covariance matrix Q yjyj

of
the 6 coordiantes. Usually a diagonal matrix I will be sufficient. If the matching
technique provides a realistic internal estimate of the variances this could be
used to improve the result.

Observe, if Q yjyj
= I then the direct solution would use the smallest eigenvec-

tor of A T(BB T)−1A . This least squares solution is identical to that given by [19],
as (BB T)−1 = Diag(1/|∇gj|2) with the gradient magnitude of the constraints
w. r. t. the observations. However, it here naturally follows from the general
solution in a statistical estimation framework as a special case, and shows how
to handle observed quantities which are correlated.

3.3 Choosing Independent Constraints

Instead of using a pseudo inverse for automatically getting the correct weight we
also could choose a set of three independent constraints. The chosen set obviously
will depend on the position of the object point with respect to the trifocal plane:
If it is off the trifocal plane, three pairs of epipolar constraints would work. Thus
we only analyse the important case where the projections centres are collinear.
Then all object points lie on a trifocal plane, requiring at least one trilinear
constraints on the tensor coefficients. We summarize the analysis from [5] here.

We assume image sequences with R
(0)
i = I , K

(0)
i = Diag(c, c, 1), thus prin-

cipal distance c
.
= c(0) and distinguish forward motion in Z-direction with

X
(0)
o2 = (0, 0, B)T, X

(0)
o3 = (0, 0, 2B)T and lateral motion in X-direction with

679Constraints for Optimally Reconstructing the Geometry of Image Triplets



X
(0)
o2 = (B, 0, 0)T, X

(0)
o3 = (2B, 0, 0)T, thus base length B = B(0). We apply two

different sets of constraints. The first is set A as in eq. (14) and (15). Trying to
obtain full symmetry by using every coordinate twice and fixing each image ray
in one of the three constraints [2, 18]) we obtain constraint set II:

DII
1 = |A1B1A2B3| = 0, DII

2 = |B1A2B2A3| = 0, DII
3 = |A1 B2A3B3| = 0

We give the determinants of the matrices Q gjgj = (BT
Q yjyj

B ), being propor-
tional to the corresponding covariance matrices, in dependency of the object
coordiantes (X,Y, Z) for lateral (l) and forward (f) motion and for set I and
II, d(Z) being a function of Z only:

|Q (l,I)
gjgj | = 18B2c6 |Q (f,I)

gjgj | = X4(X2 + Y 2)·d(Z) (21)

|Q (l,II)
gjgj | = 0 |Q (f,II)

gjgj | = X2Y 2(X2 + Y 2)·d(Z) (22)

Only if the determinat is not 0 the weightmatrixW j has the proper rank. There-
fore, the set I obviously is useful for all points in lateral motion, as the covariance
matrix is regular, with a determinant independent on the position. The symmet-
ric set II, however, is not useful at all in lateral motion. This is plausible, as
only the y-coordinates are taken into account, i. e. this set then is a variation
of the trifold use of the epipolar constraint. Both sets do quite a good job in
forward motion, however lead to singularities if the points lie on the axes, on the
x-axis for set I , on one of both for set II. Observe, that the origin (0, 0) is the
focus of expansion (FOE): points in the direction of the motion cannot be used
at all, which is counter intuitive. They actually only constrain the rotation, not
the translation, thus lead to only two constraints, causing the rank deficiency.

General rules for choosing three constraints are the following, solving problem
P2 while distinuishing between 1, 2 and 3 trilinear constraints within the set:
1. One trilinear constraint and two epipolar constraints: The trilinear constraint

in lateral motion needs to be one of |A1,A2,A3,Bi| i = 1, 2, 3. In forward
motion we distinguish between points right or left of the FOE, for which the
previous constraints works, and points above or below the FOE, for which
one chooses one of |B1,B2,B3,Ai|, i = 1, 2, 34.

2. Two trilinear constraints and one epipolar constraint: For lateral motion
(X-direction) choose set I . For forward motion we again choose the sets
according to position relative to the FOE, namely the determinants

Dl,r
1 = |A1B1A2B2|, Dl,r

2 = |A1B1A2 A3|, Dl,r
3 = |A1B1A2B3|

Da,b
1 = |A1B1A2B2|, Da,b

2 = |A1 B1B2A3|, Da,b
3 = |A1B1B2B3|

to be zero (l,r = left/right, a,b = above/below the FOE).
3. Three trilinear constraints with the same ray fixed in all constraints are gen-

erally independent if no constraint contains 3 planes parallel to a/the trifocal
plane5. E. g. the set D1 = |A1,B1,A2,A3| = 0, D2 = |A1,B1,A2,B3| = 0,
D3 = |A1,B1,B2,A3| = 0 is independent in general; in lateral motion for
all points, in forward motion at all points except with X = 0 or Y = 0.

4 [13] proposes |3,D1,D2,D3| = 0 in lateral motion only useful for points with X �= 0.
5 The set of constraints discussed in [2], p. 16 T1,2,3,5 = |D1,B1, D2, D3|, T1,3,4,5 =
|D1,D2, B2, D3|, T1,3,5,6 = |D1,D2, D3, B3| has rank 1 in lateral motion in x- or
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4 Example

The usefulness of the estimation procedure for the metric version of the trifocal
tensor is investigated [1]. An image sequence with 5300 images is taken from a
car. The measured speed is shown in figure 1 top. The camera is looking ahead,
establishing the case forward motion. A subsecquence of 800 images has been
evaluated w. r. t. the geometric analysis of image pairs and image triplets. A
subsection of 100 images was finally used for a bundle triangulation.

The Procedure: After initializing the procedure, interest points are selected
in image i which promise good correspondence [4]. Using the correspondencies
from the two previous frames we predict points in the current image using two
trilinear constraints suited for that point. Thereby we assume constant motion,
thus constant Xo and R . All interest points within an adaptive search area are
checked for consistency using normalized crosscorrelation. Possibly their position
is corrected based on the point in image i − 1 using a least squares matching
procedure [7], chap. 16, at the same time yielding internal estimates for the
uncertainty Σyjyj .

These point triplets are used for estimation. We applied the set of constraints
I (14, 15) here and used a pseudo inverse to cope with singularities, which are
possible (cf. (21b)). The 14 parameters with the 3 constraints of the third model
are estimated using the Gauss-Helmert-model, however in a robustified ver-
sion, by a reweighting scheme following [10]. Figure 1 bottom shows the number
of used points per successfully determined image triplet, which excludes the
images with velocity 0.

Finally, new points are detected and possibly linked to the previous image.
The next image i + 1 is taken as third in the next image triplet, which uses the
metric parametrization of the two previous images as approximate values. This
chaining is not meant to be optimal not even consistent, as it only is used to
yield approximate values for the image sequence, which then were to be optimally
reconstructed in one process using a bundle adjustment.
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Fig. 1. shows speed (top) and number of matched points over 5300 images (bottom)

Results: Some results of the extensive experiments, documented in [1] can be
summarized as follows:

y-direction, as the three planes Di are parallel to the z-axis and should intersect in
one ray, which is expressed equivalently by all three constraints; the set has rank 0
in forward motion in z-direction as they all contain three planes passing through the
motion axis.
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Fig. 2. shows above the Y-coordinate of the translation vector T2 determined from
the first 800 image pairs, revealing quite a number of erroneous values cause by mis-
matches. The lower row shows the Y-coordinate determined from image triplets, clearly
demonstrating the effect of higher reliability from ([17])
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Fig. 3. Estimated rotation angles of the second image w. r. t the first. Observe the
typical vibration in the ω.

Fig. 4. Backprojection of trajectory of image sequence with 100 images and 3D point
cloud together with trajectory

• The quality of the motion parameters are much higher when using the image
triplet than when only using image pairs (cf. fig. 2).
• The estimation of the rotation angles (cf. fig. 3) reflects the expected behaviour,
especially vibrations in nick-angle, i. e. the oscillations of ω around the horizontal
x-axis orthogonal to the speed vector.
• The approximate values obtained from the image triplets were sufficiently
accurate to guarantee convergence of a global ML-estimation with a bundle
adjustment (cf. fig. 4).
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Appendix

We give the solution for the optimization problem (4) derived from the Gauss-
Helmert-model. For solving this nonlinear problem in an iterative manner we

need approximate values β̂
(0)

and ŷ(0) for the unknowns β̂ = β̂
(0)

+ ∆̂β and

ŷ = ŷ(0) + ∆̂y which obtain corrections ∆̂β and ∆̂y in an iterative manner.
With the Jacobians

A =

(
∂g(β,y)

∂β

)∣∣∣∣β=β̂(0)

y=ŷ(0)

,B =

(
∂g(β,y)

∂y

)∣∣∣∣β=β̂(0)

y=ŷ(0)

,H =

(
∂h(β)

∂β

)∣∣∣∣
β=β̂(0)

(23)

and the relation ∆̂y = (y− ŷ(0))− ê we obtain the linear constraints g(β̂, ŷ) =

g(β̂
(0)

, ŷ(0))+A ∆̂β+B ∆̂y or g(β̂, ŷ) = cg+A ∆̂β−B ê and h(β̂) = ch+H ∆̂β

with cg = g(β̂
(0)

, ŷ(0))+B (y− ŷ(0)) and ch = h(β̂
(0)

) are the contradictions
between the approximate values for the unknown parameters and the given ob-
servations and among the approximate values for the unknowns.

Setting the partials of Φ (4) zero yields

∂Φ

∂ŷT
= −Q−1

yy ê + B
Tλ = 0

∂Φ

∂β̂
T

= A
Tλ + H

Tµ = 0 (24)

∂Φ

∂λT
= cg + A ∆̂β −Bê = 0

∂Φ

∂µT
= ch + H ∆̂β = 0 (25)

From (24a) follows the relation

ê = Q yyB
Tλ (26)

When substituting (26) into (25a), solving for λ yields

λ = (BQ yyB
T)−1(cg + A ∆̂β) (27)

Substitution in (24b) yields the symmetric normal equation system(
A

T(BQ yyB
T)−1A H

T

H 0

)(
∆̂β
µ

)
=

(−A T(BQ yyB
T)−1cg

−ch

)
(28)

The Lagrangian multipliers can be obtained from (27) which then yields the
estimated residuals in (26). The estimated variance factor is given by

σ̂2 =
êT
Q

−1
yy ê

G + H − U
(29)

The number R of contraints above the number U − H , which is nessessary
for determinimg the unknown parameters, the redundancy is the denominator
R = G − (U − H). We finally obtain the estimated covariance matrix

Σ̂
β̂β̂

= σ̂2Q
β̂β̂

(30)

of the estimated parameters, where Q
β̂β̂

results from the inverted reduced nor-
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mal equation matrix using N = A
T(BQ yyB

T)−1A(
Q

β̂β̂
S

T

S T

)
=

(
N H

T

H 0

)−1

(31)

This expression can be used even if N is singular.
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