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Abstract. The paper discusses preprocessing for feature extraction in digital intensity,
color and range images. Starting from a noise model, we develop estimates for a signal
dependent noise variance function and a method to transform the image, to achieve an
image with signal independent noise. Establishing significance tests and the fusion of
different channels for extracting linear features is shown to be simplified .

1 Motivation

Signal analysis appears to be one of the most interesting problems common to
Geodesy and Photogrammetry. Objects of interest primarily in Geodesy are the
gravity field or the topography of the ocean. Objects of primary interest in Pho-
togrammetry are photographic or digital images and all elements of topographic
maps. Digital elevation models (DEM) and paths of sensor platforms of air or
space vehicles are among the common interests to both fields.

Seen from the type of result Geodesists and Photogrammetrists, however,
appear to show increasing differences, if one looks at both research and practical
applications: Geodesists mainly are interested in the form, shape or position of
geometric objects, especially point, scalar, vector or tensor fields. There was a
long period of common interest in point determination, orientation, calibration
and DEM derivation, all triggered by the strong tools from estimation and ad-
justment theory. Since about 10 years photogrammetric research has moved —
away from Geodesy — to image interpretation, aiming at recovering not only the
geometry of the objects but also their meaning (cf. the review by Mayer 1999).

This development did not really come over night, as the derivation of geo-
metric structures from discretized continuous signals, especially structure lines
in DEM appears to be a first step towards extracting symbolic information from
sensor data. But this type of transition from an iconic, often raster type of de-
scription, to a symbolic, often vector type of description appears to be only
slowly penetrate the research in Geodesy.

Interestingly enough, the signal processing part in image processing has only
partly been realized by Geodesists, though the type of questions are very similar:



predicting a possibly piecewise smooth continuum from sampled data. This task
is very similar in both fields, thus also the type of approaches are similar, e. g.
using Wiener prediction for restoring images. Of course there are differences in
the underlying models. The main difference is the open world Photogrammetry
has to cope with, i. e. the impossibility to impose very hard constraints on the
observations, as this is the case e. g. in Physical Geodesy.

This is the reason why the author chose a topic for this paper in the overlap-
ping area of Geodesy and Photogrammetry: the processing of two dimensional
data prior to the derivation of geometric structures of these signals. Such two
dimensional signals are either digital or digitized, black and white, color and
multi spectral images or directly measured or derived DEM’s. In both cases we
assume the data to be given in a regular raster ®.

Starting with modeling the noise behavior of the given data, we develop
methods for estimating the noise characteristics. As extracting geometric fea-
tures starts with detecting signals in noise, which can be interpreted as hypoth-
esis testing, we simplify processing by a noise variance equalization of the given
signal. A locally adaptive Wiener filter can be used to smooth the signal depend-
ing on the local information content, aiming at smoothing homogeneous areas
while preserving edges, lines, corners and isolated bright or dark points. In all
cases we discuss digital images and DEM’s, or so called range images, in parallel.
The fusion of several channels in color images appears to be a challenge as there
is no unique way to integrate the information.

The goal of this preprocessing is to exploit the statistical model of the sig-
nal as far as possible and thus reduce the number of control parameters for
the algorithms. Actually we only need a significance level for distinguishing be-
tween signal and noise, as all other properties are estimated from the given
data. The procedure for intensity images is partly described in an early ver-
sion by Forstner 1994 and extended and thogoughly investigated by Fuchs 1998.
First investigations into the performance of the feature extraction procedure are
presented by Fuchs et al. 1994.

The paper collects research at the author’s institute of about one decade.
The references contain some review papers which point to further reading and
alternative approaches.

Notation: We distinguish continuous signals with coordinates (x,y) and discrete
signals with coordinates (r,¢), r and ¢ standing for rows and columns. Partial
derivative operators are 9, = 0/0z etc., discrete versions are 9, = 0/0r etc.
resp. Where necessary, stochastical variables are underscored, e. g. g. The nor-

! This suggests to use Fourier techniques. But this is by no way reasonable: The ob-
jects shown in images do not show any periodicity nor is the statistical behavior
homogeneous. Wavelet techniques seem to overcome some of the limitations, espe-
cially the assumption of homogeneity. But, at least in their Kronecker-version of
basis-functions, they lack of providing rotation invariant image properties, and of
including higher level knowledge. Only Gabor-wavelets have been widely used for
more than two decades for describing texture in digital images for quite some time.
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mal density is G, with standard deviation s as parameter in both coordinate
directions.

2 The Image Model

A digital image can be treated as a random process.

In a first approximation it therefore can be characterized by its mean and its
variance-covariance structure, thus its first and second moments. In general both
are inhomogeneous, thus location dependent, and anisotropic, thus orientation
dependent. Moreover, we have to expect the noise statistics to be dependent on
the signal.

The distribution of the random process can be expected to be quite compli-
cated in case we start to model the generating process in detail, e. g. using the
geometrical-physical model of the sensor. For simplicity we assume the stochastic
process to be Gaussian. This allows to easily derive thresholds in the subsequent
analysis steps. It is motivated by the central limit theorem and the experience,
that deviations form the Gaussian distribution usually can be circumvented by
a slight modification of the model.

For modeling reasons we distinguish three types of multi valued images:

1. the true image f(x,y) is continuous. It is used for describing the image which
we would have obtained with an ideal sensor with infinite resolution, no bias
and no noise. The true image is modeled as a stochastic process. However,
in our context we only impose very limited constraints on the true image:
The image area 7 is assumed to be partitioned into regions R; covering the
complete image area. Thus:

I=JRi, RiNR; =0 Vi,j (1)

Within each region the image function is assumed to be homogeneous, in
this context smooth, with low gradient or low curvature in all channels. We
will specify these properties later, when needed.

2. the ideal image f(x,y) also is continuous but a blurred version of the true
image. In a first instance it is used to explain the limitations of any feature
extraction concerning the resolution. It also is used to cover the limited
resolution of the sensor internal filtering processes. Technically it is necessary
to fulfill the sampling theorem. The blurring also could cover small geometric
errors, e. g. due to lens distortion.

3. the real image g(r, ¢) is a sampled and noisy version of the ideal image. The
sampling is indicated by the indices (r, ¢), representing rows and columns of
the digital image.

The image g therefore can be written as:
g(r,c) = f(r,c) + n(r,c) (2)

As noise usually is small we can always assume it to be additive by assuming its
characteristic to be signal dependent, i. e. dependent on f.
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In addition to the variance properties the correlations between neighboring
pixels may be taken into account. In original images taken with a good camera or
scanner the noise correlations between neighboring pixels are comparably small,
i. e. usually less than 50 %. We therefore neglect spatial correlations and only
discuss the variance of the noise.

We now discuss the different noise models in detail.

2.1 Intensity Images

Images of CCD-Cameras The noise in single channel intensity images g(r, ¢)
with CCD-Cameras contains three basic components:

1. The noise characteristics is dominated by the Poisson distribution of the
photon flux (cf. Dainty and Shaw 1974). This holds, in case the intensity g
is proportional to the number N of the photons. The Poisson distribution
is characterized by E(N) = D(N) = uny = o%. Thus this noise variance
component increases linearly with the intensity.

2. The rounding errors, showing a variance of 1/12.

3. Electronic noise, being independent on the intensity.

Therefore an adequate model for the noise is
on(9) =a+byg (3)

In the ideal case both parameters a and b are positive in order to guarantee
a positive noise variance. The parameter a should be larger than 1/12, as it
covers the rounding errors. In case the image acquisition device performs a linear
transformation on the intensities, the linear behavior of the noise variance still
can be observed, however, possibly only in the interval [gyi,,» gmax]. Thus the
following two conditions should hold

o (9min) > 1/12, >0 4)

In case the intensity is not proportional to the number N of photons, but e. g.
proportional to log N, the model eq. (3) needs to be modified.

Observe, the noise characteristics are dependent on the intensity which varies
throughout the image, thus is totally inhomogeneous. However, for the same
intensity it is invariant to position. This is one of the main reasons why it is not
reasonable to use Fourier techniques.

In case the sensitivity of the individual pixels depends on the mean intensity
in the neighborhood for increasing the radiometric resolution, the simple model
eq. (3) does not hold anymore. Without knowing the type of adaptivity of the
sensitivity to the intensity in the neighborhood there is no simple rule how to
model the noise variance.

168



Digitized Photographs Digitized photographs, especially digitized aerial im-
ages show quite complex noise characteristics. In a first instance one would
expect a similar increase of the noise variance with the signal as in CCD-images.
Due to film characteristics, film development and scanner characteristics, espe-
cially also the scanner software, the noise characteristics will not follow a simple
function of the intensity.

We now assume the noise characteristics only depends on the intensity, but
in an arbitrary manner. Thus we have:

on(9) =s(g), s(g) >1/12 (5)

2.2 Color Images

Color images g = (gk) are multichannel images, where each of the K channels
represents a specific spectral band. In principle the number of bands is not
restricted to three, as in RGB-images, but may be any number, as in multi
spectral images.

The sensitivity of the sensors or the filters used for separating the spectral
bands may overlap. This results in correlations of the signals 9y and g, in
different channels k' and %".

However, the noise of the different channels can certainly be assumed to
be independent, unless the multi channel sensor does not transform originally
independent channels, e. g. by a color transformation.

In the subsequent image analysis steps we do not refer to the colors in the
way the visual system perceives them. We interpret the different channels as the
result of independent physical sensing processes and therefore intensionally do
not perform any color transformation.

The result of this argumentation is simple: Every channel has a statistically
independent noise characteristic, either following eq. (3) leading to:

or (gr) =ar+brgr k=1, K (6)

with 2K parameters ay and by specifying the noise variances or, following eq.
(5), to
on, (k) = sk(gr) k=1,.,K (7)

with K different functions sy,.

2.3 Range Images

Range images in principle are single channel images as intensity images are.
Depending on the type of sensor the noise can be assumed to depend on the
distance, e. g. in case of time of flight sensors or image stereo sensors. The noise
characteristics also may depend on the direction of the sensing ray and on the
slope of the surface. The type of dependency not really has been investigated.
On the other hand sensor internal error sources or the resampling process,
transferring irregular data into a regular grid, may dominate and lead to a noise

169



variance being constant over the full range image. We therefore assume the noise
to be constant in range images. Making it dependent on position, orientation or
other attributes can be taken into account if necessary.

As edge extraction in range images is based on the two channel image:

a(r.0) = V.o = () = % (59 ®
Oc

C

we want to discuss the noise characteristics of this two channel image.
The covariance matrix of the two values g, (r,c), k = 1,2 is diagonal:

X4y =D(Vd) = o] tI 9)

where the factor ¢ depends on the filter kernel used for determining the gradient,
and I is the unit matrix. This holds if the differentiation kernels 0, (z,y) and
0y(z,y) are orthogonal, thus

| [ aewoeydedy=o (10)
=—00 Jy=—o00
We often use Gaussian kernels
(= +9%)
= 282
Gul@y) = 5oge 28 (1)
or its derivatives, e. g.
Gral,9) = -Golm,y) = 2 Galo,y) (12)
z;s ;y—al_s;y—$287y
Then (10) obviously holds.
E. g. the Sobel kernels
1 2 1
1
Ons = (;) =zlo 00 (13)
"/s -1-2-1
10-1
1
Bes = (ag) =z (202 (14)
¢/s 10-1

are discrete approximations of Gg.s(z,y) and Gy;s(x,y) with s = 0.7 which can
be proved by comparing the energies of the two filter kernels:

; 3 1
o / G2, (z,y)de dy = (15)
; ’ 16 ey 8mst

which are identical for s = 0.6787.. .
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We now obtain the factor tg in (9)

1\ 2 12
ts= (3) U+ D02 1) = 2= 2 g

which is due to the linear dependency of the gradient of the original distances:

dT:é(—d(r—l,c—l)—2d(r—1,c)—d(r—1,c+1) (17)
+d(r+1l,c—=1)+2d(r+1,¢) +d(r+1,c+1)) (18)
dc:%(—d(r—l,c—1)+d(r—1,c+1)—2d(r,c—1) (19)
+2(r,c+1) —d(r+1,c—1)+d(r +1,c+1)) (20)

and identical with the energy in (15a).

As the sum of products of the coefficients for d, and d. sum to 0, the two
partial derivatives are uncorrelated, showing the Sobel to be a consistent ap-
proximation of the first Gaussian derivatives.

3 Noise Variance Estimation

The noise variance needs to be estimated from images. There are three possible
methods to obtain such estimates:

1. Repeated images: Taking multiple images of the same scene without changing
any parameters yields repeated images. This allows to estimate the noise
variance for each individual pixel independently. This certainly is the optimal
method in case no model for the noise characteristics is available and can be
used as a reference.

The method is the only one which can handle the case where there is no
model for the noise characteristics.

We used it for finding out the noise model for the scanner component of
digitized aerial images (cf. fig. 1ff, taken from Waegli 1998).

The disadvantage of this method is the need to have repeated images, which,
e. g. in image sequences is difficult to achieve.

2. Images of homogeneous regions: Images of homogeneous regions, thus regions
with piecewise constant or linear signal, allows to estimate the noise variance
from one image alone.

The disadvantage is the requirement for the segmentation of the images
into homogeneous regions. Moreover, it is very difficult to guarantee the
constancy or linearity of the true intensity image within the homogeneous
regions. Small deviations from deficiencies in the illumination already jeop-
ardize this method.

The method is only applicable in case the noise only depends on the signal.

3. Images with little texture: Images with a small percentage of textured regions
allow to derive the noise variance from the local gradients or curvature. For
the larger part of the image they can be assumed to have approximately zero
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mean. Thus presuming a small percentage of textured regions assumes the
expectation of the gradient or the curvature in the homogeneous regions to
be negligible compared to the noise.
Also this method is only applicable in case the noise characteristics is only
depending on the signal.
We want to describe this method in more detail. We first discuss the method for
intensity images. The generalization to range images is straight forward.

3.1 Estimation of the Noise Variance in Intensity Images

Case I: Constant Noise Variance The idea is to analyze the histogram of
the gradient magnitude of the image in the area where there are no edges and no
texture. The procedure given here is similar to that proposed in (Férstner 1991).
We now need to specify the model for the ideal image f. We assume that
a significant portion H of the image area 7 is homogeneous, thus shows locally
constant intensity, thus py = const.. Adopting notions from statistical testing
Hy = (r,c) € H is the null-hypothesis, i. e. the hypothesis a pixel belongs to a
homogeneous region. Thus
E(Vf|Ho) =0 (21)

The other area Z — H covers edges and textured areas with significantly larger
gradients.

Then, as to be shown, the histogram of the homogeneoity measure h = |Vg|
shows exponential behavior in its left part representing the noise in the image
and arbitrary behavior in the right part representing the edges:

We assume the intensities to be Gaussian distributed with fixed mean and
random noise. Assuming the simple gradient kernels

010 000
(63) =1000 (83) =[(10-1 (22)
"/o 0-10 ¢/o 00 0

neglecting the scaling factores 1/2, we obtain the gradient

Vg — (.97') — <9r+1,c - grl,c) (23)
e Grc+1 — Grpe—1
which is Gaussian distributed with covariance matrix
g _ 2
D r\Hy) =0, 1 (24)
9.

Here we use the convention

Ne

which in general is given by (cf. eq. (15b), Fuchs 1998)

)
8mst "

1 .
o2, :/ G2, (z,y)dx dy = o020k, or o2 = E 02(r,c) o (26)
T,y r,c
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In our case eq. (22) leads to
o2, =202 (27)

n

The squared gradient magnitude measures the homogeneity h
hv(r,c) = |Vg(r,c)|* = g} (r,c) + g2 (r,c) (28)

It is the sum of two squares of Gaussian variables.

In case the mean p, = py of g is constant in a small region, thus the model
eq. (21) holds, the squared gradient magnitude is x2 or exponentially distributed
with density function (neglecting the index V for simplicity)

h
1 -—
p(h|Ho) = —e Hh (29)
Hh
and mean
E(h|Ho) = pun = 407, (30)

Therefore we are able to estimate the parameter u, from the empirical density
function in the following way:

1. Set the iteration index v = 0. Specify an approximate value 0%0) for the noise
standard deviation. Use H;lo) = 40,%(0) as approximate value for the gradient
magnitude.

2. Determine all h(r,c)

(v

3. Take the mean m) of all values h(r,c) < Hy ) Tts expected value is given

by
w
[ i,
(v) — Jh=0 — — (v) 1
Hoar, e o1 M (31)
p(h|Ho)dh
h=0
in case the edges or textured areas do not significantly contribute to this
mean. Thus a refined estimate ,usl"H) for pp is given by:
v -1
pl ) = —Z — m™) ~ 2.392m™) (32)

4. Set v =1 and repeat step 3.
Usually, only two iterations are necessary to achieve convergence. A modification
would be, to take the median of the values h(r,c) as a robust estimate and
compensate for the bias caused 1) by taking the median instead of the mean and
2) by the edge pixels (cf. Briigelmann and Forstner 1992).
This procedure can be applied to every channel in a multi channel image,
especially in color images or in gradient images of range images.
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Fig. 1. shows three image sections of 300 x 300 pizels from three different aerial im-
ages.

¥
4

o 4
e
S 1
N
Fig. 2. shows histograms tmage sections of 300 x 300 pizels. Observe that the frequen-

cies of the intensities vary heavily. Only for intensities with high frequencies one can
ezpect to obtain reliable estimates for the noise variance (from Waegli 1998).

Fig. 3. shows the noise standard deviation with 32 grey level intervals as a function
of the intensity. The estimated variances increase with intensity but not linearly and
showing larger variation in areas with low intensity frequency (from Waegli 1998).

Fig. 4. shows the noise standard deviation with no partitioning as a function of the
intensity. The effect of the intensity frequency onto the reliability of the estimated
noise variances is enlarged, but taking groups of 8 intensities is fully acceptable (from
Waegli 1998). The small step in the right figure is likely due to the scanner software.

174



Case II: General Noise Variance In case the noise variance is not constant
over the whole image area and can be assumed only to depend on the intensity,
we need to parameterize the noise variance function o2 = s(g) in some way.

The easiest possibility is to assume it to be continuous. Then we can partition
the range [0..G] of all intensities g into intervals I,,y = 1..I' and assume the
noise variance to be constant in each interval.

Thus we repeat the procedure of subsection 3.1 for each intensity interval
under the condition g € I,.

The choice of the intervals obviously requires some discussion, as it may
significantly influence the solution. Taking a set of constant intervals may lead
to intervals where no intensities belong to, even in case one would restrict to the
real range [g,in, 9max]. Therefore the intervals should be chosen such that

1. they contain enough intensity values..

The number should be larger than 100 in order to yield precise enough

estimates for the noise variances, which in this case has a relative (internal)

accuracy better than 10 %. The number of intervals should be chosen in
dependency of the expected roughness of s(g). For aerial images we have
made good experiences with intervals between 1 and 8 grey values on image

patches of 300 x 300 pixels (cf. Waegli 1998 and figs. 3 and 4).

2. they contain an equal number of intensities. This may easily be achieved by
using the histogram of the intensities.

Case III: Linear Noise Variance The case of linear noise variance can be
handled in a special way. The parameters a and b of the linear noise variance
function 02(g) = a + bg can be determined without partitioning the intensity
range, but by directly performing a robust weighted linear regression on the
gradient magnitudes. The weights, can be derived from the 3-characteristics of
the gradient magnitudes, whereas the robustness can be achieved by excluding
all pixels with too large gradient magnitudes, making the threshold dependent
on the estimated noise variance function (cf. Briigelmann and Forstner 1992).

3.2 Noise Estimation in Range Images

In range images we assume the curvature to be small. Thus we assume the
Hessian of the image function to have zero expectation:

—CTr =ccC
Then using the kernels
10-1 010
aa=1 000 cp=1|-10-1 (34)
-101 010

which both measure the local torsion lead to the homogeneity measure

hr = (c1 % g)* + (c2 % 9)? (35)
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which again is x3-distributed in case the mean curvature is locally zero. The
expectation of h, is

E(h,) = 802 (36)

allowing to use the same procedure for estimating o2 from the histogram of A, .

4 Variance Equalization

The estimated noise variance function may be used when thresholding on func-
tions of the intensity image. This was the line of thought in the feature extraction
up to now (cf. Forstner 1994, Fuchs 1998 and sect. 6).

The disadvantage is the need to refer the threshold to some center pixel of
an operating window. E. g. when thresholding the gradient magnitude deter-
mined with the Sobel operator, one needs to use a representative intensity in the
3x3-window for determining the signal dependent noise variance. Actually all 9
intensity values have different noise variance, making a rigorous error propaga-
tion tedious, without being sure that the rigorous calculations are much better
than the approximate calculations.

In order to avoid this situation one can transform the image such that the
intensities in the resulting image have equal noise variance.

4.1 Principle
The idea is to find a pixel wise transformation
9="T(g) (37)

such that o5 = 09 = const. is independent on g. From

ar\? ar\?
2 _ 2 _ (&L 2 _ (84
== (%) 2= (%) 5w (39)
we find
d
T = oo—2— (39)
s(g)
and obtain
g=T(g9) =0 ’ i—I—C (40)
° 1=0 y/s(1)
where the two parameters oo and C' can be chosen freely, e. g. that T'(g,,i,,) =

Imin and T(gmax) = gmax resulting in an image § = T(g) with the same
intensity range.

This variance equalization simplifies subsequent analysis steps as the noise
characteristics is homogeneous throughout the image.
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4.2 Linear Variance Function

2

In case o

(9) = s(g9) = a + b g we can evaluate the integral and obtain:

2
g=t@y:§?da+bg+c (41)

again with the possibility to freely choose the two parameters oy and C.

4.3 General Variance Function

In the case of general s(g) and piecewise linear approximation the integral can
also be evaluated algebraically.
Alternatively, one could sample s(g) and determine

1
g=1t(g) = oo ;:0 0] + (42)

5 Information Preserving Filtering

After having characterized the image noise and possibly transformed the image
we now want to increase the signal to noise ratio by filtering the image. Usually
signal and noise cannot completely be separated. Therefore any filtering meant
to suppress noise at the same time suppresses signal. Depending on the signal
and the noise model different filters may be optimal in increasing the signal to
noise ratio.

We want to develop a filter which locally leads to a best restoration, i. e. pre-
diction of the underlying signal. We start with the most simple case, where both
signals are Gaussian with known homogeneous and isotropic statistics, requiring
a Wiener filter as optimal filter. We then modify this filter to locally adapt to the
signal content, which we estimate from the given data. The presentation follows
(Forstner 1991).

5.1 The Wiener Filter
The Wiener filter starts from the model eq. (2)

g=f+n (43)

with
E(f) =E(n) =0 (44)
D(i) = Eff D(ﬂ) =un COV(iaﬂ) = Efn =0 (45)

Under these conditions the filter leading to best, i. e. most precise results is the
Wiener filter (Wiener 1948, Moritz 1980, p. 80):

§=%,'g=3:;(Zs; + Znn) 'g=Wg (46)
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A slightly different approach has been developed in and (Weidner 1994a and
Weidner 1994b). It integrates a variance component estimation for determining
the local statistical behavior of the signal and the noise (cf. Forstner 1985). The
approximate solution proposed in (Forstner 1991) and given and generalized for
range images below, has proven to be similar in performance but computationally
much more efficient.

5.2 Approximation of the Autocovariance Function

The statistics of the image function theoretically can be described by its auto
covariance function. This, however, would not capture the locally varying struc-
ture. This structure also shows severe orientation dependencies at least at edges
but also in textured areas, e. g. within agricultural areas.

Therefore we want to describe the local structure of the image function f by
an inhomogeneous and anisotropic auto covariance function k(x), depending on
the difference ¢ = (ry —r1,c0 —c1)'.

The auto covariance function can be assumed to decay smoothly with increas-
ing distance from & = 0. In a second order approximation it can be characterized
by the curvature at = 0 (cf. Moritz 1980, p. 175). As an example, assume the
auto covariance function has the form:

k(z) = 036 3075 (47)

with a symmetric positive definite matrix S, then its Hessian containing the
second derivatives at = 0 is given by

krr k
H. = rr vre — _0_25 48
¢ (krc kcc) ! (48)
Now, due to the moment theorem (cf. Papoulis 1984), the Hessian of the auto
covariance function is directly related to the variances and covariances of the
gradient of the true signal f by

_ _ 012% Ofpfe \ _ fq? frfc) . _OfuoTr
H,=-D(Vf) = (Ufrfc U?c )— Gt*(fch 2= VIV (49)
This relation allows to capture the essential part of the auto covariance function
from a quite local computation, namely the local dispersion of the gradient of
the image function.

As we do have no access to the true image f, but the noisy image g we need
to estimate D(V f). This either can be achieved by iteratively estimating f or
by using the relation between D(V f) and D(Vy):

D(Vg) =D(Vf)+ 02 1 (50)

The covariance matrix D(Vg) and o2, can be estimated from the given image us-
ing (49) and the procedure given in sect. 3.1. With the eigenvalue decomposition
D(Vg) = CAC" we obtain

D(Vf) = CACT (51)
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with

Xi = max(\; — 02,,0) (52)

5.3 An Adaptive Wiener Filter for Intensity Images

In principle the vectors g etc. in eqs. (43) — (46) contain the complete image.
This is due to the correlation structure of f, which links all pixels, leading to a
full covariance matrix Xyy. -

The filter we propose is realized as a, possibly iterated, convolution with a
small but signal dependent kernel.

In order to motivate this setup, assume the vector g contains only the 9 values
of a 3x3 window. In a first instance, the covariance between intensity values is
assumed to only depend on the distance, thus is homogeneous and isotropic, and
can be represented by an auto covariance function

Cov(g(ri,c1),9(r2,c2)) = k(di2) (53)

where dio = \/(r2 —71)2 + (c2 — 1)? is the distance between the pixels. As-
suming the correlation to fall off rapidly enough, the Wiener filter with isotropic
covariance function can be written as convolution with a small completely sym-
metric kernel
w1 w2 W1
w® = | we wo wo (54)
w1 w2 W1

In case the covariance function is anisotropic the kernel will only be point
symmetric:
w1 We W3
w® = | wy wo wy (55)
w3 Wwo wq

As E(f) = 0 the weights do not sum to 1 in general. In order to be able to
handle signals with E(f) # 0 the elements need to sum to 1, thus wg + 4w; +
4wy =1, in order that a constant signal is reproduced by the filtering.

The idea now is to locally determine the covariance function and approxi-
mately determine the 5 parameters wg to wy in w(®

We propose a simple expression for the convolution kernel w. It should fulfill
the following conditions:

1. Tt should allow strong smoothing in homogeneous areas of the image or,
equivalently, in case the signal has the same or a lower variance than the
noise. Therefore it needs to depend on the variance of the image noise.

2. It should preserve the sharpness of edges and corners. Therefore it needs to
depend on the local auto covariance function.

Thus the idea is to make the coefficients w; dependent on the curvature S of the
auto covariance function and the noise variance o?2.
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We propose a simple weight function

w(x) = 07 (56)
1+ leVf Vifx
2 202

the constant C' being used for normalization.
It has the following properties:
1. For a constant noisy signal g = f + n the estimated covariance matrix

D(Vf)= VFVTf ~ 0, thus all weights are equal. The weighting kernel is
the box filter R3

111
w=-|111 (57)
111

2. in case of a steep straight edge in r-direction we will have

o3 0
= f"‘
own = (%) (58)
thus for o3 >> o7, we obtain the weight matrix
1 010
w=z>[010 (59)
010

3. Finally, in case of a sharp symmetric corner we will have

U?u
D(vs) =21 (60)
thus for 0%, >> 02, we obtain
000
w=[010 (61)
000

which does not change the signal. The same situation holds for an isolated
bright or dark spot.

Thus the smoothing properties are those intended.

Three points are worth mentioning when implementing this filter:

1. As mentioned above, the true signal is not available. A possibility to ob-
tain the characteristics of the true signal f would be to use the estimated
covariance matrix of the gradients of f in eq. (52).

2. In order to avoid the eigenvalue decomposition at each pixel, one could al-
ternatively use an estimate f to determine the covariance matrix D(V f).
In a first implementation one could use the signal g as an estimate for f.
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Fig. 5. shows an iterative version of the information preserving filter.The matriz I’
denotes the dispersion D(VgV'g) or D(H?(d)) of the gradients or the Hessian resp..
ENOVA denotes the estimation of the noise variance, here assumed to yield the two
parameters a and b of a linear noise variance model. IPF is the simple version informa-
tion preserving filtering with locally adaptive weights. Observe, we reduce the variances
by a factor of 9, which is the mazimum reduction which can be achieved by filtering
with a 8 x 8-kernel.

> ave’Gr. e (D |—> ave’Gr. e

1) 2

g — w IPF g’ — o IPF g

? T

D )
ENOVA = (ab) —» */9 |»(ab)

Y

A Dbetter approximation of the true signal could be obtained by starting with
a smoothed version f = G, * f for determining the the covariance matrix
D(Vf). Then adaptive weights are more realistic. This especially holds, in
case the noise is not very small. Otherwise, the covariance matrix would not
show the full structure of the signal.

3. In case the noise is very large, we would like to smooth more than with a
box filter (57). Then we could apply the filter iteratively. This is indicated
in Fig. 5.

In our implementation we use the filter kernels (Roberts gradient):

@),2(0n) G)ma(Bh) @

for determining the gradients and the filter kernel

1111
11111

R4_Z 1111 (63)
1111

instead of Gy for the integration according to eq. (49).

5.4 An Adaptive Wiener Filter for Range Images

In range images the trend E(d) cannot be assumed to be locally constant, or,
equivalently, E(Vd) # 0. The most simple assumption would be to assume a
linear trend, or, equivalently E(H(d)) = 0 (cf. above).

Starting from the range image d, we then can use the gradient image Vd as
two channel image: f = Vd. Using the relation H (d) = VVd the mean quadratic
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gradient Gy * (V£ V'f) then is given by:
H?(d) =Gy (VFV'f) =Gy x H*(d) (64)

Thus we can use the weight function

1
w(zx) = — (65)
1+ 1" H*(d)z
2 202

n'’

6 Fusing Channels: Extraction of Linear Features

We now want to discuss one of the many algorithms for extracting geometric
features from digital images, namely the extraction of edge pixels, which then
may be grouped to linear image features (Fuchs 1998).
Edge pixels are meant to be borders of homogeneous regions. Thus they show
two properties:
1. The homogeneity is significantly larger than in homogeneous regions.
2. The homogeneity is locally maximum across the edge.
Therefore we need to discuss detection and localization of edge pixels.
The problem we want to solve is how to integrate the information of different
channels of a multi-channel image.

6.1 Detecting Edge Pixels

The detection of edge pixels can be performed as a hypothesis test, namely
calling all pixels edge pixels in case the homogeneity h; = |Vg|? is significant
with respect to the noise in the image. Thus edge pixels actually are pixels which
are non-homogeneous, thus indicate places where there may be signal, e. g. and
edge.

Detecting Edge Pixels in Intensity Images We first assume constant noise
variance.

In order to capture the full information in the neighborhood of a pixel we
test the averaged homogeneity hy = Gy * hy for significance. This at the same
time allows to detect thin lines, not only edges, as the smoothing caused by the
convolution with G then covers both sides of a thin line.

We use the test statistic

[Vgl?  tr (Gex(VgVTyg)

n'

|

21 =

Q

7211 g n' g,

which in case the pixels lies in a homogeneous region is x3-distributed. Ob-
serve, we need to use the same differentiation kernel for determining the partial
derivatives Vg of the signal as for determining o2, (cf. eq. (26)).
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Fig. 6. shows first a section of a digitized aerial image. The large compound image below
shows left the result of the information preserving filter (IPF)and below the difference to
the original, and right the result of a smoothing with a Gaussian with o = 1.4 and below
the difference to the original. Observe: the IPF smoothes the vegetation areas and the
roof tilings quite strongly without smearing out the edges and the line being a hair of the
analog film. The Gaussian filter does not smooth the vegetation areas and the tilings too
much but at the same time smoothes the edges. The difference images demonstrate that
the edges are better preserved using IPF. The notion information preserving obviously
needs an application dependent discussion, as a user might be interested in the roof
tilings.
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Fig. 7. shows top left the original of a DHM, shaded. Top right shows the effect of a lin-
ear filter with Go.7 below left the effect of a linear filter with G1.2 and below left shows the
effect of the information preserving filter, in the rigorous version from Weidner 1994a).
Observe the smoothing effect in the homogeneous areas and the presservation of struc-
ture lines.

Thus pixels with

|Vg|?

2, > X3.0 (67)

are significantly non-homogeneous, thus likely to be edge pixels.

In case the noise variance is signal dependent the determination of 2, would
need to take the different variances of the neighboring pixels into account. An
approximation would be to assume all pixels involved in the determination of the
gradient to have the noise variance of the center pixel. However, first applying
a variance equalization, leads to an efficient procedure as o3, is constant for the
complete image g.

Detecting Edge Pixels in Color Images In color images we need to inte-
grate the information in the different channels. Applying the tests individually
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in general would lead to conflicts, as there may be an edge in one channel where
there is no edge in the other image. The significance of the individual results is
difficult to evaluate.

We therefore proceed differently and determine a homogeneity measure on
the multi valued image.

Again we first assume the different channels to have constant noise variance.
Then we can measure the homogeneity by

. -
p=Y oy D (68)

which now is x3-distributed in case the multi-channel image is homogeneous.
This is due to the fact that z is the sum of squares of 2K normally distributed
variates. Thus pixels with

K

Vil
DRLLE I (69)
k=1

2
n

=~

are significantly non-homogeneous, thus likely to be edge pixels.

Assuming general noise behavior again reveals the noise equalization to sim-
plify matters. Here we obtain an even more simple expression for the test statis-
tic:

1 & - 1 &
2= b= Vg P (70)
=1

[y o',hl k=1

3-8

which shows that we just add the homogeneities of the normalized channels and
refer to the common noise variance o2, of the gradients.

Detecting Edges in Range Images Edges in range images are pixels which
do not lie on flat surfaces, thus are expected to be pixels where the curvature is
significant compared to the noise.

In range images we start with the gradient image g = Vd as two-channel
image. We want to use the same argument for fusing the channels here.

Assuming constant noise variance we instead of the homogeneity h; derived
from the first derivatives, obtain for the homogeneity ho derived from the second
derivatives, using hi(2) = 22 + zJ

ho = hi(dy) + ha(dy) = (3, + d3,) + (d), +d2) (71)
— 2 2
=&, +2d, +d2, (72)
=trH*(d) = X}(H) + \3(H) = &% + 3 (73)

in analogy to (64). Observe, hs is the quadratic variation. It only is zero in case
the pixel’s surrounding is flat, as only if the two principle curvature a both zero
the homogeneity measure hs is zero.
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Fig. 8. shows the edges from the original image (left) and from the information pre-
serving filtered tmage. Observe the low contrast edges, detected in the image filterd with
IPF ate the expense of getting additional, statistically significant edges, which might
not be relevant.
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Thus the generalization of the homogeneity measure to multi-channel images
together with the use of the gradient as two channel-image for describing the
form in a range image leads to a very meaningful result.

The differentiation kernels for determining the second derivatives could be
approximations of the corresponding Gaussian’s

9?2 72 — g2
ﬁGs (.’L’, y) = S4 Gs (SU, y) (74)
0? x

525y Ce(0¥) = 51 Gole.y) (75)
9?2 2 _ g2
530 (o) = 7= Gula.) (76)

which are orthogonal. Thus normalization with the noise variances leads to the
test statistics
e d &

p— T yy
z= gt 13 (77)
Nazaz Nay Nyy

The noise variances in the denominators can be explicitly derived for the case
of the Gaussian kernels eq. (74):

oo 2
o2 =gl = 6—2(} (z,y) | drdyo? = 3 o2 (78)
nee = Onyy = [ |\ Gg2 oY Yon = 16xs0°n

2 © (0 ? 2 I 5

Oy = 63:—6sz(a:,y) dx dyo;, 16ms67m (79)
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which has shown to be a good approximation for discrete kernels approximating
the Gaussian.

The test statistic is x3-distributed in case the region is homogeneous, which
can be used to perform a statistical test for edge detection in range images.

6.2 Localizing Edge Pixels

The statistical test on pixels which are significantly non-homogeneous leads to
edge areas. Within these edge areas the edge or the boundary between homoge-
neous regions is to be expected.

A classical approach to detect edges is to take those pixels where the slope
lines show an inflection point. In a one dimensional signal these positions are
given by ¢ = 0, and ¢"""¢’ < 0, where the second condition is needed to avoid non
valid inflection points. The generalization to two dimensional signals motivates
the zero crossings of the Laplacian g,» + g.. as edges, with a similar constraint
to avoid false edges.

Obviously this technique cannot be generalized to multichannel images. As
- in one dimension — edges can be defined by the maxima of g’ we easily can
generalize this into two dimensions, by looking for local maxima of |[Vg|? =
tr(VgVTg) in the direction of the gradient. We actually use the locally averaged
squared gradient Gy * |Vg|? = tr[G; x (VgVTg)]. This has the advantage of
higher stability, and at the same time allows to detect bright or dark lines.
The orientation of the gradient can be determined by the eigenvectors of Gy *
(VgVTy).

Generalization now is easy, as we only need to take the possibly weighted
sum of these averaged squared gradients of the individual channels:

K K
G * (Vgp VT 1 . .
> GOV 9 - S G (v i) (80)

k=1 T, ' g=1
where in the second expression the normalization with o2, is not necessary for
location.
In range images the squared gradient VgV g just needs to be replaced by
the squared Hessian H?(d), which again demonstrates the simplicity of the ap-
proach.

7 Outlook

The paper presented tools for preprocessing intensity, color and range images for
feature extraction. The idea was to exploit the full knowledge about the image
as far as possible. The examples demonstrated the feasibility of the approach.
Obviously the individual steps may be conceptually integrated to a much
larger extent. The iterative version of the information preserving filter obviously
is an approximation, which needs to be analyses and possibly overcome by a
more rigorous solution. The edge detection should be linked with the information
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Fig. 9. shows the first derivative image of a range tmage having a density of appr. 0.6
m (acknowledging TOPOSYS) with the edges overlaid (left) and homogeneous regions
data have kindly been provided by TOPOSYS)

- ) e

together with the edges (left) (The
T i i q

kY

preserving filter in order to exploit the inhomogeneous accuracy of the intensity
values after the adaptive filter. The detection of edges in range images may take
advantage of the range images in homogeneous, i. e. flat regions. Finally methods
should be developed which allow to integrate preknowledge about the form of
edges in order to increase the accuracy and the resolution of feature extraction.
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