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Abstract

Voronoi diagrams are a classical tool for analyzing spatial neighbor-
hood relations. For point fields the spatial proximity can be easily visu-
alized by the dual graph, the Delaunay triangulation. In image analysis
VDs and DTs are commonly used to derive neighborhoods for grouping
or for relational matching. Neighborhood relations derived from the VD,
however, are uncertain in case the common side of two Voronoi cells is
comparably short or, equivalently, in case four points of two neighboring
triangles in a DT are close to a circle. We propose a measure for charac-
terizing the uncertainty of neighborhoods in a plane point field. As a side
result we show the measure to be invariant to the numbering of the four
points, though being dependent on the cross ratio of four points. Defining
a fuzzy Delaunay triangulation is taken as an example.

1 Motivation

Voronoi Diagrams (VDs) are a classical tool for analyzing spatial neighborhood
relations. For two dimensional point sets the spatial proximity easily can be
visualized by the dual graph, the Delaunay Triangulation (DT), being extensible
to higher dimensions [Preparata and Shamos 1985] or to more general patterns
[Mehlhorn et al. 1991].

In image analysis VDs and DT's are commonly used to derive neighborhoods
for grouping (e. g. [Ahuja and Tuceryan 1989], [Heuel and Forstner 1998]) or
for relational matching (e. g. [Ogniewicz 1993]). No thresholds are required
for establishing neighborhoods using VD which allows to postpone decisions
on the adequateness of derived neighborhoods to a later stage. One of the
primary criteria for grouping image features or other data is proximity, which
can be established by a DT. Many procedures involving relational matching use
neighborhood relations as a first choice.

Now, neighborhood relations derived from the VD are uncertain in case the
common side of two Voronoi cells is comparably short or, equivalently, in case
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four points of two neighboring trianglesin a DT are close to a circle. In grouping,
this easily occurs e. g. in case the distance between two sets of collinear points
is large compared to two disturbing points (cf. fig. 1).

Figure 1: shows left two sets of collinear points and two additional points being
nearly cocircular with the two inner points. In case one uses the Voronoi Dia-
gram for establishing neighborhood relations, the two additional points prevent
the two groups as being identified as neighbors. Right the same set of points is
shown, but the top middle (A) and the third from the right (B) slightly moved:
The vertical connection between the middle points still is present, while the con-
nection of A and B is broken: The length of the common side of the Voronoi
diagram obviously is no good measure for this type of uncertainty (generated by

VORONOIGLIDE, [Icking et al. 1996]).

When matching two spatial structures based on the properties of the carrying
features and their proximity, e. g. using the region adjacency graph, the same
situation may occur. Neighborhood relations then may be evaluated with re-
spect to their uncertainty or their sensitivity with respect to small changes or
noise.

A typical example is given in Fig. 2, where a small change of the position of
the point D leads to a structural change of the VD, thus also of the neighborhood
relations derived from it.

We propose a quantitative measure for the uncertainty of a neighborhood
relation derived from the VD of a planar point set. It allows to define a soft
or fuzzy Delaunay triangulation: In the example of Fig. 2 both diagonals of a
quadrangle, composed of two triangles with a common edge, are then part of
the fuzzy DT, but with a certainty less than 1. The certainty measure can be
used in grouping or matching.

2 The Problem

Checking the stability of the neighborhoods of geometric features, especially
points, derived from a Voronoi diagram or a Delaunay triangulation (cf. Fig.



2) can use the geometric configuration of the four points causing the endpoints
of each edge PQ: the two points B and C' of the two neighboring Voronoi cells
and the two points A and D neighbored to these two points.

Figure 2: shows four points A, B, C and D (left) or D’ (right) together with their
Voronoi Diagram and their Delaunay Triangulation. Obviously the neighborhood
relations are uncertain in case D is uncertain, i. e. slightly shifts to D'. Both
diagonals should be considered as valid neighborhoods, however, with a certainty
less than 1.

In case Point D is slightly shifted to D’ the edge PQ will disappear and
change into the edge P'Q’, indicating A and D’ to be neighbored.

The transition appears when D passes the circle through (ABC). This is
due to the fact that the circle, defined by the three neighboring vertices, does
not contain another point (cf. theorem 5.8 in [Preparata and Shamos 1985]).
Therefore it is reasonable to check the closeness of the four points to a circle.
The closeness may then be transferred into a certainty measure for the diagonal
of the DT to actually represent the true neighborhood. This certainty measure
should be dependent on the uncertainty of the position of the given points and
invariant to the numbering of the points.

A similar reasoning holds for edges of the convex hull. Here the certainty
will depend on the collinearity of the three points or the area of the boundary
triangle.

The idea is to determine the distance of one point to the circle through the
other three points and the area of the boundary triangles, transfer it into a test
statistic and use the significance of the test statistic as certainty measure.

3 The Test Statistics

In both cases we assume the uncertainty of the points, to be small, e. g. the
standard deviation of their coordinates to be smaller than the smallest distances
in concern. Especially we assumed that it is small enough not to influence more
than the neighboring edges of the DT. In case of large uncertainties this might
lead to complex changes of the neighborhood relations. This case we do not



consider here.

3.1 Interior Edges

We start with the test statistic for interior edges of the Delaunay triangulation,
thus edges not belonging to the convex hull.
Given the planar coordinates (x;,y;) of the four points P;,i = 1,2, 3,4 col-
lected in complex numbers
zi =zt jyi (1)
the four points lie on a circle in case the cross ratio
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is real, or if

t =S (e(z1, 22, 23, 24)) (3)

equals 0, where J(-) denotes the imaginary part of a complex number.

The proof of this result uses the fact that a homography 2z’ = (a+bz)/(c+dz) of
the complex plane is identical to the M6bius-transform ([Bronstein et al. 1996],
pp.584 ff.), which is circle preserving. Therefore one can always find a unique
homography, which maps a circle to a straight line. E. g. using the correspon-
dence of the points 21, z2 and z3 of the circle with the points having coordinates
zi =1, 2z, = 2, and z§ = 3 maps the circle to the real axis. If the 4 points lie
on a circle, the fourth point needs to map to a point on the real axis. As the
cross ratio of any four points on the real axis it real, and the cross ratio is an
invariant of a homography, the cross ratio of the 4 points on the circle needs to
be real.

Assuming the given points are uncertain with covariance matrix C' which in
the most simple case could be C = oI one can derive the standard deviation
o of t:

cl=a'Ca (4)

o= (ar) = < jji) (5)

where the coordinates are collected in the vector w = (21, y1, 2, Y2, €3, Y3, £4, y4)T.
Thus we obtain the optimal test statistic [Kreyszig 1968]

with the Jacobian

=1 <N, (6)

Tt
which is normally distributed in case one can assume Gaussian distribution of
the given points and the uncertainty is small enough that a first order approx-
imation is sufficient. This condition is fulfilled if the distance of the points is
at least 3 times larger than the standard deviation of their coordinates. It is of



no importance at this place, whether the uncertainty can be estimated from the
data or is given by the user.

Observe T? is the Mahalanobis-distance of a point to the circle through the
other three points, and y3-distributed [Kreyszig 1968].

3.2 Edges of the Convex Hull

An edge belonging to the convex hull is uncertain if the corresponding boundary
triangle has a small area. Therefore we test the area
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to be zero leading to the test statistic

T, = - ~ N(0,1) ®)
A
where the standard deviation again can be derived by error propagation. Instead
of using the area of the three point we, analogously to the cocircularity test, we
also could have tested the imaginary part I(r) of the ratio r = (21 —23)/(22 —23)
to be zero.
We now show the test statistics to be invariant to the numbering of the
points.

3.3 The Invariance of the Test Statistic 7 of Interior Edges

There are (2) = 24 cross ratios, which form 6 groups with 4 having the same
value, as ¢(z1, 22, 23, 24) = ¢(22, 21, 24, 23) = (24, 23, 22, 21) = c(23, 24, 21, z2). If
c is one value for the cross ratio depending on the first numbering, the other
5 possible values are ¢ = 1 —¢, ¢3 = 1/¢, ¢4 = 1—1/¢, ¢5s = 1/(1 — ¢) and
c6e =1 —1/(1—c) ([Fischer 1985], p. 153 ff.) Thus all possible cross ratios are
functionally dependent.

Now, assume we have two stochastic variables « and y, related by = = f(y),
where the first two moments are E(z) = p, and D(z) = o2%. Then by error
propagation the first two moments of y are E(y) = puy = f(ps) and D(y) =
0'5 = (df/dz)?c2%. Now, testing a value of = to be equal to p, leads to the

optimal test statistic T — flg

ty = (9)
Oz

whereas testing value y to be equal to py leads to

Y— Hy
ty = — 1
,= (10)
Obviously |ts| = |ty| up to second order terms as
@) = Fpa) | (o) + (e — o) = Fa) | o= o .
lty| = a = daf = (11)
|%|O'x |%|O-x Oz

This holds for arbitrary f.



In our case, the test statistics t7/o7, with ¢; = (c;), for all six cases are
identical, thus not only identical up to second order terms, as can be verified
e. g. using MAPLE.

This confirms intuition: The test on cocircularity is independent on the num-
bering.

Example: We demonstrate the invariance of the test statistic 7' by an
example: Given the four equally distant points (0,0), (1,0), (2,0) and (3,0), the
cross ratio is 3/4, being a real number, indicating them to be cocircular.

If the fourth point has coordinates (3, s), the cross ratio is

13435s

0(21722723724) = 5 2—1—_]8 (12)
its imaginary part is
1 s
t=(21,29,23,24) = —= —— 13
(21, 22, 23, 24) = —3 ypye (13)

Assuming the points to be uncertain by o in all coordinates, the variance of
t is given by: , 13542052440 ,

o =
t 8 (4 + 82)2
as the Jacobian of ¢ is (using MAPLE)

(14)
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If we now exchange the second and the third point, thus {(0, 0), (2, 0), (1,0), (3, s)},

we obtain the cross ratio

(15)

The test statistic is

34 i
(21, 22, 23, 2}) :—11‘;2 (17)
which is —3 for s = 0,compared to 3/4 before The imaginary part is
, s
=2 — 18
1+ s2 (18)
We obtain the variance of ¢’
35+ 2952 +40
o =928 T2 44 (19)

(1+5%)°
which is different than before exchanging points 2 and 3. We now have — except
for the sign — the same test statistic

T/(.S):izi \/i
o, 0 +/3s4 42952440

(20)



3.4 The Invariance of the Test Statistic 7, of Edges of the
Convex Hull

The test statistic T, of edges of the convex hull is invariant to the numbering,
except for the sign, as the absolute value of the determinant is invariant to the
sequence of columns.

4 Fuzzy Delaunay Triangulation

We now want to apply this concept to a complete Delaunay triangulation. We
want to achieve a smooth transition between triangulations if a point is moved
smoothly. This is not the case in the classical Delaunay triangulation, as a small
shift, e. g. of point D in Fig. 1 leads to a large change in the triangulation,
namely a change of the diagonal. The key idea is to already include the upcom-
ing edge before the point D actually crosses the circle (ABC') and give both
diagonals a significance value between 0 and 1.

We start with the classical Delaunay triangulation. For each edge not being
part of the convex hull, we have two neighboring triangles. If the resulting
quadrangle is significantly concave, we accept the edge with significance 1. If
the quadrangle is not significantly concave we determine the test statistic 7' of
the diagonal and derive a significance number by using a sigmoid function, here
the error function erf(T), yielding a transition between 0 and 1 for test statistics
between —oo and 4o0:

S(T) = exf(T) = / . e;; da (21)

The significance of the other diagonal is 1 — S. In case S < Sy is smaller than
some significance level, e. g. 0.9, the edge is assumed to be uncertain, and the
other diagonal is taken as also being part of the fuzzy triangulation.

The significance S(T3) for the boundary edges is calculated similarly.

A few examples demonstrate the concept.

The fuzzy Delaunay triangulation of cocircular points: The different
uncertainty of the neighborhoods in fig. 1 is made objective by the corresponding
fuzzy Delaunay triangulations in fig. 3. Observe the move of the second left
point significantly changes the certainty of the link to the center points.

Changing the Uncertainty: Fig. 4 shows a sequence of fuzzy Delaunay
triangulations with increasing uncertainty. Obviously the left triangulation is
equal to the classical one except for one quadrilateral with points nearly lying
on a circle. Increasing the uncertainty reveals only a few of the original edges
to be stable.



Figure 3: shows the fuzzy Delaunay triangulation of a point set similar to that
in fig. 1. Compared to a. the top middle point and the second right point are
slightly shipted upwards and downwards resp. in b. QObserve the edges between
the two middle points and between the second right point and the top middle one
to be uncertain in b.. Also observe the uncertainty of the lower right edge of the
convex hull in b.
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Moving a Point. Fig. 5 shows a sequence of point sets with the Delau-
nay triangulation and the Voronoi diagram generated by the sofware package
VoRrONOIGLIDE ([Icking et al. 1996]). The different point sets are generated by
moving one point. Observe in Fig. 5b and d the VD contains a vertex with
degree 4 indicating the triangulation be uncertain.

Figures 6 and 7 show the fuzzy triangulation of the sequence of point sets
with a bit higher resolution. Observe the gradual change of the triangulation.
Especially the uncertainty of the triangulation 3 in fig. 6 is visualized by the
two diagonals having the same grey value, indicating the certainty to be around
0.5 for both diagonals. Also observe the smooth switch between the diagonals
between the triangulations 2 and 3.

5 Conclusions

We have presented a method to determine the uncertainty of neighborhood rela-
tions of point fields. The uncertainty measure is based on the Voronoi diagram
of point sets in the plane or the planar Delaunay triangulation and takes the
real or fictitious locational uncertainty of the points into account. The underly-
ing test statistic for interior edges of the triangulation depends on the complex
cross ratio and has been shown to be invariant to the numbering. We developed
the concept of a fuzzy Delaunay triangulation and gave examples which follow
intuition. The concept can be applied in grouping and matching. It may be
extended to abstract Voronoi diagrams for including linear or area type features
([Mehlhorn et al. 1991]).

Acknowledgments: I thank Andre Braunmandl for the implementation of
the fuzzy Delaunay triangulation.



Figure 4: shows fuzzy Delaunay traingulations with increasing uncertainty. The
average point distance is 1, the standard deviations shown are 0.1, 0.3, 0.5, 1.0,

2.0, 3.0.
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Figure 5: shows a sequence of § VD together with the DT, caused by moving
one point from left to right. In VD b. and d. the VD contains a vertex with 4
edges, indicating the triangulation to be uncertain [Icking et al. 1996]

SR E S

Figure 6: shows the first part of the sequence of fuzzy Delaunay triangulations
(FDT) of fig. 5. In order to increase the resolution, the sequence is calculated
for a denser sequence of points. Observe the gradual change of the triangulation.
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Figure 7: shows the second part of the sequence of fuzzy Delaunay triangulations
(FDT) of fig. 5. Observe the smooth switch between the diagonals between the
triangulations f and g.
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