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1 Participants

The working group consisted of the following participants: S. Bailey, H. de Boer, P. Faber,
W. Forstner, R. M. Haralick, H. Haussecker, N. Ohta, J. Sporring.

2 Scope

The scope of the working group is to discuss the two questions:
1. How to specify the required performance of an algorithm?

2. How to perform propagation of uncertainty in algorithms?

3 Outline

We proceeded in a top down way to attack the problem. We hypothesize each algorithm
can be specified by its input (z,Q);), its output (y,Q,) and the theory A of the transition
between input and output. The input and output values x and y are uncertain, their
quality is described by (), and @),. This allows to link different atomic algorithms to form
an aggregated algorithm.
Specification is to pose constraints on the range of y and (),, which are task specific.
The discussion was intended to cover the following topics:

1. Prove the hypothesis. This is done by investigating a complicated enough task which
contains enough representative subtasks.

2. Discuss the possible structures of input and output.

3. Discuss the propagation of uncertainty.



Figure 1: shows the general structure of an algorithm A with input (z,Q,) and output
(y7 Qy)

Figure 2: shows three examples of aggregated algorithms. The top example is a simple
sequence. The middle example contains a bifurcation which may be guided by a decision
made by the first algorithm. It also may represent the parallelity of the two algorithms A,
and Ajz. The bottom example contains a control algorithm C'A which uses only the input
data, and a loop of the algorithms A; and As, where the decision to stop is made by As.
Observe each of the algorithms A; may internally have a compsite stucture.
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4 The Example

Given a conveyor belt with parts being observed by a stereo system with 3 cameras. The
task is to locate and classify the parts depending on their 3D-geometry.
The task can be solved by a sequence of atomic tasks:

1. Extraction of linear features in the image, especially straight line segments and seg-
ments of conics.

2. Stereo matching leading to a set of match candidates.

3. 3D-reconstruction leading to a set of 3D line segments, namely straight line segments,
conic segments and possibly other segments.

4. Indexing of 3D-line segments into object data base, leading to pose parameters and
a classification.

5 Specification

5.1 The Complete Algorithm

We first checked whether the complete algorithm can be described in the hypothesized
manner.
The input x is given by:

1. 3 images

2. orientation and calibration parameters. The calibration includes geoemtric and ra-
diometric parameters.

3. tunnig parameters.

4. The geometry of the objects.

5. The a priori probability P(w;) of an object appearing.
The uncertainty @), of the input is given by

1. noise characteristics of image. This is given by the signal dependent noise standard

deviation 0,(g) = v/a + bg where g is the greyvalue.
2. Covariance matrix of the orientation and calibration parameters.
3. The quality of P(w;).
The output y is given by:

1. The proposed class label w.



2. The vector of the probabilities P(w;) of class labels.
The uncertainty @), of the output is given by:
1. The uncertainty of the probabilities of the class labels.

It was not the task to specify the algorithm A in detail. The discussion suggests that the
structure of an algorithm is applicable to the chosen complex task.

This shows that  may be simple or have a composed structure with subparts being:
e integers, reals, labels

e sets, lists, vectors, matrices, tensors

e graphs, trees, relational structures

The problem therefore is to establish a theory of quality measures for the different types

of data.
It appears that statistics provides the appropriate tools. However, the task of modelling

the uncertainty, of estimating the free parameters, of propagating the uncertainty and of
testing the validity of the chosen models is by far not worked out for the basic tasks in
image analysis. The numereous examples from literature however show, that the tools are
available and suggest the statistical framework to be applicable.

5.2 The First Step: Extracting Linear Features

We discussed the first step as an example for a subtask.
The input x is given by:

1. The image.

2. The expected scale of the edges. This parameter of course could be determined from
the data, leading to a more complex algorithm.

3. A threshold for distinguishing edge pixels from non-edge pixels. As thresholding
can be interpreted as a statistical test, the threshold may be made dependent on a

presecified significance level.
The quality @), of the input is given by:

1. The noise characteristics of the image. It can be approximated by the signal depen-

dent noise standard deviation o,(g) = v/a + bg.
The output y is given by:

1. List of straight line segments (4 parameters = 2 for the line + 2 for the end points)



2. List of conic line segments (7 parameters = 5 for the conic + 2 for the end points)
3. Possibly, attributes to the line segments as contrast and scale.
The quality @), of the output is given by:

1. Covariance matrices X for the parameters of the line segments. They can be assumed
to be independent. However, the parameters describing the line segments certainly
are correlated which prevents the covariance matrices to be of diagonal structure.

2. Propabilities or likelihoods P(3) the line segment represents a true line segment.

3. Probabilities or likelihoods P(s;|3;) the found line segment §; actually represents an-
other one. Together with the previous probabilities, this information can be collected
in a confusion matrix.

4. Probabilities or likelihoods the line segments are spurious.

Obviously there is no information available on missing edges.
There seems to be no reason to reject the hypthesis of the clear setup of algorithms as
input-output relation.

6 Uncertainty Representation

We collected some well known representations from statistics.

o real values, or vectors with real valued elements: variance, covariance, correlation,
bias. The number N of elements to represent the uncertainty then increases with
the square of the number n of real valued elements: N = O(n?), mainly contained
in the covariance matrix, being a complete representation for normally distributed
variables.

o integer values, or vectors with integer valued elements: propability, joint probability.
The number of elements to represent the uncertainty increases exponentially with
the number n of integer valued elements: N = O(2"), as in general the probability
of all combinations need to be specified.

o class labels as a result of a classification step: confusion matrix.

e For sets we hat no simple representation at hand. An example, which seems to be rep-
resentative would be the probability P({a, b, ¢t{a,b,e, f}) an algorithm would find
the set {a, b, ¢} while the true result would be {a,b, ¢, f}. In case of independent ele-
ments this propability might be decomposable into P(a a)P((;|b)P(é —¢)P(—é e)P(—'ﬂf).

The probabilities might be derivable from a confusion matrix.




e The statistic of lists may be represented by Markov-chains, well known in speach
analysis. The Leveshtein or Hamming distance of two strings is a well known qual-
ity measure, which weighs every symbol equally and assumes independence of the
symbols.

e The statistics of graph structures is developping rapidly. For undirected graphs
Markov-Random-fields are well established. For directed graphs Bayesian networks
are applicable. For graphs with directed and undirected edges and real and integer
valued variables graphical model are under development, unifying Markov-Random
fields and Bayesian networks. In all cases independence assumptions simplify the
model, the estimation and the evaluation.

In all cases classical statistics provides the means for propagating uncertainty.

7 Open Questions

We identified some open problems, which we did not see whether the theory is worked out:

e Algorithms may contain feed back loops within a sequence of subalgorithms. It is not
clear how in a general setup uncertainty of such a loop can be handled. One certainly
has to distinguish two cases. In case the loop results from an iterative solution to a
global optimization problem an analysis should be feasible. Otherwise, as e. g. in
diffusion techniques, the quality may not be derivable.

e In image processing and feature extraction one needs to make a decision on whether
one starts at a continuous model, which then is discretized or one may directly start
at the grid. In the last case it appears difficult to define and use properties of the
image which refer to the embedding of the the grid into the continuous plane, as e.
g. the straightness of an edge not lying in one of the principle directions.

e The propagation of uncertainty is worked out for quite some of the above mentioned
representations. However, complex systems cannot be modelled rigorously. It is
a practical and a hard theoretical problem to identify and evaluate approzimate
propagation schemes, especially schemes which neglect certain dependencies.



