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Abstract

The paper analyses the theoretical precision of integrated multiple image
matching and image reconstruction, and the theoretical accuracy of the triangu-
lation from a sequence of images specializing to tri- and binocular stereo. The
estimated geometric parameters from multi image matching, used in aerial tri-
angulation for point transfer, turns out to be statistically uncorrelated from the
restored image, and the precision of the shift between two images does not depend
on the number of images taking part in the multi image matching. Triangulating
from an image sequence reveals the variance of the position of points perpendicu-
lar to the trajectory to decrease with the number of images whereas the variance
of the distance of the 3D-point to the trajectory decreases with the cube of the
number of images, taking the distance between the images as given. The case
of three images, representative for three line cameras shows the distance to be
independent of the central ray.

1 Motivation and Problem

Since aerial images became available at the beginning of this century Photogram-
metry geometrically analyzed image sequences. Sensors in remote sensing provide
line image sequences, and in the case of three line scanners multiple image se-
quences. Todays computer power allows the real time analysis of video image
sequences.

There are qualitative differences between these technologies: The size of the
images, the density of the images, the type and number of spectral channels, the
availability and the cost of image data. This leads to quite different application
areas, ranging from topographic mapping, to point determination by aerial tri-
angulation and vision based vehicle control to three dimensional mensuration for
inspection.

Common to all applications is the need for calibration, orientation and three
dimensional reconstruction. The analysis of the geometric properties of this
problem has been intensively studied in Computer Vision, leading to deep insight



into the structure of the image pair, the image triplet and streams of images,
modeled as projective mappings from three dimensional space, and to efficient
techniques for the reconstruction of the Euclidean structure of the three dimen-
sional scene (cf. [Spetsakis and Aloimonos 1990], [Faugeras and Robert 1994],
[Luong and Faugeras 1996], [Hartley 1997], [Torr and Zisserman 1998,
[Triggs 1998], [Avidan and Shashua 1998], [Csurka et al. 1998]). This goes
along with the development of matching techniques for image sequences which
may be dense or sparse (cf. [Horn and Schunck 1998], [Fleet and Jepson 1990],
[Beardsley et al. 1996]). Here Photogrammetry and Computer Vision are
on close paths using all types of correlation, least squares, feature based or
relational matching techniques. Differences lie in the perspective: in Computer
Vision emphasis is on finding robust techniques which work under quite general
conditions, especially in case no approximate values for the parameters of the
interior and the exterior orientation are known, accuracy is of secondary interest;
in Photogrammetry emphasis is on exploiting the accuracy potential and the
prior knowledge about camera parameters, which leads to solutions adequate
for applications with well defined boundary conditions, but transferable to other
applications only with difficulties. However, both fields are far from reaching
the goal of a generally accepted matching technique.

This paper follows the classical photogrammetric flavor. It is motivated by
the developments in automatic aerial triangulation and the derivation of Digital
Elevation Models from three line cameras, especially the MOMS02-camera. It
investigates the accuracy structure of multiple image matching and the resulting
accuracy of three dimensional structure.

The first part analyses the precision structure of multiple image matching
for multiple point transfer in aerial triangulation which is a generalization of the
cross correlation technique for measuring homologous points in image pairs. The
second part analyses the accuracy structure of three dimensional points. It is a
generalization of the forward intersection of the three line image case. Both topics
are closely related to G. Konecny’s work (cf. [Konecny 1978, Konecny 1995]).

2 Multiple Image Matching

Template matching is the technique for finding a given signal, the template, in
an observed noisy signal, in our context an image. It has several applications
in Digital Photogrammetry, e. g. when detecting and locating fiducial marks or
control points whose appearance in the image are given by an intensity mask.
The only unknown in template matching is the geometric location of the template
within the observed image.

The generalization of template matching may proceed in many ways leading
to variations, subsumed under the notion of area based matching, in contrast to
feature based matching:

e allowing for more complicated geometric transformations of the tem-
plate with respect to the image, e. g. an affine transformation (cf.
[Ackermann 1984]).

o allowing for radiometric differences between template and image in order
to reduce the effect of different illumination and film sensitivity. If these



differences are represented as a linear transfer function for the intensities, it
is equivalent to normalized cross correlation, the earliest known and most
important technique for template matching used in Photogrammtry (cf.
[Kreiling 1976, Helava 1976, Konecny 1978]).

o allowing for more than one image. Together with the two previous general-
ization the two-image case is the classical least squares matching approach
(cf. [Forstner 1984])

e including geometric constraints, e. g. from the orientation of the images
(cf. [Griin and Baltsavias 1988])

e simultaneous matching of several templates or image patches (cf.

[Rosenholm 1987])

e performing matching in object space (cf. [Ebner and Heipke 1988,
Wrobel 1988, Fua 1995]).

We here want to generalize area based image matching to more than two
images and assume the template to be unknown. We want to treat the most
simple model, namely a geometric shift. More complicated models can be treated
similarly. There will appear no difference between handling two and handling
more than two images.

The goal is to investigate the accuracy of the estimated parameters, namely
the relative geometric shifts of all images and the reconstruction of the unknown
template.

2.1 An Integrated Model for Image Matching and Re-
construction

We assume K images gx(2;,yi), k=1, ..., K,i=1, ..., I having I pixels each to be
given. They are assumed to be noisy versions of the unknown template f(z;,y;)
translated by (25, y%)”. The model reads as:

ge(xi, ys) = fle —oe, v — yk) + e, ys), =1, k=1,..., K. (1)

This model obviously integrates image matching and image restora-
tion, as already required in [Forstner 1984] and realized later by
[Ebner and Heipke 1988] and [Wrobel 1988] within surface reconstruction
and by [Schenk and Krupnik 1996] within aerotriangulation.

We assume the function f(z,y) to be represented by a discrete grid together
with a linear interpolation function. We regularly need values of f and its first
derivatives f, and f, at non-integer positions, which we assume to be derivable
linearly from neighboring values of f, f, and f,.

As not all shifts can be determined simultaneously, we impose the restriction

K
Sar=0, Y =0 (2)
k=1

This implicitly fixes the position of the grid of f to the mean position of the
given images.



The model eq. (1) is highly nonlinear due to the irregularity of the function
f. We assume approximate values to be known with sufficiently high accuracy.
They may be determined in a coarse to fine manner and refer to both, the shifts,
as well as the unknown template f.

With the approximate values (xéo), y,go)) and f(o)(avi7 y;) the linearized model
reads as

Agik = = foy Ark — fy, Ayr + A fix + nak (3)

with the difference between observed and predicted intensities

Agir = gr(zi,yi) — fO(a; — 9620)7 Yi — y;io)) (4)

the partial derivatives

foy = U0 5)
T @y =@i—2® -y @)

Frow = M (6)
Oy (@) =(zi—2" yi—y'¥)

the unknown corrections to the shifts, the unknown corrections of the intensities
of the template and the noise

(0)

Azp = xp — 2y (7)
Ay = Y — y;io) (8)
Afie = flx; - 9620)7 Yi — y;io)) — O (z; — 9620)7 Yi — y;io)) (9)

nik = ng(@i,yi) (10)

We now determine the coefficient matrices A and H of the observation equa-
tions and the constraints in the linearized Gauf-Markoff model with constraints

Ab = AAz+te (11)
0 = HAz (12)

where Ab constraints the differences between the observations and the predic-
tions, e the observational errors, and A« contains the corrections to the unknown
parameters.

For simplicity we assume the images 1, ..., K to be of equal size having [
pixels. The first two coeflicients in (3) are collected in the I x 2 matrix

Ay = ({—fo;, — fy}) forall i € image k (13)
The third coefficient is collected in the I x I unit matrix
Ao =1 (14)

This results in the full K'I x (2K 4 I) coefficient matrix, as we have KI observed
intensities, 2K unknown geometric transformation parameters, namely shifts,



and I unknown intensities of the template:

Ay, 0 0 .. 0 I
0 A, 0 .. 0 Iy

A=| o o0 A5 .. 0 I (15)
0 0 0 .. A I;

The differences between the observations and the predictions are:

Ab = (Abg) = ((9:)x) (16)

With Ap, = (Azg, Ayk)? the linearized constraint eq. (2) can be written with

2 X 2 unit matrices Iy
Ap,
0=(Iy..1,) (17)

Apg
2.2 The Normal Equations

We therefore obtain the normal equation system N A@ = h for the shifts, the un-
known template and the two Lagrangian multipliers for the constraints, collected

in A

AT P Ay 0 0 Alp, 1,
0 AL Py AL . 0 ALPy,, I,
0 0 v Al PrrAg AngP kx I
P Ay PyAy PrgAg 2521 Py, O
I, I, I, o’ 0
Ap, Al Pk
APZ A?2P22h2
_ 5
Apy A?I}"P krhi ( )
Af SN Prihy,
A 0

A practical procedure would reduce this system by the unknown intensities
Af of the template, leading to a system with 2K 4 2 unknown parameters,
namely the geometric transformation parameters Ap, and the two Lagrangian
multipliers. We do not follow this path.

We, however, want to establish a prediction for the precision. We therefore
simplify, and assume all A; to be equal, thus A1z = A, and Py, = I;. This
is reasonable as the Ay; contain the derivatives of the template at the grid
positions of the given images. In case their grid would be aligned and they
would cover exactly the same part of the template, these derivatives would be
identical. Assuming the weights to be equal is a standard assumption. With

I I
Yo fa Y futu
Ii:l i:lI
=1 =1

No=ATA = (19)
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omitting the index k in the derivatives, this leads to the following normal equation

matrix:

Ny o0 .. o AT 1,
0 No .. 0o AT 1,

N = . C e . . 5

0 o0 .. Ny, AT I, (20)

A A ... A KI; O
I, I, .. I, o o

Using Kronecker notation and with the K-vector e = (1,...,1)7 we obtain

Ix®Ny e AT eI,
N=| efToA KoI5 020 (21)
eleor, o020l o0®o0
2.3 The Covariance Matrix of the Unknowns

With the K-vector e = (1,1, ...,1) inversion yields

(Ix —1/K-ee’)® Ny! e® 07 1/K-e I,
N~ !'= e’ ®0 /Kol -1/K1® A, (22)
1/K-e' o1, ~1/K-10 AT 090

which can be proved by N7'!N = 1.

The upper left 2 x 2 block matrix contains the weight coefficients of the
unknown parameters. This finally yields the covariance matrix of the unknown
parameters p and f:

P\ _ o Ux—1/Kee')o N;' exo’
D( )—Uo( 6T®0 1/[(@1[ (23)

Eq. (23) gives insight into the structure of the precision of multi image matching:

e The estimated geometric transformation parameters p and estimated signal
}' are uncorrelated. Thus evaluation of the restoration and evaluation of
the geometric transformation of the matching process can be performed
independently. This results holds for any type of geometric transformation,
as no use is made of the special structure of the Ay in the derivation.

e Observe the covariance matrix Cps = od(Ix — 1/K-ee’) @ N5*' of the
unknown geometric transformation parameters depends on the inverse nor-
mal equation matrix N5' known from classical image matching with two
images (cf. eq. (19)).

It seemingly depends on the number K of images. However, the uncertainty
of a geometric transformation between any two images k' and &” in our case
of a pure shift is given by
I I -1
DI Dty
o (24
i=1 1

1=

fa
D(pk’ — pk”) =2 O'g



due to the correlation between the geometric transformation parameters,
resulting from N from eq. (19) and

pk’ 2 1-— 1/_[{ —1/_[{ 1
D = . . N 2
(pk// ) ‘70( 1K 1-1/K ) © o (25)
Thus more images do not change the precision of the geometric transfor-
mation parameters, which appears plausible, as the information of an addi-
tional image is used for its own geometric transformation and the improve-

ment of the estimated template. The result coincides with the result from
classical least squares matching with two images.

e The precision D(f) = 02/K-I; of the restored image f increases with the
number of used images, as to be expected.

The independence of geometric transformation parameters and signal is the most
important result of this step: From now on we can assume the signal to be known
without loss of generality. The weight matrix P of the unknown geometric
transformation parameters is Diag(INg) with the constraint of the geometric
transformation parameters to sum to 0. Thus we finally have:

pp

Co=0j(I-1/Kee") @ Ny',  Pyo= C;;%: 0y2I® Ny (26)

independent on the type of geometric transformation and

Cip=03/KI  Pyp=Koy’l (27)

3 Triangulation in an Image Sequence

Let us now assume we have observed homologous points in an image sequence.
We want to investigate the quality of the triangulation of a 3D-point in depen-
dency on the geometric setup. Especially we are interested in the quality of the
height or depth for the case of a three line camera, such as the MOMSO02 cam-
era. We assume a straight trajectory with the projection centers being of equal
distance and the cameras looking perpendicular to the trajectory. This is also
the standard case in aerial applications of Photogrammetry.

3.1 The Model

For simplicity we assume the tracked point P(z, z) lies in the xzz-plane. The y-
coordinate is not taken into account. The point is observed from K cameras with
projection centers O (xok, 0) and known fixed orientations. The image points are
P/(zr) with standard deviation o,,. The principle distance is ¢. The task is to
determine the optimal coordinates (7, %).

In case the rotation angles are zero the nonlinear model reads as

T — ) . _
E(zg) =c- TOk D(zy) = Dmg(aik) = 0'3 Diag(py, 1) (28)
With the partial derivatives
dr, ¢ dxy, c
% = ; and E = _2_2 ($ - $0k>7 (29)
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Figure 1: shows the geometric situation for the k-th camera with projection center Oy.

AZ X

X
P(x,2)

where 2 = (9 and z = 2(9 are the approximate values we obtain the coefficient
matrix c
A= (al) with af = = (z = (z—2zow)) (30)

The normal equation system NAz = h is determined by

2 2
N=ATPA= < 2% 2k Pk —2 Yk ez — zok) 31
z4 ( =23 e pk(e —xor) g pr(T — wok)? (31)
Axk
h—ATPAb= & Z 3k Pk )
2 ( — >k Pel(® — wor) - Azk (32)

. 0)_ .
with Az, = ¢ - o Z)(o)%k — 2. The estimated unknown parameters then are

3.2 The Precision

The precision of the unknown coordinates can easily be determined in case we
choose the coordinate system such that Y ; pr(z — xox) = 0. After inversion of
N we obtain the general expression

2

z (o) z (o) (33)
on == —— os= —
R oo VX ek — wor)?

In case the images of the sequence have the same distance B, are symmetric
with respect to the unknown point and have equal weight, thus zor, = k- B, k =

—KT_I,...,KT_l, ¢ =20 =0and, p, =p =02/, we get
z Oy 22 Op V12 (34)
o~=— - o~ = .
roc K * ¢-B JK(K?-1)

The precision o of ¥ thus increases with v/ K while the precision o increases

with vV 3.



E. g we obtain for K = 2, K = 3 and K = 5 the following expressions for o:

2 2 2
1 _ < V2 Bl _ < I ] < I
ot = V20 o= —— - — ol = —— - —
= ¢-B “ = ¢-B 2 = ¢-B V10
the first expression being the classical of binocular stereo. The second expression
gives the theoretical precision for the three line camera, assuming all three images
having the same resolution.

(35)

We now want investigate the case i = 3 of the MOMSO02-camera and specialize
the equations such that the central image has a different resolution than the
other two. We therefore assume p; = ps = p., and ps = pg, the indices e and

standing for exterior and #nterior points or rays, and zg; = —2g3 = — B, 292 = 0
and obtain

e (A A A ZA A

5,0 2P (Azy 4 Azz) + prAzy P () B z) + Azg (36)
c 2pe + i cB 2pe
and thus
. z (o) . 2’2 (o)
Op=— —— 0= ore (37)
c 2pe + i c-B 2pe

Obviously Z is completely independent of x5 = zj, thus on the interior ray!

In the case of the MOMS02-camera we have the following values: z = 296
km, B = 116 km, ¢ = 0.237 m, for the oblique (exterior) stereo channels 6 and 7.
We assume a conservative value for the matching accuracy oo = 1/3 [pel]. This
leads to a standard deviation of:

o (296[km])*  3.3[um]
7 0.237[m] - 116[km] 21

This is the Cramer-Rao bound for the precision, stating that the actually reach-
able precision cannot be better. The theoretical standard deviations 9 to 12 [m]
reported in [Schneider and Hahn 1995] are derived by rigorous error propagation
include all orientation errors and are only slightly larger than the crude approx-
imation with the above mentioned simplified model. The theoretical values for
the precision are confirmed by the empirical standard deviations of appr. 10 [m].

= 7.4[m] (38)

3.3 The Reliability

In order to evaluate the quality of the estimated coordinates we also investi-
gate the reliability, i. e. the checkability of the observations and the sensitivity
of the result with respect to gross matching errors [Baarda 1967, Baarda 1968,
Forstner 1987].

The checkability of the observations needs the redundancy numbers
[Forstner 1979]

T -1 Dk PRy
rk:(l—akN_ ak)'pk:]-_ kak_zlpwz (39)
J 7705
which in case of equal weights lead to
1 xg 1 12 K —-1)\?
rp=1-— — 0k2 :1__’_T<k_ > (40)
K Yiai K K(K?-1) 2



of the k-th ray in a sequence of K images.
The lower bound for outliers detectable with a statistical test then is given

by
/1
V0$k = O'xk(SO i (41)
Tk

where §g depends on the significance number « of the test and the required power
o of the test. We choose dg = 4 in the following.

For the cases K = 2, K = 3, and K = 5 we obtain the redundancy numbers r,[CK]:

r?] _ rgz] _0 (42)
IV I (43
7‘55] = 7‘5[-,5] = 2/57 T‘£5] = r4[15] = 7/10 ri[;)] = 4/5 (44)

For binocular stereo (K = 2) we obviously obtain ry = 0, thus the observations,
i. e. the z-coordinates are not checkable. In case of three rays all observations
are checkable, however no localization is possible. The residuals in the exterior
rays 1 and 3 are always four times smaller than the residual in the interior ray.
The checkability in the case K = 5 is much better. Up to two errors in the
z-coordinate can be located.

If we, in the case K = 3, again distinguish interior and exterior points and
assume p; = p3 = pe and py = p;, we obtain the redundancy numbers

re:l—ipe Do, —=1— _ P (45)
2 2pe+pi 2pe + i
In case of the MOMS02-camera we may assume the matching accuracy to be
approximately proportional to the pixel size thus p; = 9p., as the pixel are
4.5 m and 13.5 m for the interior and the exterior ray resp. This leads to the
redundancy numbers
1 1 2

re:§—m:%:0.4l ; rizl—Qi—QZE:O.B (46)
Observe the checkability of the exterior rays increased due to the higher precision
of the central ray.

The boundary values for detectable errors, assuming o,, = 1/3 [pel] are

Voze = 1/3[pel] 4\/29j =2.08[pel] ; Voa; =1/3[pel] 4\/12j = 3.12[pel] (47)

Thus matching errors in flight direction need to be 2 or 3 pixels in order to be
detectable with a statistical test. Due to the large pixels of the exterior rays the
interior ray is less checkable .

The sensitivity of the result with respect to outliers is given by the maximum

influence of non detectable outliers onto the result. Here we are only interested
in the effect of matching errors onto the height. When partitioning the design
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matrix A into A = (B C), where B = (by) collects the coefficients for the
parameters not taken into account we generally have

[K]

1- T — Ut
VokZ:UZ(SO _

4
. (48)
with

u; = bl (BT PB)~'by, py, (49)

This in the general case of K views, thus B = ¢/k-e, with equally weighted
observations, therefore u;; = 1/K, leads to

¢ 1—-rp—1/K
VIEL = g g, L UK (50)
Tk
for the k-th ray in a sequence of K images. This yields
ngl]z = o0 (51)
vEl: = vla=600B V=0 (52)
vEl: = vB—400l, VP =vVP 11500 vl =0 (53)

This again shows the weakness of binocular stereo, the insensitivity of the height
with respect to errors in trinocular stereo and the inefficiency of the interior ray
for determining the height.

For the special case of the MOMS02-camera we need to take the different
weights into account and obtain:

Vggl]z = Vg;]z = UE](SO’ / et pi_ 4.4 080 Vg;]z =0 (54)
Di

The effect of matching errors in flight direction onto the height of the 3D-point
is limited to 2 times its standard deviation. Obviously the more precise interior
ray, errors in which have no effect onto the height, decreases the sensitivity of
the result by a factor of 1.5.

Obviously a simple algebraical and numerical analysis of the quality of a
geometric setup may give clear insight into the role of the individual observations
for determining the unknown parameters.

4 Conclusions

The anlysis of the precision and accuracy of multiple image matching presented
here may be used for planning geometric schemes for 3D reconstruction. The
stochastic independency of image restauration of the determination of the geo-
metric transformations appears to be the most important theoretical result of
this study. The type of quality analysis of the geometry of the multiple forward
indetrsection may be easily transfered to similar and possibly more complicated
situations.
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