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Abstract

The paper discusses objections against performance characterization of vision algo�
rithms and explains their motivation� Short and long�term arguments are given which
overcome these objections� The methodology for performance characterization is sketched
to demonstrate the feasibility of empirical testing of vision algorithms�
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� Motivation

For at least �� years Computer Vision has been confronted with papers and discussions on
the scienti�c value of its results and the di�culties in transferring the results to practical
systems�

A change of awareness seems to have happened� An the Computer Vision Workshop
��	 two controversial papers� with di�erent view� agreed on the lack of theoretical re�
search ��Haralick ��	�� �Price ��	��� which should go along with the development of
vision procedures� experimental proofs are not enough�

The dialogue on �Ignorance� Myopia� and Naivit�e in Computer Vision Systems� initi�
ated by R� Jain and T� Binford ��Jain ���� and the responses documented the necessity
of evaluating theoretical �ndings� vision procedures algorithms etc� by using empiri�
cal data in order to increase the number of real world applications of Computer Vision
Research�

When observing the increasing number of papers which propose new solutions to clas�
sical problems� especially using increasingly more demanding theoretical tools� it seems
to become clear that empirical testing of vision algorithms is necessary to allow a clear
comparison of the proposed methods by the users of such algorithms� Together with the
underlying theories a clear performance characterization of algorithms is necessary�

When discussing the necessity of empirical testing and performance characterization
a number of strong objections are posed repeatedly� Their honesty cannot be debated�
This requires a serious attempt to �nd out their truth� but also to show either their
shortsightedness or the means to overcome these objections�



� EVALUATION IS TASK DEPENDENT �

The purpose of this paper is to collect the most commonly posed objections against
performance characterization� Each of them is correct to some extent� The range of
their validity is discussed and opposed with a view to allow the start of accepting and
applying formal quality assessment� In each case examples are given to demonstrate
that the posed objections can be overcome� Though no commonly accepted methodology
seems to be available and is not meant to be proposed here� the discussion should provide
a strong motivation for developing vision algorithms with clearly de�ned performance
characterization based on both� theoretical research and empirical testing�

� Evaluation is task dependent

��� Pro

The evaluation of vision algorithms is task dependent� Vision modules always are part of
an application�

There is no such thing as a vision algorithm per se� E� g� edge detection never is
a goal on its own� Vision algorithms are designed to solve a task� The variety of tasks
makes it necessary to choose the best algorithms or adapt existing algorithms in order
to ful�ll the constraints of the application e� g� with respect to resolution� time or space
requirements�

The variety of tasks leads to a variety of requirements� Therefore no single set of
constraints can be speci�ed allowing to give a limited set of basic algorithms� E� g� edge
detection may aim at precision� accuracy� resolution� noise insensitivity� reliability� speed�
etc� Criteria on the measures for all of these quality notions in general are di�erent for
di�erent applications� making a recommendation of a certain algorithm obsolete�

��� Contra� Characterize performance and select adequate algo�
rithm

The same vision module may be part of several applications� This may be just to dis�
tribute the cost for its development or to be able to reuse the software� possibly much
later� Therefore an inversion is necessary� The developer is responsible for the speci�ca�
tion of a set of useful quality measures� which are variables� not values� The dependency
of these quality measures on the characteristics of the image data needs to be investigated
and reported in order to enable the user of the algorithms to decide on the usefulness
of the algorithm for the speci�c application� which might not have been foreseen by the
developer of the algorithm�

Formally the result r of an algorithm a depends on the input data d and the tuning
parameters t� thus r � r�d� a� t�� The speci�cation consists of requiring r to be achieved
with a quality q�r� better than some value q�� or

q�rjd� a� t�� q� ���

assuming q to increase with increasing quality� If q is vector valued the requirement in
��� refers to each individual component�

Usually a subset Ds � fd�� d�� ���g � D of representative input data is given� which
can be seen to be a set of samples of a stochastic variable d� If the characteristics of this
set is estimated from the given subset one can theoretically derive the expected quality
and change the requirement into

E�q�rjd� a� t�� � q� ���

or if the user allows that the requirements are ful�lled only with a minimum probability
P�

P �q�rjd� a� t� � q�� � P� ���



� VISION IS ONLY ONE MODULE �

This now allows to explicitly write down admissible algorithms ba with tuning parametersbt
fba�btg � f�a� t�jP �q�rjd� a� t� � q�� � P�g ���

This reasoning leads to a set of very clear conclusions� discussed in the order of their
appearance while choosing an admissible algorithm�

� The quality evaluation functions need to be chosen in such a way that they are
theoretically and algorithmically tractable and that they are acceptable by the user�
This is no severe restriction as most users would refer to standards in quality control�
e� g� using standard deviations� well de�ned tolerances or relative frequencies�

� The requirements� thus the values q� and P� are to be speci�ed by the user needs�
thus may vary from application to application�

� The characteristics of the complete set D of possible input data need to be found�

This is usually based on the given training data together with some rules on how
to generalize the data and only with respect to the task in concern� At this stage
learning is required�

The characterization only needs to be performed up to the point which is relevant
for the calculation of P �q � q��� which� due to the strong projection taking place�
is much more likely to be feasible than the general characterization of the data� No
complete speci�cation of the input data is necessary at all� which is not possible
anyway� This characterization may use any type of representation� e� g� algebra
or tables� and may be derived theoretically or by simulation� e� g� bootstrapping�
Of course� algebraic results are more valuable due to their generalization capability�
however� function approximations in all cases are well suited if the domain of their
validity is well documented�

E� g� when restoring images� the statistics of signal and noise may be su�ciently
described by the power spectra� both derivable from a small set of given images
under quite general conditions� But for extracting edges a characterization of their
form may be necessary� without� however� neglecting their origin �shadow� contour�
illumination� etc���

� The derivation of the distribution of q may again use analytical or simulation tech�
niques�

� Choosing one algorithm to satisfy the quality requirements may at the same time
take other constraints into account�

Obviously the characterization of an algorithm with respect to a set of standard qual�
ity measures and a set fDig of classes of input data would enable users to invert the
simulations provided by the author of the algorithm and to select the algorithm �tting
to the application� which the author need not have thought of ahead�

Characterizing images with respect to certain tasks therefore is a key issue in perfor�
mance characterization�

� Vision is only one module

��� Pro

Vision modules are usually only a small part within a system� e� g� identifying the type
and position of a part on a conveyor belt within an assembly line� or determining the
exterior orientation within a system for rectifying aerial photos to map scale� Evaluation
of the performance of such a module needs to be interfaced with the requirements of
the complete sequence of modules which makes characterization with respect to a task
outside the vision module di�cult� This is a strong variation of the previous objection�



� VISION IS ONLY ONE MODULE �

��� Contra� Design Tra�c Light Programs

Each module within a system� however� needs to know its own capabilities� This also
holds for the vision modules�

This has several consequences�

�� The vision module needs to contain tools for self diagnosis� This means it needs to
be able to estimate its own performance� Together with the result it should produce
useful values for characterizing the quality of the result�

�� Therefore the vision module needs to know its own limitations� In case of failure�
the module should indicate this and give possible causes for the failure� This would
enable the calling routine to react properly�

�� In order for the module to be able to perform such a kind of self diagnosis� quality
measures need to be part of output and input speci�cation for a vision module�

As a consequence� vision modules should be so�called tra�c light programs� with well
de�ned output�

green� The result is correct� Its quality is speci�ed�

yellow� The result may be correct� It needs to be checked� possible errors need to be
speci�ed� In case it is correct� its quality is speci�ed�

red� No result has been achieved or it certainly is incorrect� Possible causes for the
failure are speci�ed�

��� Example� Edge extraction�

An example for such a characterization of performance is given for edge detection� The
example assumes the only task of the vision module is to detect and measure the position
of an edge� e� g� for visual inspection�

The following performance measures can be theoretically derived from the edge ex�
traction procedure and be used to feed a tra�c light program� which just compares the
achieved performance with the speci�cations�

����� Precision

The precision of extracted edges can be characterized by their standard deviation across
the edge and the standard deviation of the orientation�

The precision of an edge can easily be derived in case we treat edge location as
template matching� We obtain for the variance ��u of the position across the edge �cf�
�F�orstner ����

��u �
��nP

r�c f
�
u�r� c�

�	�

where �n is the standard deviation of the noise� fu is the derivative of the template edge
across the edge� i� e� in u�direction� and the sum is to be taken over the template window�
Similarly we obtain the variance ��� of the orientation

��� �
��nP

r�c v
��r� c��f�u�r� c�

�
�

where v is the coordinate of the pixel along the edge� We now assume square n � n
windows to be used� The average squared gradient is de�ned as ��fu

�
�
P

r�c f
�
u��n�s� and

only relates to the n�s pixels along the edge of width s� Observe ��fu to represent the
squared gradient magnitude in case the gradient is constant along the edge�
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Then we can simplify the standard deviations to

�u �
�p
n�s

�n
�fu

�� �
�p
n�s

r
��

n� � �

�n
�fu

���

Approximating the length l � n and assuming constant noise variance ��n and width s�
with the general relation between standard deviations and corresponding weights

wi �
���
��i

���

this leads to the weights of the position across the edge and the orientation�

wu � l���fu w� �
�

��
l����fu ��

Observe the weight of the position goes proportional to the length� whereas the weight of
the orientation goes with the third power of the length of the edge� both weights go with
the squared gradient magnitude� here represented by ��fu�

These weights may be used to derive the covariance matrix of the � coordinates spec�
ifying a straight line segment�

Of course a similar derivation of the precision of edges can be performed for other edge
extraction schemes� The important point here is� the variances � and possibly covariances
� can be used in subsequent steps of the image analysis�

����� Accuracy

The internal precision may be misleading in case one has to fear systematic errors causing
a bias in the position of the edge position� Accuracy� e� g� �u for the edge position across
the edge� then can be described by the variance which takes the bias into account�

��u � ��u � b�u ����

where bu is the expected bias across the edge�
E� g� in case the edge is circular with curvature � � ��r the bias in edge position is

the deviation between the true edge point on the curved edge and the mean edge position
lying inside the circle approximating the curved edge� It depends on the curvature and
the length l of the edge and can be approximated by�

bu �

Z l��

�l��

�

�
�x�dx�l �

�

��
��l� ����

����� Reliability

The reliability of edge extraction can be measured by the probability that a pixel is
classi�ed as an edge pixel in case it actually is one� As the classi�cation of pixels into
edge and non�edge pixels is usually performed by thresholding the gradient magnitude�
and this procedure can be interpreted to be a hypothesis test on the gradient to be
signi�cantly nonzero� the power of the test can be used to characterize the reliability of
edge detection� while the signi�cance level immediately gives the probability of detecting
edge pixels where ther actually are no adges�

Assuming the noise to be Gaussian with mean � and standard deviation �n� the
threshold on T � gu��gu to be k��� depending on the signi�cance number � of the
test� and the true edge leads to a gradient magnitude being a factor � �non�centrality
parameter of the non�central Normal�distribution� larger than �gu � the power of the test
is given by �cf� �F�orstner ������

	��� �� � P �jT j 
 kjpixel is edge�
� �� ��k���� �� � ��k��� � ��
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Figure �� The expected coverage c	L
 of an extracted edge in dependency on the signal to
noise ratio SNR � contrast��n� For SNR � ��� one can expect the line to be extracted
without gaps� The gure shows the result of � di�erent experiments� The signicance level
is �� �� 	from Fuchs et al� ����
�
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with the normalized Gaussian distribution ��x�� The standard deviation �gu of the
gradient magnitude across the edge depends on the noise level �n and the function gu �
f�g�� e� g� the convolution kernel� to determine the gradient�

The power function 	 can be interpreted as the coverage c�L� of a long edge� It
speci�es the number of edge pixels of a long edge actually being detected with respect to
the length of the line in pixels and is given by

c�L� �
�edge pixels found

length of edge�pel�
� 	��� �� ����

An example for an empirically derived line coverage is given in Fig� �� It is taken from
�Fuchs et al� ���� where a complete analysis of the quality of a polymorphic feature
extraction scheme �cf� �F�orstner ��b�� is given�

� Vision is too complex

��� Pro

Vision systems are not monolithic� They usually consist of many� partly small� algorithms�
The interaction between these algorithms is usually data dependent� The evaluation of a
complex network of algorithms seems to be intractable� Even in case the aforementioned
quality measures are available� propagation of quality measures through a network is not
feasible�

��� Contra� Modularize

Modularization is a classical scheme in systems design� Modularization is also necessary
in order to make performance predictable�

As arbitrarily complex networks are not tractable it is useful to de�ne levels of ab�
straction in vision systems� i� e� to de�ne an aggregation hierarchy of vision modules�
which of course is task speci�c� Then at each aggregation level quality can be combined
using the quality results of the individual modules and allow performance evaluation of
the combination of the output of the individual modules� This at the same time com�
pensates for the non�optimality of quality measures used in the individual modules� This
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is comparable to the hierarchical structures in decision making processes e� g� in large
agencies� where the group leader integrates the results of the individuals� based on the
larger context which is available�

��� Combining Probabilities and Weights

����� Combining Probabilities

In classi�cation schemes often only relative probabilities can be estimated� e� g� p��ijd� �
p�dj�i��p��i� leading to a vector of likelihoods� which does not sum to �� due to the �
local � lack of knowledge about the total space of alternatives� In case the calling routine
has this knowledge� normalization leads to �conditional� probabilities which sum to ��
following the basic relation of Bayes�

����� Combining Estimates

The situation is not so clear in case of parameter estimation� Here individual results�
say xi� i � �� ���� n with standard deviations �i need to be combined� We assume some
estimation processes lead to the individual xi� based on original measurements� The
classical scheme is to combine the xi using the weights from ��� with an arbitrary reference
variance ���� in order to obtain e� g� the weighted mean

bx �

P
i wixiP
iwi

����

With the residuals ei � bx� xi the estimated reference variance

b��� �
P

iwie
�
i

n� �
����

can be testet� as b���
���

� Fn���� E

�b���
���

�
� � ��	�

if and only if the given standard deviations �i or the weights wi are correct�

There are many reasons why this test in general will not be accepted� i� e� why b������� 


��

� gross errors or blunders in the observations leading to xi

� a wrong model for estimating the xi

� wrong weights used for deriving the xi

� neglected correlations

� deviations from the assumption of normality in the distribution of the observations
used for estimating the xi

However� independent on the cause for the empirical reference variance to be much larger
than �� due to

b��i � b���
���

��i ��
�

we may use the updated weights

w
�new�
i �

���b���wi ����

in the following steps� as these are more realistic than the old weights from the individual
steps�
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Observe� that the weighted mean from ���� is independent on the chosen reference
variance� thus would yield the same value if the new weights would have been chosen�

Experiences with longer chains of image analysis steps �cf� e� g� �F�orstner ��a��
con�rm the possibility to link suboptimal partial results without losing the ability to
evaluate the �nal result� in spite of the submodules containing severe nonlinearities�

� The used models are wrong

��� Pro

One of the most frequent objections against quantitative performance characterization
can be summarized as� the used models are wrong� so any type of formal evaluation is
not valid� Examples for this kind of objection are �the Gaussian model for noise does
not hold�� �you neglect this and that e�ect�� �you do not calibrate your camera properly��
�background clutter cannot be captured by model�� etc�

��� Contra� Usefulness of models is decisive

Actually all these objections are correct� as all models are wrong in a strict sense� However�
only the usefulness not the correctness of the models with respect to a speci�c task is
relevant� This is good engineering tradition� Moreover� models are necessary in order to
be able to predict performance and to be able to properly design systems�

Therefore one must accept the sub�optimality of models� The degree of sub�optimality
needs to be analyzed theoretically� e� g� by showing the bias to be much smaller than the
standard deviation� or by showing the variance of certain e�ects to be small enough to
neglect them within the model� On the other hand� in most cases no optimal solution is
required but only an acceptable one� thus replacing optimization by constraint satisfaction
problems�

��� Examples

����� Theoretical analysis for neglecting parameters

Assume depth being determined using stereo� In the most simple case we can determine
depth by�

z � c
b

px
����

where c is the focal length� b the length of the base line and px the horizontal parallax�
The task is to decide whether the uncertainty of c and b can be neglected when predicting
the precision of z� which would yield the well known relation

�z �
cb

p�x
�px �

z�

cb
�px ���

indicating the precision decreasing with the square of the distance�
The relative precision �z�z of the depth in case of uncorrelated c� b and px is given by��z

z

��
�
��c
c

��
�
��b
b

��
�

�
�px
px

��
����

depending on the relative precision of the focal length the basis and the parallax� Assume
we know the geometry of the setup and have standard deviations at hand�

c � �� mm �c � ���� mm ����

b � ��� mm �b � ��	 mm ����

px � � mm �px � ����	 mm ����
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we can follow� ��z
z

��
�

�
����

��

��
�

�
��	

���

��
�

�
����	

�

��

�

�
�

����

��
�

�
�


��

��
�

�
�

���

��
indicating that under these conditions� the inaccuracy of c can be neglected when pre�
dicting the precision of the depth� however� the inaccuracy of b needs to be taken into
account�

����� Non�Gaussian distributions due to modeling errors

Image noise usually is modeled to be Gaussian� causing problems in argumentation as
intensities are non�negative and discrete� Even in case one accepts the Gaussian to be a
continuous approximation to a discrete distribution the empirical histogram of gradients
of homogeneous regions of varying intensity � excluding pixels in edge regions � shows
clear deviations from the Gaussian density� it is long tailed�

However� this is not an indication that the Gaussian assumption cannot be used for
modeling noise in principle� The following reasoning shows that the signal dependency
of the noise variance is the cause for the long tailed behavior of the distribution of the
gradients�

The noise variance in a digital image can in a �rst approximation be modeled as
��n � a�bg� where g is the mean intensity of a pixel and a and b � � are some coe�cients� a
roughly representing electronic noise and rounding errors and bg representing the Poisson
statistics of the photon  ux�

Now assume two regions of size A� and A� with di�erent intensity� If b 	� � their noise
variance will be di�erent leading to Gaussian distribution N ��� ���� and N ��� ����� Thus
their joint distribution is a mixture of two Gaussians with density

f�x� � a���xj�� ���� � a���xj�� ���� ����

using ai � Ai��A� � A��� This is always long tailed with curtuosis

 �
E�x��

� ��

� � � a�a�
��� � ������� � ����

�a���� � a�����
�

� �

This shows that� independent on the reason� distributions always tend to be long�tailed�
On the other hand� longtailedness of a distribution may give rise to the question whether
the error model should be re�ned by assuming a mixture density�

����� Correlations and tolerances

The internally predicted accuracies in nearly all cases are too optimistic� This especially
holds for the predicted variances from estimation processes� This can be theoretically
motivated� as the inverted normal equation matrix representing the covariance matrix
of the estimates is the Cramer�Rao�bound on the e�ciency of the estimate� thus stating
that the result will not be better than the predicted covariance matrix�

However� in many cases only the variances of the result are given and used in the
following steps� This corresponds to using the variances and neglecting the nearly always
occuring correlations�

A simple example demonstrates the severe e�ect of neglecting correlations�
Assume range data to be in uenced by two e�ects� miscalibration and random noise�

Assume both e�ects to be of random nature� thus also the calibration to be the result of
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an estimation process� Then two distances can be modeled the following way� The true
distances are !d� and !d�� The bias introduced by the miscalibration is b with standard
deviation �b� common to both distances� The noise is n� and n� with common standard
deviation �n� Calibration and noise are assumed to be independent with mean �� thus
also the bias has expectation �� We have�

d� �
!d� � b� n� ��	�

d� �
!d� � b� n� ��
�

����

As the variances of ��di � ��b���n and the covariance is �d�d� � ��b we have the correlation

� �
�d�d�
�d��d�

����

�
��b

��b � ��n
���

�
�

� �
��
n

��
b

����

This correlation may be severe if the bias is much larger than the precision of the noise
standard deviation� E� g� �n � � mm and �b � � mm would lead to � � �� thus � "
correlation�

This has severe e�ects on subsequent steps� Assume average distances

d �
nX

i��

di�n ����

and di�erences
# � d� � d� ����

to be evaluated� Their standard deviations depend on the correlation�

�d �

r
� � �n � ���

n
�n ����

�	 �
p
���� �� �n ����

From ���� and ���� we can draw the following conclusions�

� Averaging of correlated observations only has limited e�ect as limn�� �d �
p
� �n�

E� g� � " correlation would limit the standard deviation of the mean to be larger
than ��	�n� Obviously already moderate correlations severely limit the e�ect of
averaging onto the precision�

� The standard deviation of the di�erence is signi�cantly smaller for correlated than
for uncorrelated data� E� g� � " correlation leads to a standard deviation of the
di�erence of ���	�n compared to ��� �n for uncorrelated observations� which is a
factor � in standard deviation or a factor  in weight$

� Testing� thus also performance evaluation� essentially depends on the standard de�
viations of the values to be tested� High correlations lead to misinterpretations in
both directions� Testing mean values leads to too optimistic results� whereas testing
di�erences leads to too pessimistic results�

As correlations larger than � " or 	 " often occur in vision tasks they should be taken
care of in order to avoid wrong conclusions� Or� turning the argument� misleading quality
measures may be caused by neglected correlations�

Using tolerances for reasoning with uncertainty leads to di�culties� When combining
tolerances by determining maximal errors the uncertainty of the mean increases linearly
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with the number of observations� whereas the standard deviation only decreases with the
square root� which is more realistic� Moreover� correlations cannot easily be incorporated
when using tolerances for representing uncertainty� However� in case tolerances are �rst
reduced to standard deviations� e� g� by using the relation �x � tx�k���� then rigor�
ous error propagation is performed� leading to a standard deviation� say �y� and �nally
transformed back to a tolerance by ty � k�����y� then realistic tolerances are obtained�

����� Modeling background

Modeling background is a severe problem in vision� Background here is understood to
be everything not relevant to solving the speci�c task� e� g� vegetation when extracting
buildings or patterns on wallpaper when navigating in a room�

In some cases it may be necessary to model much more than necessary in order to be
safe in evaluating the results� Often� however� partial modeling is su�cient� Long tailed
distributions for the position of image features or probabilities of spurious features are
a classical tool for modeling background in matching� leading to robust estimators for
parameters or cost functions in heuristic search�

In all cases the internal quality measures should at least indicate severe deviations
from the underlying assumption� which may be caused by background�

� Measures are not comparable

��� Pro

Many existing vision algorithms only provide ad hoc measures for their evaluation� A
typical example is Pratt�s measure for describing the performance of edge detection�
Measures easily derivable for one algorithm may not be derivable for another one� E� g�
some edge detection algorithms easily may be characterized by the standard deviation of
the edge position� which is di�cult to determine for those which optimize detectability
and vice versa� Finally� quality measures may not be related to observable quantities�
e� g� fuzzy measures� All these situations make a coherent performance characterization
of systems composed of several algorithms di�cult if not impossible�

��� Contra� Use statistical measures

Following the reasoning of the previous sections� quality measures for characterizing per�
formance must be predictable within the model and at the same time comparable to
reality�

Therefore it seems to be reasonable only to use statistically motivated quality mea�
sures� such as expectations� variances� probabilities� correlations etc� Other measures� as
e� g� fuzzy measures� in general do not allow a link to experiments which is not the case
for statistical measures� which often can be related to relative frequencies� In case proce�
dures are not motivated statistically it is worthwhile to reinterpret the decisive measures
values statistically in order to have interpretable and testable quality measures at hand�

��� Examples

����� Statistical interpretation of regularization

Regularization is often realized by minimizing a functional� which for reconstructing a
function f from observed data g may be of the form�

% �
X
i

�fi � gi�
� � �

X
i

���fi� ��	�
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Here gi are given observations� fi are unknown values� thus the �rst term leads to optimize
the �t� The second term� containing the curvatures ��fi� � fi�� � �fi � fi
�� contains a
penalty for too rough function values fi� The factor � can be used to balance both terms�
low � allowing for better �t� high � enforcing smoother fi� Classical comments on the
choice of � are� �We found � lying in a range ����� yielding the best results� The result
is not very sensitive to changes in ���

Rewriting ��	� as

%� �
X
i

�
fi � gi
�g

��
�
X
i

�
��fi�

��

�
��
�

reveals the regularization term to be the ratio of two variances

� �
��g
���

����

This not only gives an intermediate interpretation of � but allows to avoid any ad�hoc
choice by using the precision �g of the observed values and the roughness �� of the
reconstructed function to determine �� As both variances can be estimated from real
data using variance component estimation �cf� �Br�ugelmann and F�orstner ����� no free
parameter is necessary in regularization� Of course� making the variances dependent on
the position allows adaptation to any type of irregularity �cf� �Weidner �����

Moreover� the regularization term suggests the pro�le to follow an autoregressive
scheme of order �� namely fi
� � �fi�fi��� �i with ��i � ��� allowing to generalize the
regularization in case the function actually does not follow this special stochastic process�

Finally� the regularization may be interpreted as Bayesian estimation with the curva�
ture � � N ��� ���� as prior information for the fi� indicating that this procedure can be
further generalized�

The reinterpretation of the non�stochastic optimization problem thus not only leads to
insight into the semantics of the free parameter but to the elimination of this parameter
and to clear hints how to generalize�

����� Dependency of covariance matrices on the coordinate system

Even if rigorous statistical tools are applied measures may not be comparable� We de�
scribe such a pitfall� as it gives insight into the structure of many geometric problems�
It occurs in case the result is described in coordinates without explicit reference to the
chosen coordinate system� In spite of the same coordinates being given� their variances
are not comparable as they are given in di�erent reference systems� The solution goes
back to �Baarda ���� but �Smith ���a� have independently identi�ed and solved the
problem in the context of robotics �cf� also �Smith ���b���

Assume a robot is able to measure the length of its path between two positions� while
walking on a straight line� Starting at position P��x�� it moves to point P��x�� and
then to position P��x��� The measured distances s�� � x� � x� and s�� � x� � x� are
assumed to be independent and have equal standard deviation �� We now want to express
the uncertainty of the complete situation by using the covariance matrix of the vector
xT � �x�� x�� x��

T �
We can argue in at least two ways�

�� Assume position P��x�� to be error free� thus �x� � �� Then using�
� x�

x�
x�

�
A �

�
� � � �

� � �
� � �

�
A
�
� x�

s��
s��

�
A � Ay ����
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by error propagation we obtain the covariance matrix

����
xx � ��

�
� � � �

� � �
� � �

�
A � ��A�yyA

T ���

�� If we however refer to P��x�� as error free point from which we want to do further
reasoning we obtain�

� x�
x�
x�

�
A �

�
� �� �� �

� �� �
� � �

�
A
�
� s��

s��
x�

�
A � Bz ����

and thus the covariance matrix

����
xx � ��

�
� � � �

� � �
� � �

�
A � ��B�zzB

T ����

Observe� we did not change the values of the coordinates but just referred to a di�erent
point as being the reference point for the determination of the uncertainty� Both co�
variance matrices are singular with rank de�ciency �� re ecting the degree of freedom in
choosing the origin for the position along the x�axis� It does not seem possible to simply
compare variances based on these covariance matrices� The reason is that they refer to
di�erent coordinate systems� indicated as su�x�

In spite of both covariance matrices looking di�erent they represent the full infor�
mation on the geometric con�guration as all observable quantities derivable from the
three coordinates� i� e� all coordinate di�erences or second di�erences will have variances
independent on whether they are derived from ����

xx or ����
xx � This suggests that the un�

certainty of the form of the con�guration is correctly captured and independent on the
chosen coordinate system�

In order to be able to compare the precision of two results possibly given in two di�er�
ent coordinate systems we need to transform the covariance matrices such that they refer
to the same coordinate system� This transformation is called an S � Transformation�
S standing for similarity� indicating that no change in form is intended�

In general it is given by
��a�

xx � S�a���b�
xxS

T �a� ����

with arbitrary �b� and the projection matrix

S�a� � I �H�HTW �a�H���HTW �a� ����

in which H speci�es the Jacobian of the coordinate transformation and W �a� speci�es
the weight of the individual coordinates for de�ning the coordinate system�

In our special case we have

dx��� � dx��� �Hdh � dx��� �

�
� �

�
�

�
A dh ����

thus the coordinates are just shifted by a di�erential amount dh� H � �� � ��T � With
the weight matrix

W ��� �

�
� � � �

� � �
� � �

�
A ��	�
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specifying P� being the reference point this yields the S�matrix

S
��� �

�
� � � �

�� � �
�� � �

�
A ��
�

and allows to transform the covariance matrix ����
xx into ����

xx by

����
xx � S�������

xxS
T ��� ����

ChoosingW �

�
� � � �

� � �
� � �

�
A would lead to a S�matrix allowing to transform into system

����

As S�a� is a projection matrix� a covariance matrix given in any coordinate system
can be transformed into system �a�� In all cases the resultant covariance matrix will have
the appropriate rank de�ciency�

Generalizations� For a two�dimensional point �eld with � degrees of freedom �trans�
lation� rotation� scale� H reads�

H �

�
BBBB�

� � x� y�
� � �y� x�
� � x� y�
� � �y� x�
� � � �

�
CCCCA ����

where the entries are the given point coordinates�

This example suggests further generalizations� It is essential for the statistical analysis
of objects represented in coordinates� which are non�measurable quantities� It con�rms
the distinction made in invariant theory between measurable form� or shape�parameters
and non�measurable so�called datum parameters� They specify the reference system in
which the coordinates are expressed� Their number and type is �xed by the degrees of
freedom of the transformation the object may pass�

� No theory for algorithms

	�� Pro

Existing algorithms have shown to work� but are not necessarily based on a theory� Even
if they are based on a theory the preconditions are not met� so no use can be made of the
theoretical basis�

A classical behavior is� �My idea is good and works on the examples��
A new algorithms anyway requires a new setup of data structures� new testing� so�

why establish a theory� which in most cases cannot be expected to be general enough to
cover unforeseen di�culties�

Anyway� the customer needs a quick solution and making a theory �rst takes too much
time�

	�� Contra� Performance prediction stimulates theoretical re�

search

There is a tradeo� between quick and dirty solutions and solutions where the theory is
worked out� which may require longer development�
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But the algorithms should be transferable to more than one application in order to
be more e�cient� Without theory no prediction on performance is possible� how can one
be sure that the algorithm works on the examples on which it was not tested&

Therefore� one de�nitely should prefer algorithms with a theoretical basis� even if they
seem suboptimal� This holds for all aspects of algorithms� quality� provability� trans�
parency of behavior� e�ciency� algorithmic complexity� etc�

The tradeo� between computing time and quality of result should be made predictable�
This seems to be easily feasible for algorithms working on an image pyramid or algorithms
using simulated annealing� Especially in real time environments such a tunable perfor�
mance is of utmost importance in order to exploit the computer resources� Though this
requirement is old� nearly no algorithm can be made faster easily with speci�ed loss in
performance�

There are many algorithms which have proven to work on a large number of images�
There will be reasons for this behavior� Therefore it is advantageous to analyze existing
good algorithms in order to understand reasons for their performance� In many cases
this analysis will not only lead to clear explanations but also to � possibly signi�cant �
improvements�

Finally� formal links between theories need to be established� in order to simplify this
type of analysis� An example has been given in section 	���� where deterministically
described regularization was linked to statistics� an approach which generalizes to all
problems which include regularization� as it can easily be related to Bayesian estimation�
linking observations and prior information in a well�de�ned manner�

Obviously� all these recommendations support theoretical research which can be used
to advantage for improving the understanding of algorithmic solutions�

	 Too many tuning parameters


�� Pro

Many algorithms may have a lot of tuning parameters� making evaluation very di�cult�
Especially image processing software often contains dozens of routines with tuning pa�
rameters being in no way coherent �cf� above�� Selecting tuning parameters therefore
requires adaption to speci�c tasks and may need expert knowledge� There are attempts
to develop expert systems to �nd optimal sets of tuning parameters�


�� Contra� Only accept meaningful tuning parameters

Testing time obviously grows exponentially with the number of tuning parameters� A
sequence of n procedures with p parameters each with a domain of d possible values
requires the selection of an admissible set out of dnp possible parameter values�

A clear consequence is to reduce tuning parameters to a minimum� This would also
help automated systems for parameter selection �cf� �Liedtke et al� ���� As goal'task
driven control of algorithms still is necessary� a small set of tuning parameters may be left�
But only tuning parameters with a well�de�ned meaning for control should be allowed�
Examples are a signi�cance level for deriving thresholds� or object dependent measures
such as the diameter �m� of the object to be detected�

Modularization helps� if constraints can be formulated which reduce the admissible
domain in subsequent steps� But this actually is theoretical knowledge$

An example for eliminating a control parameter ��� in regularization has been given
above� Thresholds usually indicate a hypothesis test to take place which may be speci�ed
by a signi�cance level� Noise dependency of thresholding can be avoided by using noise
estimation techniques� In all cases any type of modeling may reduce the number of tuning
parameters or make them semantically meaningful� E� g� extracting features� namely
points� lines and regions may be performed with less than a hand�full of parameters�
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including a signi�cance level used for all tests and an integration scale specifying the
expected width of the edges �cf� �F�orstner ��b���

It seems not to be meaningful to adapt the parameters to the structure of an image
unless this structure is representative for a complete class of images� e� g� if the edges
are more blurred due to properties of the optics the scale parameters may be increased
accordingly� On the other hand� attempts to estimate this parameter locally exactly
follow the recommendation to eliminate tuning parameters by a generic model within
which the tuning parameter can be estimated from the data�


 Ground truth is too expensive

��� Pro

A severe objection against empirical testing is the di�culty in obtaining ground truth�
In the worst case the objects of interest may not be de�ned well� e� g� a �true�

segmentation does not exist� This makes empirical testing obsolete�
Ground truth may be expensive� if not too expensive� Paying ( �� ��� for testing the

calibration of a robot may appear to be prohibitive�
Even if one would have ���� examples for empirically testing the algorithms reality

does not guarantee the ����st to be of the same nature� making the e�ort of empirical
testing questionable�

��� Contra� Share costs

Yes� empirical testing is expensive� But without empirical testing the customer will not
accept a system or a module� Only a mixture of theoretical and empirical evaluation en�
ables predictability of performance and acceptance� Empirical tests tune the parameters�
e� g� the noise variance� the likelihood of occlusions or other parameters of the theory�
which then can be used to predict the performance�

In order to reduce testing costs standardization of vision modules or vision tasks is
necessary� This includes the de�nition of the input'output relation as well as the required
performance measures which should be provided by the systems designer�

As empirical tests are expensive joint tests are necessary� They allow to exploit the
resources of several institutions� academia and industry� in order to de�ne and perform
the tests� including the preparation of ground truth� the necessary calibration of the
systems� the huge amount of repeated measurements and the proper analysis� Only joint
e�orts in empirical testing will make vision algorithms acceptable to users�

In order to reduce costs simulated data should be used �cf� below��

��� Example� Costs for testing orientation software

An example demonstrates the close interaction between theoretical development and em�
pirical testing on one hand and the activity of academia and the support of users on the
other hand�

In the early ���s� a number of Photogrammetric software packages for the simulta�
neous orientation of large sets of aerial images were developed� In a tutorial on these
developments Kraus ��Kraus ���� reported on �� projects with between �	� and ����
unknown points in object space� total 	��	�� They were manually checked in the �eld�
The total cost per point was estimated to be in the range between ( �� and ( �	� including�
 ying costs� �lm development� manual measurements� computing costs� and �eld work�
The projects were performed within two years� The survey agencies strongly supported
the university as there was an interest in the results� The reason for the interest was mo�
tivated by the theoretical research going ahead ��Ackermann �

�� or parallel indicating
the power of the proposed methods�
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� Simulations are not reality

��� Pro

Simulations cannot replace reality� they always are too ideal� As generating arti�cial
images uses the same model as the analysis no statement can be made on the behav�
ior under real circumstances� One is not able to model all types of nasty disturbances
occuring when confronting an algorithm with real data�

��� Contra� Simulations replace complicated theory

All the arguments are correct� However� most algorithms are based on some theoretical
framework� and implementation and theory are always di�erent� Examples are discretiza�
tion of continuous models� unavailability of theoretical tools for analyzing the behavior
of algorithms� suboptimal implementation for which no theory is available� etc� ��� last�
but not least� coding errors�

Moreover� simulated images can to some extent replace real images in order to reduce
the costs for establishing ground truth�

Therefore simulations seem to be unavoidable in order to

� prove the correctness of implementations

� analyze the behavior of algorithms under varying conditions

� develop performance measures�

They support theoretical analyses where analytical tools are not powerful enough�
Of course� simulations cannot serve as a surrogate for real experiments� which are

necessary to tune the models to reality�

��� Example� Evaluating segmentation results

We want to discuss the problem of evaluating segmentation results� segmentation being
a key problem in image analysis�

For this purpose we assume the segmentation to yield lists of basic features bF� namely
points bP� lines bL and regions bR� and relations between all these features� Features and
relations can be assumed to be attributed�

As for real images no true segmentation is available we propose to evaluate segmenta�
tions based on simulated inputs� where the true segmentation containing the true features
F is known�

For analyzing the relation between given and estimated features one can follow Fuchs
��Fuchs et al� ���� and build up a transition table T � �tij� indicating whether given

and estimated features meet� For determining the relation meet�bFi�Fj� we use the ex�

oskeleton leading to areas A�Fj� and A�bFi� around each feature and determine tij by

tij �

	
� if bFi 
A�Fj� � � andFj 
A�bFi� � �
�

���

Thus� tij � � if a given feature is close to an estimated one� The distance threshold
hereby is de�ned by the skeleton� tij � � de�nitely excludes any type of closeness�

The sums
pj �

X
i

tij and �	��

mi �
X
j

tij �	��

have a very de�nite meaning�

�� pj measures the degree of partitioning
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Figure �� The ���� corner image with noise ��
n
� �� �gr��� the �ideal� features F and the

�extracted� features bF derived by feature extraction� The white parts correspond to the
regions� the black pixel chains correspond to the linear features� points are indicated by black
squares� No attempt has been made to optimize the quality of the result 	from Fuchs et al�
����
�

pj � � � a given feature Fj is partitioned
into pi features

pj � � � a feature Fj is not partitioned
pj � � � a feature Fj is lost�

�� mi measures the degree of merging

mi � � � mi given features are merged

into one estimated bFi
mi � � � the estimated bFi feature is not a

merging of several given features

mi � � � the estimated feature bFi is
spurious�

An example of such a transition matrix for Fj and bFi shown in Fig� � is given in Table
�� The degrees pj and mi for partitioning and merging are given for each individual

feature type and all features� The given point Pa was lost� the estimated point bP� is
spurious among the set of points� The edges Lb �right� and Lc �left� both are splitted�

The two regions Rd and Re have been merged into one estimated region bR�� The o�
diagonal parts of the table indicate transitions from one feature type into another� e� g�
the point Pa has been �changed� into the edge bL��

From this comparison� which can be fully automated� a number of performance mea�
sures for characterizing the segmentation can be derived�

� Ocurrance of features and relations
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Pa m�P� Lb Lc m�L� Rd Re m�R� m�F�

bP� � � � � � � � � �

p�bP� � � � � �

bL� � � � � � � � � �bL� � � � � � � � � �bL� � � � � � � � � �bL� � � � � � � � � �bL� � � � � � � � � �bL� � � � � � � � � �bL� � � � � � � � � �

p�bL� � � � � �

bR	 � � � � � � � � �

p�bR� � � � � �

p�bF� � � � � �

Table �� Transition table for the example shown in Fig� ��

 Probability of a given point to be found

 Probability of a point�line incidence to be found

 Probability of a point�region incidence to be found

 Probability of two regions on the left and right side of a given edge to merge

� The quality of edge extraction

 Probability of an edge pixel to be found leading to the above mentioned cover�
age

 The average length of the edge segments replacing a long edge�

 The average number of edges sitting on a given edge� giving the degree of
partitioning�

 The average number of points erroneously sitting on edges

� Spurious Features

 The average number of spurious points per image area

 The average number of spurious edges per image area

 The length distribution of spurious edges

It is to be discussed whether a formal de�nition of a segmentation output together
with its quality measures can be found as basis for future empirical comparisons�

�� Testing is not acknowledged

��� Pro

Testing takes time� Following a rule of thumb one can use the time relation theory �
implementation � testing � � � �� � ���� Also the relation working algorithm � published
working algorithm � � � ��� not counting the costs for getting ground truth� These e�orts
would not demotivate doing experimental work� if it were acknowledged� But reading the
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calls for high�level international conferences� one realizes that new ideas seem to be worth
more than tested old ones� The e�ort to get a paper accepted is certainly lower �cf�
above� when writing a theoretical paper including a new idea than when reporting on an
extensive empirical �well done� investigation� As  " of the research is carried out by
PhD students it is understandable that their �rst intent is to �nish their thesis� rather
than replicating ideas of others and showing their de�ciencies� It seems still to be the
psychological barrier of not being acknowledged which hinders doing the hard work of
establishing procedures with well�documented performance characteristics�

��� Contra� Empirical testing is worthwhile

It is di�cult to change this situation� as it is not only a technical problem which is to be
solved�

A few arguments should give hints about how to reevaluate development of well�
designed vision algorithms� The lifetime of an algorithm is proportional to testing time
perhaps even to the square of the testing time�

It should be more satisfying having developed a procedure which is used after having
�nished the thesis� than knowing the work will never be used�

Thorough analysis of algorithms� which includes theoretical studies and empirical
testing� improves understanding� i� e� without doubt is of scienti�c value�

Therefore reimplementation of algorithms for clarifying their potential should be
strongly supported� Of course this requires much better documentation� but in most
cases � as a side e�ect � leads to clearer algorithms� �Long� papers on vision algorithms
should be evaluated with respect to the degree the reader can verify the results based
on the available information� This may be simpli�ed by providing at least the test data
�images� and the code or by o�ering to run the algorithms on data provided by the reader�
The communication techniques are available�

It remains to repeat the old requirement� increase acceptance of providing performance
measures and empirical testing by supervisors� funding agencies� editors� ��� �

�� Conclusions

The �� most common type of arguments against investing work into performance char�
acterization and empirical testing have been discussed� Though each of them is true to
some extent� promoting a research �eld and transferring its result to real world applica�
tion cannot bypass the long tradition in engineering science where quality evaluation of
products is a common tool� The examples given are meant to indicate that many tools
for characterizing the quality of vision algorithms are already available� some of course
need to be re�ned or developed�

Even if not all types of problems can be rigorously analyzed to full satisfaction� at
least the basic tools in image understanding should be analyzed rigorously with respect
to the di�erent aspects of application� But also theoretical work together with represen�
tative examples for its use will be necessary in order to come to a commonly accepted
methodology of performance characterization in Computer Vision�
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