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Abstract — The paper discusses tools of diagnostics and robustness in
the context of automating vision. Motivation is the building of so-called ¢raffic
light programs which contain a reliable selfdiagnosis enabling to chain vision
modules. Special attention is payed to show the prerequisites for using tools
for quality evaluation. The paper concludes with open questions.

1.1 Role of Vision Modules

The scope of this paper is to discuss means for increasing the acceptability
of vision modules in applications. The bottle neck appears to be the lack of
robustness of existing vision algorithms, using the term robustness in a broad
sense, including the resistance to changes in the environment, the stability of
the results over a wide range of imagery and the ease of adapting the algorithm
to a new situation.

Vision modules always are part of larger systems which not necessarily aim
at solving a vision task, such as inspection, navigation or positioning. On
the other hand, vision modules themselves consist of vision submodules, which
interact in a complex manner.

For designing such systems clear performance characteristics of all submod-
ules are necessary. Following [15] the devolpment of an algorithms can be
considered finished if:

1. the algorithm works in XX % of all cases,
2. the algorithm reports failure in the other 100 - XX % cases, and
3. one is satisfied with XX %.

This motivates the development of so-called traffic light programs which have
three outcomes:

e green: The result is: ... . Its quality is: ... .
¢ yellow: The result may be: ... . T am not sure about: ... (Please, check)
e red: I did not succed. The reasons might be: ... . Partial results are: ...

In order for a vision module to perform a selfdiagnosis of this kind several
prerequisites have to be fullfilled, which will be discussed in the following. The
algorithms need to be based on a clearly described model. This model also
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needs to include also stochastic components to be able to handle the random
fluctuations in the original measurements, e. g. the intensities (cf. section 1.2).
For achieving a high enough robustness, a certain amount of modelling also
needs to refer to expected larger deviations from the ideal model, resulting from
changing lighting, occlusions, missing features, under- or oversegmentations,
matching errors etc. Based on such models both, diagnostic tools and robust
estimators (cf. section 1.3) must be provided.

1.2 Error Modelling

1.2.1 Modelling the observation process

Models are surrogates for reality representing that part which is necessary to
achieve a certain goal. They are never complete thus never really correct but
always approximations, described in some symbolic thus mathematical manner.

It is useful to split a mathematical model into a functional and a stoachstical
model:

1. The functional model describes the generally nonlinear relations between
the true or expected values. Many physical laws are of that type.

2. The stochastical model describes the expected random fluctuations from
the functional model which can be expected under good conditions. The
stochastical model could also be termed the noise model.

A typical example for a mathematical model is based on the first and second
moments, thus the expectation and the dispersion of the n observed values I:

El) = f(p) (1.1)
D) = Xy (1.2)

The observation process is made explicit by the function f, depending non-
linearily on u unknown continuous parameters p. If no other information is
provided the principle of maximum entropy implies that a Gaussian distribu-
tion is assumed. The redundancy r = n — u of the system must be > 0 in order
to allow for a solution, r > 0 is necessary for being able to check the result with
respect to deviations from the assumtions.

Examples for such a model can be found in many low and mid-level vision
processes, such as image restauration, feature extraction, curve fitting, coor-
dinate transformations, image matching, optical flow, object location, relative
orientation, surface reconstruction etc.

Remark: The model may be extended towards discrete parameters, which
are necessary in case of classification tasks. The function f then is not contin-
uous anymore and the uncertainty of the observations has to be additionally
described by the probability of belonging to a certain class. Though this exten-
sion is necessary, e. g. for segmentation, grouping or object identification, the
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theory for handling these type of problems has not been worked out as far as
the above mentioned mathematical model is concerned. For this reason we do
not discuss classification in more detail.

The strength of the above mentioned setup of the mathematical model is
its ability to propagate uncertainty from the original observations to the final
result, even in case of cascading several such analysis steps. E. g. one could pro-
ceed with the following sequence for deriving surface heights z from intensities
g, including the determination of the orientation o of the images:

image intensities g oy

edge elements p=fp(9) op = hp(oyg)

edges e = fe(p) oe = he(op)

corners c= fe(e) oc = he(oe)
orientation o= f,(ce) Yoo = Ho(0c, 0¢)
matching parallaxes Pr = fr.(0,c,€)  0p, = hp (Boo, 0c, 0c)
interpolation/z-values  z = f,(ps, 0) 0= ha(op,, Too)

All steps obviously contain a geometrical and/or physical model represented
in the functions f. The uncertainty is covered by the standard deviations ¢ or
the covariance matrices X. Due to the central limit theorem this appears to be
an adequate approximation for the ideal observation process.

1.2.2 Modelling Deviations from the Observation Process

The ideal model will not always hold. This is the reason why it has become
common practice to distinguish three types of error sources: random errors (cf.
above), systematic errors and gross errors.

e Random errors actually cover several error sources, such as photon noise,
electronic noise, discretisation, quantization or random athmospheric per-
turbations due to turbulences etc. These errors in most cases are covered
in the stoachstical model as discussed before.

e Systematic errors cause a bias in the model. Examples are lens distortion,
refraction, mis-calibration, neglected dependencies between the observa-
tions, wrong weighting of the observations, wrong smoothness constraints
etc. Most of these effects may be taken care in the model, however, may
not be recoverable under production conditions, thus require proper cal-
ibration. In many cases systemtic effects can be incorporated into the
functional model. Then a quite complete theory is at hand for analysing
their effect on estimation results, which is the basis for many diagnostic
tools (cf. below).

e ('ross errors in contrast to systematic errors, may be of any size and influ-
ence only single observations. Typical examples are classification errors,
matching errors, labeling errors, shot noise, spurious data etc. Only in
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simple cases can gross errors be represented as deviations from the func-
tional model, e. g. assuming the mean of an observation to be different
by a certain amount. This allows to use the same diagnostic tools as for
systematic errors. If gross errors appear in a large percentage their proper-
ties need to be captured by the stochastical model, assuming long tailed
distributions, e. g. the double exponential distribution exp(—|z/al)/a,
leading to the Li-norm as optimal estimate, the median being a special
case. The theory for handling these cases is by far not worked out for
being practical.

The next section will discuss how these error models are used for achieving
robust and reliable vision algorithms.

1.3 Diagnostics and Robustness

Following the guidline by Pregibon [15], reaching a certain percentage of succes
requires the algorithm to be robust, whereas being able to tell failure requires
the algorithm to contain diagnostic tools. Accordingly the two terms are defined

as follows (cf. [11]):

e Robustness: The purpose of robustness is to have safeguards against de-
viations from the assumtions.

e Diagnostics: The purpose of diagnostics is to find and identify deviations
form the assumtions.

We want to discuss both notions in an informal manner (for details cf. [5],
[7]). As diagnostic tools can also be used for planning purposes, guaranteeing
a mensuration design which allows to achieve robust results, we will discuss
diagnostic tools first.

1.3.1 Diagnostics

Diagnostic tools work on different levels, depending on the redundancy in the
system. Moreover, diagnostics may refer to the design of the mensuration
system without referring to data or without taking the actual measurements
into account. Finally, we need to distinguish between analysing the data and
analysing the estimated parameters.

The different notions are collected in the table (cf. also [5]) together with
the equations related to single outliers Al; and estiamted parameters p;. We
want to discuss three representative measures.

Determinability.

The determinability of parameters characterizes their sensitivity with respect
to random errors in the observations. It can be represented by the covariance
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matrix of the estimated parameters p:

depending on the quality of the given observations and the partial derivatives
of the functional model. The matrix in [] is the Fisher-Information matrix. The
covariance matrix (1.3) is the Cramer-Rao bound on the precision, i. e. a lower
bound for the variance achievable with any type of estimator. Also the effect of
the actual observations can be taken into account for determinin%the precision,
e. g. (Ar;_, by using the estimated variance factor 53 = Q/r = &' %;,'€/r with

the residuals € = f(p) — 1 (cf. the following table).

It is the task of modelling to actually reach this lower bound in order to fully
exploit the information contained in the observations, and the task of empirical
testing to show that this matrix actually represents the achieved precision in
order to have a reliable diagnostic tool at hand.

Evaluation of ¥~ can be achieved by comparing it to a specified criterion
matrix H , requiring the confidence region with 2;; lying completely within H.

Testability

Whereas the determinability only refers to random perturbations in the obser-
vations and can be determined even if no redundant observations are available,
checking for systematic or gross errors requires redundant observations.

Testability or checkability can be easily derived when analysing the used
checks or test statistics. E. g. when testing the residual & = fi(p) — b; of
the observation {; we obtain the optimal test statistic z; = —&;/(0o1,1/7i) where
r; = (722\ /oy, is the contribution of the ith observation to the total redundancy

r = u — n of the system, as ) r; = r. Requiring errors to be detectable with a
certain minimum probability By one obtains a lower bound Agl; on the size of

a detectable outlier:
/1
Aoli = (50(0[0, ﬂo)o’ll T'_ (] .4)

where the parameter §y depends on the significance number aq and the required
probability Fy for detecting the error (e. g. ag = 0.05, o = 0.8 leads to
do = 4.1). Thus only if r; > 0 the testing is possible. 7; = 0 means {; not to be
checkable, r; = 1 corresponds to full testability. Data points with r; << 0 are
called leverage points, as they heavily influence the result (cf. eq. (1.5))
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redun- theoretical diagnosis empirical diagnosis
dancy || w. r. t. data | w. r. t. result w. r. t. data | w. r. t. result
r>0 effect of random errors, precision:
covariance matrices, variances, standard deviations
assumed variance factor estimated variance factor
2
‘7% 0'(% = %a Z_g ~ Fr,oo
given theoretical estimated estimated
precision precision precision precision
determinability
2 _ y 2 (D) 5. = o G~ = 0
or, = (Bu)i | o = (B3 o, = Fron, | O = grop
separability
o~ X
~ o~ = —PiPk
Poipx = o~ o
Pj Pk
r>1 effect of (non-) detectable gross or systematic errors
noncentrality parameter test statistic
do (a0, Bo) zp = ==~ N(0,1)
detectability theoretical normalized empirical
factor sensitivity size of error sensitivity
factor factor
(562-:(50,[% SQZ'IJ(),/q:—: (YZIIZZ % gi:zi,/ﬁ—:
detectability theoretical estimated empirical
testability sensitivity size of errors | sensitivity
Agl; = (562-0'11. Aoiﬁj < 502'0';]_ Al = 52{0'11‘ Aiﬁj < (52'0'171_
r>2 effect of (non-) locatable gross or systematic errors

Sensitivity

As gross or systematic errors may stay undetectedin spite of testing, the result
may be deteriorated by non-detectable or non-detected errors. This reflects the
sensititvity of the result.

The effect Ag;p; of just non-detectable errors Agl; onto the estimated pa-
rameters 1s bounded and determines the theoretical sensitivity.

The estimated effect A/Z-?j of the actual error in the observations on the the
estimated parameter p; is bounded according to

o (1.5)

and obviously depends on the size of the test statistic z;, on the geometry via the
ratio (1 — ;) /r; and the precision of the result, namely the standard deviation
of the parameter in question. The value Al/-\ﬁj also measures the change of the
estimated parameter p; when leaving out observation p; from the estimation
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process. Obviously data at leverage points with r; << 1 heavily influence the
result.

Discussion

The diagnostic values can be generalized as follows:

¢ systematic errors, e. g. lens distortions (cf. [1], [2]).

e groups of observational errors, which may show correlations within the

group but independence between the groups, e. g. when dealing with
image features in stereo which are represented by a set of observational
values e. g. straight line segments (cf. [16]).

subsets of unknown parameters, e. g. restricting to form parameters,
neglecting the influence onto pose parameters (cf. [5]),

errors caused by wrong decisions during testing, e. g. when analysing the
effect of erroneously identifying a model error as gross error instead of
systematic error. This requires a redundancy r > 2 and leads to notions
as locatability or separability of gross or systematic errors (cf. [4]).

The diagnostic tools may serve the following purposes in Computer Vision:

1.

Planning of vision systems by choosing the design via f and X to reach
acceptable quality, e. g. for inspection purposes.

. controlling focus of attention by identifying weak, unstable, unreliable

non-testable, sensitive etc. situations and choosing. additional informa-
tion to optimize gain in quality, e. g. by identifying none or only weak
determinable parameters and choosing appropriate observations.

Checking a design with respect to achievable quality for feeding a traffic
light program, e. g. by comparing the reached quality with the specifica-
tions.

Comparing the quality of algorithms with the same input/output struc-
ture, e. g. matching techniques.

developing specifications for vision algorithms in order to be able to per-
form proper evaluation.

1.3.2 Robust Estimators

The diagnostic tools provide insight into the state of a vision module. They are
based on certain estimation techniques, mainly least squares estimators, best

linear unbiased estimators or — most generally — maximum likelihood (ML) es-

timators. These estimators only are optimal provided the given model actually
holds. Otherwise they lead to wrong or at least to non-optimal results.
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Robust estimators aim at yielding nearly optimal results in the presence of
deviations from the model. While deviations from the model may have nearly
any characteristics certain types of deviations have shown to be theoretically
tractable in terms of performance prediction. Two classes will be discussed here
due to their importance in vision algorithms:

1. Maximum likelihood estimators provide an estimation scheme similar to
the classical ones.

2. High-Breakpoint Estimators have been developed for cases with severe
deviations from the model, namely for data with a large percentage of
outliers.

ML-type Estimators

Maximum Likelihood-type estimators minimize

Q= Zp(li — fi(p)) (1.6)

instead of the classical least squares, where p(z) = %xz, here assuming all
weights to be 1. This is equivalent to maximizing the likelihood function
L(,p) = [J et 5 (1.7)

)

revealing the estimator to be ML if the probability density of the residuals is ex-
ponential. A classical example is the Li-norm where . |l; — f;(p)| is minimized
corresponding to the double exponential distribution exp |z| (cf. above).

ML-type may be characterized by the so-called influence curve (cf. [10])
which is

1C(z) = ¢/(2) (1.8)

indicating the dependency of the result on errors in single observations. The
diagnostic tools for handling single gross errors in a least squares estiamtion
rely on the influence curve IC(z) = z being linear. Obviously the L;-norm
with IC'(z) = sign z is a more robust estiamtor as the influence of errors in the
observations is bounded. If very large errors should have no influence on the
result one needs to choose an optimization function with redescending influence
curve.

The estimation can be realized by the method of modified weights, thus
in each iteration the weight of each observation is changed depending on the
residual in the previous iteration according to

w(z) = P(x) (1.9)

xr

which is a constant for the least squares estimate.
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The following theorem however motivates to strictly distinguish between
convex and non-convex minimum function or, equivalently, between non-re-
descending and redescending influence curve:

Theorem (Huber 1976): Tf the minimum function p(z) is convex and sym-
metric, the weight function w(z) = p'(z)/x is decreasing for z > 0 and the
model is linear, the the method of iterative reweighting converges to a unique
solution.

Therefore, in practical implementations one would start iterating with a
convex minimum function, e. g. using w(z) = 1/v/1+ #? in order to closely
approach the optimum and continue with a non-convex minimum function,
e. g. using w(z) = e‘xz, in order to eliminate the influence of large outliers.
An alternative are scaling schemes as proposed by [3]. ML-type estimators are
closely linked to the principle of minimum description length ([6]) and very
common in Computer Vision due to their flexibility and their low algortihmic
complexity being O(u?) in the worst case (cf. e. g. [13], [9]).

A closer analysis of the concept of ML-estimators reveals some weaknesses:

e The doubly exponential distribution is the distribution with the slowest
descent in probability (density), thus the distribution with the heaviest
tails while at the same time showing convexity in the corresponding min-
imum function p(z) and having finite moments (mean, variance, etc.).
Minimum functions with redescending influence function do not actually
correspond to distributions with finite moments, explaining the name ML-
type estimation.

e The concept of the influence curve is a differential one as can be seen
from the definition (cf. also eq. (1.8). This is a hint that very large
errors cannot be guaranteed to be eliminated by a ML-type estimate.
An example is the linear regression with the Li-norm, which can lead to
arbitrary wrong results if a gross error occurs at a leverage point (cf. the
discussion after eq. (1.4)).

e The concept of the influence curve only refers to a single observation.
This indicates that multiple outliers cannot be guaranteed to be handled,
1. e. the estimator break down in the presence of already a few outliers.

o The weight function in eq. (1.9) depends on the residuals. As the residuals
may have extremely different standard deviation due to o = 01,4/Ti,
errors at leverage points cannot be detected easily, the lower bound for
detectable errors is even a factor 1/,/7; larger than eq. (1.4). Replacing
the argument by the standardized residual z; does not really help. This
indicates that robust estimation requires a homogeneous geometry which
can only be checked using diagnostic tools.

Estimators with High Breakdown Point

The need for handling multiple outliers motivated the search for high break
down estimators. The break down point £* of an estimator is defined as the



10 Wolfgang Forstner

smallest fraction of contamination that can cause the estimator to take values
arbitrarily far from the true value. The break down point of the least squares
estimator is 1/n, the break down point for the Linorm depends on the number
u of unknown parameters: the median (v = 1) has break down point 50 %,
while for u > 2 the break down point is 1/n. Thus both types of estimators
do not allow for more than one outlier in the general case, which of course is a
theoretical statement.

Actually there exist estimators which in general have a break down point
close to 50 %. A prominent one is the least median square estimator (LMedS,
cf. [12]). Instead of the sum of the squared residuals the median is minimized,
or equivalently

med (]b; — f;(p)|) — min (1.10)

The breakdown point is ¢* = ([n/2] — p + 2)/n which approaches 50 % for
n — 00.

In the 1D-case the LMedS-estimator can easily be realized by sorting the
data and looking for the shortest interval containing 50 % of the data. For u > 1
a random sampling needs to be performed: Minimal sets I of u observations
are chosen randomly, from which by inversion of f an estimate p” = f_l(lm)
is derived, an estimate which has to be confirmed by a certain fraction of the
observations not used in this estimation step.

Unfortunately the number of trials necessary to find a set of non-contaminated
observations grows exponentially with u, making the method only feasible for
small u. But then it has shown to be extremely powerful for solving vision tasks

(cf. e. g. [14], [8], [17]).

Comparison: When comparing the strategies for eliminating outliers one
may have a look at the state space of correct and false observations: There are
(i) possibilities to select k outliers out of n observations, indicating the search
space to have 2" entries. Classical testing of residuals and iterative elimina-
tion corresponds to a best first search for false observations, possibly allowing a
backtracking, the randam sampling strategy of LMedS-estimators corresponds
to a bottom up search for good observations. Clustering methods, such as the
Hough-transform not discussed here, correspond to a complete search.

All these methods are symbolic in the sense, that the system can iden-
tify symbolically which observations are assumed to be correct or false. This
is in contrast to the subsymbolic method of ML-type estimators where by a
reweighting scheme the observations take part in the estimation to some degree,
depending on their weight. Obviously symbolic, thus search methods show high
algorithmic complexity which in principal is exponential in n, restricting their
application to problems with a few parameters, with the advantage of being
able to explain their procedure and result. Subsymbolic methods are much
more efficient, but are restricted in handling large errors and cannot explain
their behaviour.
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1.4 Open Questions

The following questions seem to be essential for the development and the use of
robust estimation techniques and for the promotion of performance evaluation
of vision algorithms.

1. The problem of modelling unforeseen outliers.

Several procedures assume a well defined outlier model:

e Are there procedures which can handle unforseen disturbances?
e Is it possible to find such procedures?

e How can background, clutter, other objects be modelled in a generic
way in order to at least be able to identify such parts/objects?

2. The problem of evaluating robust procedures.

Robust procedures inherently are nonlinear.

e Is there a conceptual basis for predicting the performance of robust
procedures under realistic conditions?

e Is there a methodology to choose, link, and apply robust procedures?

3. The problem of symbolic and subsymbolic procedures.

Robust estimation techniques may be classified into subsymbolic and sym-
bolic procedures, indicating whether the state space of observational val-
ues is continuous or discrete. E. g. reweighting schemes are subsymbolic,
heuristic search techniques are symbolic.

e Under which conditions are techniques conceptually superior to an-
other?

e Which role has understanding the decisions of a robust technique for
image analysis/understanding? (e. g. when being able to name the
constraints which have been violated by the data)

e Is there a framework to mix both types of techniques in order to
exploit their individual advantages?

4. The problem of documentation of robust procedures.

Several robust procedures for increasing the performance have been pro-
posed and will be proposed. The following questions seem to hold for any
kind of vision algorithm which is meant to solve part of an engineering
problem.

e Is there a commonly accepted notion of quality/performance of a
vision algorithm?

e What should researchers report if they have designed a new vision
algorithm?

e What type of generic tests/experiments should be performed to illu-
strate/prove the quality /superiority of a new vision algorithm?
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