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Abstract: The paper presents a new approach for the reconstruction of polygons
using local and global constraints. The MDL-based solution is shown to be useful
for analysing range and image data of buildings.

1 Introduction

Segmentation of the boundary of 2D-shapes is a basic prerequisite for recon-
struction, recognition or matching tasks. The goal of the segmentation is to
replace a low level description of the shape by a more structured one exploiting
knowledge about the objects’ boundaries. Parametric descriptions may be just
dense sequences of points, splines or Fourier descriptors, all not being specific for
a certain class of objects. Strucutured descriptions may be sequences of shape
primitives, attributed skeletons, or — exploiting the dichotomy of boundary and
region representation — overlapping sets of shape primitives.

Parametric and structural descriptions in a natural way may be associated
with the type of the shape models implicitely or explicitely used. Local models of
boundaries refer to properties like curvature of lines, average length or angle of
polygons, global models refer to relations of non neighbouring shape primitives
such as parallelity, collinearity or directly to global measures such as area or
connectivity.

As there up to now seems to be no general theory of shape, techniques for
shape recovery need to refer to a specific shape class. Our research interest is
in building reconstruction from aerial images or range data. Therefore, we need
techniques for recovering the boundary of image segments of roofs or of ground
plans. In both cases the shapes show specific regularities such as parallelity and
collinearity, and in case of range data also orthogonality. On the other side due
to occlusions caused by interference with other objects or object parts and the
great variety of real shapes even within this restricted class, we cannot use global
measures for guiding the recovery process. Moreover, we should be able to deal
with multiple boundaries of objects, i.e. objects with holes and groups of objects.

Whereas the number of papers dealing with the approximation of boundaries
based on local models is quite large (cf. references in Fischler and Wolf 1994),
and quite some algorithms exist for finding shapes represented with a fixed set
of parameters (rectangles: e.g. Lin et al. 1994, snakes: Kass et al. 1988), no
concept is known to the authors which is able to recover general polygons with
global constraints. The work of Fua and Hanson 1987 probably is most closely



Fig.1. True shape 7 and observed Fig.2. 10 alternatives for local config-
shape S uration

related to ours in terms of generality, but refers to structured aggregates of region
primitives, whereas we refer to free boundaries.

The task to be solved can be stated as follows: The true shape T to be
recovered from the observed shape S consists of a set of polygons, thus 7 = {Qa}
with closed cyclical lists Q, = [¢i.) of length || 9, || = fiy containing the
points ¢; o (% o, Yi.o)- Bdges fiy oy (¢ii-1.01)%ir.00) A fiy 0n(¢ia—1.00) Giz.as) Of
the same or of different polygons Q,, and Q,, may show geometric relations
7(fiy. a1, fis.an), especially being parallel or collinear, and in case of range data
being perpendicular. The observed shape also consists of a set of polygons & =

{P@} with lists 'Pp = [pjﬁ] and ]N)jﬁ(.'l’jﬂ, yjﬂ)~ i .

The goal is to reconstruct 7, thus to find an estimate 7 for 7 from the
given shape § (cf. Fig. 1), which at the same time optimally fits the data
p;.8(%5.6,v;5.8), and shows local and global regularities. As the number of poly-
gon sides Y~ 74 as well as the existence of geometric relations is unknown and
the given data Pg are noisy, an approximation criterium which is able to incor-
porate parametric and structural knowledge is needed. We use the principle of
minimal description length (MDL) (cf. Rissanen 1987, Forstner 1989) which can
be related to Bayesian estimation.

The paper first describes the concept of our scheme for 2D-shape recovery
(section 2), describes how we use the local and the global model (section 3), and
closes with examples from image and range data analysis to demonstrate the

versability of the concept.

2 Concept for 2D-Shape Recovery

The proposed concept for 2D-shape recovery is based on a local and global
analysis of the given shape using MDL, which may be iteratively applied, and is
meant to lead to an efficient algorithm.



2.1 The MDL—Criterion for Structure Evaluation

The description length DL of a set 7 = {Q,} of polygons approximating a
set P of given points depends on both, the fit of the model to the data and
the complexity of the model. The fit i1s measured by the weighed sum {2 of the
residuals of a ML-estimation, whereas the complexity depends on the number of
unknown parameters and the number n of given data, influencing the precision
of the parameters. Let the non linear or linearized model be given by

E(y)=g(8), D(y)= Yy (1)

with u unknown parameters collected in 3, n observations collected in the vector
y, and their covariance matrix ¥,,. The description length is given by (cf.

Rissanen 1987)

N

DL =973

+ %lb n 2)
with the weighed sum of the squared residuals

2=y -8B Zyly —(B)]

In case h constraints exist between the u’ mutually dependent unknowns, we
have u = u’ — h free unknown parameters. For a fixed number of u parameters
the description length only depends on the fit {2 of model and data.

Equation (2) will be used to locally select hypothesis. Due to the equivalence
of MDL and robust estimation (cf. section 3.2), also the selection of the global
constraints is performed and evaluated based on (2).

2.2 The Strategy for Description Length Reduction

The procedure for recovering the 2D-shape consists of several steps, as a one
step procedure does not seem to be feasible. The steps are the following:

1. Preprocessing: In the first step only local constraints, namely the noise

model, is used. The given polygon set § is simplified by

(a) merging collinear segments, if the given points p; g refer to grid positions,
only taking the rounding errors of the grid positions into account, and/or

(b) splitting the resulting polygons according to classical recursive techniques
(Douglas and Peucker 1973) with a narrow threshold 7" depending on the
noise model, e.g. T' = 20,,, where o, denotes the positional noise of the
given points.

We then obtain a first approximation 7% = {Q(O)} as starting point for

iteration v = 1, which consists of ng = || 7 =>l QEXO) || < m points.

The named approaches for preprocessing are useful to reduce the number

of points, even if the merging or splitting criterion is fixed in order to re-

duce the discretization noise only. Nevertheless, no model knowledge can be

incorporated, which is possible using



2. Local MDL—-Analysis: A local analysis of all edges identifies the best
simplification of the polygons 7= according to the MDL principle. The
end points (p;—1,p;) of an edge may be identified to show angles of either
£90° or 180°, in the last case leading to the elimination of a point. The
evaluation of the 10 alternatives shown in Fig. 2 is discussed below. The
simplification may reduce the number of polygon points by either
(a) a fixed maximum number k, e.g. k = number of polygons in S,

(b) a fixed maximum percentage, especially for large no = || Qa ||, or
(c) iterating until no change occur in the local configuration.
Evaluating the reduction one may refer either to

(a) the original data p; g guaranteeing no loss in information or

(b) to the actual data ngf’a_l), possibly neglecting statistical dependencies
between the actual data, thereby reducing algorithmic complexity.
The result of this step is a set 7®*), v = 1,... of possibly reduced polygons
with modified coordinates. This step may be iterated until no reduction in
the local DL is possible any more. »

3. Global Hypothesis Generation: The edges fi(qgi)l, ngu)) of the the result-
ing polygons are now checked with respect to pairwise geometric relations.
Orthogonality and parallelity are checked via the angle a(f;,, fi,) using the
test statistic T,, = a/o,, where o, is determined via error propagation.
Collinearity is checked by parallelity and orthogonal distance d(ps,, fi,) of
one point to the other edge, again using error propagation. The result is a
set H = {hi} of hypothesis, which in general will not be independent.

4. Constraint Robust Estimation: The set of global hypothesis is used in
a robust estimation (cf. Fuchs and Forstner 1995). Robust estimation is
applied for three tasks, i.e. the elimination of globally inconsistent hypoth-
esis, the determination of optimal coordinates of the points qz(_l/o?, and the
determination of 2() used for the the global description length DL(®).

5. Selection: The global description length DL®*) according to (2) is used to
decide on the quality of the final result. In case an iteration is performed in
step 2, one may stop after this estimation. Otherwise, if DL®*) < DL®*~1) the
procedure continues with step 2 for further reduction. If DL®*) > DLF=1)
we may either
(a) stop, as there is no reduction in description length to be expected or

(b) backtrack to step 2, e.g. using the second best selection of points.
The examples given later use the following sequence:

1. Preprocessing of & to eliminate collinear neighbouring edges.

2. Local MDIL-analysis by eliminating a maximum number of points at a time
referring to the actual data within this step, which is iterated until no local
reduction of the description length is possible any more.

3. Global hypothesis generation, however restricting the generation of rectan-
gular hypothesis to neighbouring edges.

4. Robust estimation.

5. Stop.



2.3 Computational Complexity

The algorithmic complexity of the different steps is given by O(m) for merging
and O(mlog m) for splitting for preprocessing with m = || § ||, and O(n(’“)) with
nW) = [ TW) || for local MDL-analysis. If we iterate step 2 until no reduction is
possible any more, the complexity is O((rong)?) for constant maximum reduc-
tion and O(rong log(rono)) for a proportional reduction, where ng is the number
of points after step 1 and rgng is the number of points after the first reduction
in step 2. The complexity for global hypothesis generation is O((n(”))Q), and
O((n(”))?’) for the constraint estimation. If steps 2 to 4 are iterated, the com-
plexity of these three steps is O((rong)*) for constant maximum reduction and
O((rono)?log(rgng)) for a proportional reduction. In the worst case we therefore
obtain O(cymlog m+ca(gono)?), indicating, that the preprocessing (ng) and the
first MDL-based reduction (rg) are decisive. Following this advice, we reach the
lowest complexity, if step 2 is repeated until no reduction is possible any more
and only once a global analysis is performed: O(c1mlogm+can?+c3k3), where k
is the number of points in the final polygon set. Other strategies may be chosen.

3 Using the Shape Model

3.1 Local Constraints

First, we evaluate the hypotheses about neighbouring edges. This evaluation is
based on the consideration of local configurations of four consecutive points.
These configurations are set up by imposing orthogonality constraints on one
or both angles at neighbouring points or by replacing them by a single point,
possibly also introducing an orthogonality constraint in this point. Fig. 2 shows
10 alternatives (a = 1, ..., 10) which are used and evaluated using the description
length given in (2).

The points 1 and 4 of the configurations are assumed to be fixed. Points 2 and
3 or the replaced point, dependent on the alternative, can move. The coordinates
of these points are introduced as observations. Furthermore, the n, orthogonal
distances d; of related points of the polygons § to an edge of 7 may be introduced
as observations with F(d;) = 0, relating the procedure to the original data. The
area of the local configuration is assumed to be fixed and together with the
orthogonalities introduced as weak constraints. A local adjustment yields the
weighed sum of residuals £2,. Together with (2) the description length DL, can
be computed. Dependent on the description length, the local structure of the
polygons 7 is adapted, replacing the local configurations by those alternatives
which decrease the description lenght most.

3.2 Global Constraints

Global constraints establish geometric relations between any two polygon sides.
Due to the transitivity of parallelity and collinearity relation, and similar rela-
tions including orthogonality relations, the found set of hypothesis will not be



independent. On the other hand, sets of individually consistent hypothesis need
not be jointly consitent. For both reasons, it is useful to introduce the relations
as weak constraints, thus as observations, e.g. F(a — %) = g(3) for the orthog-
onality constraint with a certain weight w; = 1/0?, and apply robust estimation
with a modified minimum function Y, p(v;), instead of 3 v? being non robust.

The function p, which is of the form p(z) = min(%, g—z), reflects two classes of
hypothesis: accepted ones (z in [—k, +k]) and rejected ones (z outside [—k, +£]).
The decision, whether a hypotheses is accepted using the MDL principle leads
exactly to the same type of minimization function, however having the advan-
tage that the threshold k results from the coding scheme (Forstner 1989). We

used the robust estimation of our grouping technique (Fuchs and Férstner 1995).

4 Examples

The examples given in the following show results of our approach applied to
range data and aerial images. Fig. 3 displays original range data', acquired
by airborne laser scanning, and the result of a segmentation (cf. Weidner and
Forstner 1994). The outlines of this segmentation are used as starting point for
the vectorization. Fig. 4 shows results of the shape recovery for three building
ground plans. From left to right, the polygons are displayed after preprocessing,
local MDL-analysis, and global robust adjustment. For these data sets the local
MDL-application leads to a reduction of points from 36 to 7, 134 to 29, and
98 to 36 resp. The hypothesis about geometric relations between edges of the
polygons, which are introduced in the robust estimation, put constraints onto
the edges, which results in the final polygons. These polygons are also displayed
in Fig. 5 superimposed on the original range data. A qualitative evaluation shows
little discrepancies, whereas the overall performance seems to be acceptable. The
discrepancies are on one hand due to the suboptimal sequence as described in
section 2, 1.e. considering only the data in each iteration and not the originally
observed polygons. On the other hand not all hypotheses passing through the
robust estimation are actually correct.

Fig. 6 displays the results for range data acquired using a matching technique
(Krzystek 1991), indicating the ability of our approach to deal with multiple
polygons belonging to an object.

Fig. 7 shows the image data and the segmentation for the roof. The inter-
mediate and the final polygons are again displayed from left to right. In this
case, a representation of the different parts of the roof by a network of polygons,
allowing points to belong to multiple sets P, would be appropriate.

5 Discussion

The results of the developed procedure applied to real data, though being con-
vincing as a first step, show some deficiencies, which need to be analysed in

! The range data of Hannover was supplied by Dornier, Friedrichshafen.
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Fig. 3. Range data from airborne laser scanner and segmentation (Weidner and
Forstner 1994)

P
({/_f" Jﬂ/g}ﬁ y
/\//(:} 7 ’0
(\/‘

® 5 ¢

Fig. 4. Three examples for range data — left: original boundary from segmenta-
tion; middle: result of local MDIL-analysis; right: recovered final shape




Fig. 5. Overlay of recovered final shapes on original data

Fig. 6. Example for range data based on image matching and segmentation (cf.

Fig. 4)

Fig. 7. Image data and blobs
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Fig. 8. Example for image data (cf. Fig. 4)

more detail, namely the high algorithmic complexity when not iterating the lo-
cal MDL-analysis, the geometric deviations resulting from not referring to the
original data during the iterations, and the evaluation of the hypothesis selected
by the robust estimation. The approach may be generalized to more complex
basic shape structures, such as circles, and to networks of polygons, necessary
in simplifying image segmentation results.
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