Mid-Level Vision Processes for
Automatic Building Extraction

Wolfgang Forstner
Institut fir Photogrammetrie, Universitat Bonn

Ascona Workshop on ’Automatic Extraction
of Man-Made Objects from Aerial and Space Images’, 1995

Abstract

Mid-level processes in vision are understood to produce structured descrip-
tions of images without relying on very specific semantic scene knowledge.
Automatic building extraction can use geometric models to a large extent.
Geometric hypotheses may be inferred from the given data in 2D or 3D and
represent elementary constraints as incidence or collinearity or more specific
relations as symmetries. The inferred hypothesis may lead to difficulties dur-
ing spatial inference due to noise and to inconsistent and mutually dependent
constraints. The paper discusses the selection of mutually not-contradicting
constraints via robust estimation and the selection of a set of independent
constraints as a prerequisite for an optimal estimation of the objects shape.
Examples from the analysis of image and range data are given.

1 Introduction

Mid-Level Processes in Vision. Automatic image interpretation is a
complex process for which no commonly accepted model exists. A three lay-
ered scheme reflecting the different levels of abstraction could follow the classi-
cal distinction of low-, mid- and high-level processes. Mid-level processes then
may be characterized by two criteria: 1. The output of a mid-level process
is a structural description of the image or the scene, defining the separation
from image processing. 2. No or only poor semantic scene knowledge is used,
in a soft way defining the separation from knowledge based vision. Typical
mid-level processes are feature extraction, segmentation, grouping, or spatial
reasoning.

Geometric Models for Buildings. Though many of the semantic en-
tities of buildings, like floor, garage, passage, wall etc. are very specific for
buildings, others, like roof or window are relevant also in other contexts, e. g.



when modelling cars. However, their identification heavily relies of the con-
text, i. e. on the relations between the entities and the relations to other
objects.

On the other hand, geometric entities, like boxes, prisms lying vertically
or horizontally, may be identified in single images, from multiple images or
from range data derived by stereo or laser range finders without very specific
object modelling, but being the basis for a more semantic analysis.

Extracting man-made structures from images therefore makes heavy use
of mid level processes as they show various common regularities, especially
geometric ones, which are common to many types of objects. The regularity
of their form puts a stress on geometric processing. The geometric richness of
buildings refers to very simple constraints like lines to be vertical of horizontal,
to be collinear or parallel or to more specific constraints like repetitions or
symimetries.

When analysing perspective images these 3D—constraints may be trans-
ferred to the image domain. In case the exterior orientation of the camera is
known and/or aerial images are taken this transfer is easy as the nadir point
is known and/or the weak perspective can be well approximated by a linear
projection therefore allowing a simple grouping of parallel lines and detection
of affine symmetries.

Problems during Constraint Processing. There is a dichotomy in
representing the geometry of an image or a scene 1. using coordinates as
attributes, which eases spatial access, or 2. using datum parameters together
with a form description, either directly with observable parmeters or indirectly
with constraints or invariants. Whereas the representation with coordinates
is unique it does not show the inherent structure of the object, e. g. two
planes of a polyhedron being parallel. On the other hand, form parameters
or invariants allow a direct link between observables and object, but are not
unique, as new invariants may easily be derived.

Data driven processes therefore usually rely on observables or invariants,
e. g. in matching or grouping. On the other hand the non-uniqueness of
local features for recognition, matching or grouping easily leads to a plethora
of hypotheses. This leads to the following problems. Hypotheses depend on
noisy data, therefore

e the derived constraints may be mutually inconsistent

e the derived constraints may be actually wrong. Moreover,

e the derived constraints may be mutually dependent.
Depending on the number of unknown parameters and the number of used
hypotheses, and depending on whether one can rely on the correctness of the
hypotheses or not, different modelling may lead to estimation procedures of
quite different algorithmic complexity. Therefore we have to solve two tasks
which are discussed in the following section:

1. Selection of non-contradicting and /or independent hypotheses, and

2. selection of the appropriate model for estimating the objects shape.
Examples from the analysis of images and range data show the versatility of
the approach.



2 Constraints for Geometric Reconstruc-
tion

In the following we assume that the geometry of the object can be described by
the parameters of a set of features in image or object space together with a set
of constraints between these parameters. We may assume these parameters in
the most simple case to be the coordinates of points being directly or indirectly
observed by some image analysis process, e. g. by direct point detection or by
line intersection. These coordinates are at the same treated as observations
y with a covariance matrix X, describing their uncertainty and as unknown
parameters 3, which are to be determined using the geometric contraints

H'B =c (1)

inferred by some grouping process.

We first present the different ways of modelling including the worst case
complexity of the adjoint estimation process. The selection of non-contradicting
hypotheses may be performed using a robust estimation with weak constraints.
The selection of an independent subset of hypothesis can make use of a greedy
algorithm derived from matroid theory.

2.1 Estimation with Constraints

Let the linear or the linearized model be described by the first and second
moments of the n observed quantities y: namely E(y) and D(y) = ¥',. Then
we may distinguish the following three models, which differ in the handling
of constraints. All proof can be taken from Kocu 1988.

Gauss-Markov-Model. The observation process is made explicit and a
minimum number u of parameters 3 is to be estimated, implicitely taking the
geometric constraints into account:

E(y)= X3 (2)

The worst case complexity of the estimation process is O(ciu®n + cau®), the
second term usually dominating.

This model may also be used for the case where all unknown parameters
are treated as unknowns and the hypotheses are assumed to be weak, lead-
ing to two groups of observations y = (y;,y,) with y; being the observed
coordinates and y, the observed contradictions ¢. The covariance matrix

D(c) = X, (3)

of the y, reflects the uncertainty of the assumed constraints (cf. 2.2).

Gauss-Markov-Model with constraints. The observation process as
well as the constraints are made explicit:

E(y)=XB, H'B=c (4)



where 3 carries all unknown parameters. The u X A matrix X must have full
rank. The complexity of the estimation is O(cyu®n + co(u + h)?).

Special Gauss-Helmert-Model. By observing the Jacobian in (4) to
be X = I we also can write the special Gauss-Helmert model

H'E(y)=c (5)

where only a fit of the observations to the constraints is expressed. Again H
must have full rank. The algorithmic complexity of the estimation process is
O(cy1nh? 4 ¢3h?), again the last term usually dominating.

An important equivalence. The two models (2) and (5) are equivalent
if
HT'X =o (6)

and both matrices have full rank.

2.2 Selecting Non-contradicting Hypotheses

When automatically finding geometric hypotheses we cannot guarantee them
to be non-contradicting. The way of finding contradicting hypotheses depends
on whether they are crisp, as in (4) and (5), which cannot occur if the Jaco-
bians X and H have full rank, or on whether they are weak, as in (3). In
the last case no crisp criterion exists for detecting contradicting constraints.
But a robust estimation of the unknown parameters may be performed, where
the weights p., = 1/02 of the (statistically independent) constraints are re-
duced depending on the differences h? B — ¢;. Low weights indicate globally
inconsistent constraints, which may be eliminated before further processing.
Of course constraints with still high weights need not be true in reality.

2.3 Finding Linearily Independent Constraints

Let us assume a grouping process has found a large number h* of geometric
hypotheses which are linear. E. g. for the 6 different z-coordinates zq, z3, 3,
x4, x7, and xg, of the 12 points in Fig. 1 the following linear relations have
been found by comparing differences and second differences of z-coordinates:

2 -1 -1
1 -1 -1 1
-1 1 -1 1
-1 -1 1 1
2 -1 -1
« H, -1 -1 1 1
H‘(HQ)_ 1 -1 11 (7)
1 -1 -1 -1
-1 -1 1 1
1 1 -1 -1
-1 1 -1 1




Figure 1: groundplan of a building showing regularities
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A similar matrix is found for the y-coordinates with also 3 independent con-
straints. But, also the not intended identity of the coordinate differences:
x7 — xs = Ys — Y12 had been found.

The first row e. g. represents the symmetry of points 3 and 8 points with
respect to point 1: g — x1 = x1 — &3, whereas the second row represents the
two left halfs of the two building wings to be of the same width: z5 — 27 =
x1 — x3. Obviously several constraints have been found twice. But only
the first three constraints form an independent set; the others are linearily
dependent on these three. The rows of such an automatically derived integer
valued matrix can be interpreted as elements of a vector matroid (EDMONDs
1971), where a set of elements (vectors) is labelled independent if the matrix
composed of these elements has full rank. Then a simple greedy algorithm
can be defined to select an (arbitrary) set of independent vecors. This greedy
algorithm sequentially selects one row vector after the other and puts it into
the minimum set if it is independent on those vectors which are already in
that set. Checking the rank of a matrix cannot be performed on reals, which
is reasonable as the decision whether a matrix is singular is a binary decision.
Therefore a Gaussian elimination with integer arithmetic may be used (cf.
GrLock 1990). The submatrix Hy therefore may be used in a Gauss-Markov
model with constraints according to (4).

2.4 Minimal Parametrization

In case the reduced number h of constraints found this way still is large it may
be desirable to use the normal Gauss-Markov-Model (2). Then the number
of unknowns has to be reduced by h which may be performed directly which
involves the inversion of HT H. Instead, the orthogonality relation may be
used for selecting a subset of the coordinates, again using a greedy algorithm,
i. e. sequentially select parameters which can not be solved by the previously
selected ones and using the given constraints (cf. GrLock 1990). This way



the Jacobian X can be set up fully automatically from the reduced matrix of
constraints.

3 Examples

3.1 Finding Non-conflicting Constraints in Segmen-
tation

The following example is using the Ascona Workshop test images. It shows
the result of the feature extraction and hypotheses selection (cf. FucHs aAND
FORSTNER 1995) on a subpart of the image 5889. The polymorphic feature
extraction (cf. FORSTNER 1994) extracts points, straight line segments and
homogeneous regions. The analysis of the exoskeleton is used to build up
a feature adjacency graph from which direct and indirect neighbours are de-
rived. Using the DEM-analysis all blobs overlapping with building areas (after
a projection into the image, cf. Fig. 2a) are used to trigger the selection of
the points and line segments, shown in Fig. 2b, to be analysed for geometric
relations, such as incidence, collinearity or parallelity. Only neighbouring seg-
ments are analysed and the distance between them was restricted to appr. 10
pixels, in order not to find too many wrong hypotheses. All these geometric
hypotheses are checked for global consistency in a robust estimation according
to the first paragraph in section 2.1. Obviously quite some links of neighbour-
ing segments have been found and correctly closed. Also some neighbouring
segments are straightened. But some short segments have been erroneously
prolongated, indicating that the global check cannot guarantee the accepted
hypotheses actually to be true.

3.2 Recovering the Groundplan of Buildings from
Range Data

The following example shows the use of the constraint estimation onto the
recovery of the groundplan of buildings from airborne laser scanner data (cf.
BRUNN el al. 1995). A simple segmentation based on the heights of the
buildings with respect to their surrounding leads to a binary image. Vector-
ization of the boundary of three of the the connected components (cf. Fig. 4)
establishing global geometric hypotheses and again perfoming a robust esti-
mation leads to the optimal estimates for the ground plans of the buildings in
Fig. 5, which nicely show all types of regularities included in the hypothesis
generation process, namely collinearities, parallelities and also orthogonali-
ties. The overlay with the original data reveals small differences which need
to be analysed.

3.3 Using 3D-Constraints for Shape Recovery

The shape recovery also can use 3D-hypotheses. Fig. 7 shows a gray scale
image of a hand drawn polyhedron and the automatically extracted features



Figure 2: a. Section of Avanches test image 5889, b. DHM-selected features and c.
result of robust estimation including all non-contradicting features.
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Figure 4: Range data, original boundary, DEM segments
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Figure 5: Examples for range data, recovered final shape

Figure 6: Overlay of recovered final shapes on original data



Figure 7: Original drawing and derived sketch
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Figure 8: a. and b.: Reconstructed in two views, c. spatially corrected
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using the same feature extraction module as for the aerial images. The inter-
pretation of the sketch (cf. BRAUN 1994) using the tripod as indicator for the
major axes, the planarity of the faces as only knowledge, and assuming a scale
leads to a set of 3D-coordinates for the corners of the polyhedron shown in
Fig. 8a and b in two different perspectives. The detection of spatial relations
in 3D and the use of these constraints leads to corrected 3D-coordinates (cf.
Fig. 8c).

3.4 Symmetries of Planar Shapes

The groundplan shown in Fig. 1 can be parametrized by only 6 coordinates,
if reference to a rectangular coordinate system is made. This is because the
only 13 different coordinates are linked by the 7 constraints mentioned above.
The jacobian X automatically derived from the sketch is

1 11 1 1 11 1 1 11 1
11 2 2 2 1 1
-1 -1 -1 1 1 -2 =2 -1
Xt = (8)
-2 =2 -2
3 3 3
9
1 1 1 1 1 1 11 11 1 1 (9)
1 1 2 2 1 1 2 1
-1 -1 -1 -1 1 1 -2 -1



referring to the vector 87 = (210, 211, €7, Y10, y2, y2)T of the unknowns (rows)
and to the observed z- and the y-coordinates (columns). Though the setup of
the Jacobian also takes time, in an iterative e. g. robust estimation the saving
at each iteration is obvious when compared to the otherwise 12x2+43=27 un-
knowns in an estimation following the Gauss-Markov-Model with constraints
(4). Observe that this analysis can also be used for affine symmetries.

4 Conclusions

A few examples from mid-level processing for extracting polyhedral struc-
tures from intensity and range images have shown the potential of integrating
hypothesis generation with robust estimation for hypothesis selection and op-
timal reconstruction. The reduction of linearily dependent hypotheses to an
independent set can be used to advantage for a final evaluation. The proce-
dures may be used in all contexts where parameters are sufflicient to describe
the essential part of the scene.

Extensions are manyfold: Nonlinear geometric constraints need to be han-
dled in a similar way, which can be expected to be at least one order of
magnitude harder. The weak information contained in the segments should
be exploited. The link between symmetry detection and the use of invari-
ants needs further analysis in order to ease the interpretation whithin single
images. Finaly, all types of grouping processes are based on decisions on ge-
ometric relations, which requires an integration of hypothesis generation and
selection with more model driven and knowledge based techniques.
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