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ABSTRACT:

The paper presents a concept for analysing the quality of relational descriptions of digital images. The investiga-
tions are based on the relational description automatically derived by a new coherent procedure for feature extraction
providing a feature adjacency graph containing points, edges and segments and their relations. A new notion of scale
(integration scale) is introduced, relating to a non linear function of the image, providing new stable descriptions. Based
on the feature extraction we analysed the quality of the relational descriptions in dependency on the signal-to-noise ratio
and on the control parameters of the feature extraction process, i. e. the significance level, the smoothing scale and the
integration scale. First results on the quality of the features, focussing on their existence, distinct attributes and relations
are given. The scope of this research is to predict the quality, especially probabilities of components of the relational
description from a few measures depending on noise, scale and local properties of the image content. This is motivated
by the applications we are dealing with, namely extracting man-made 2D or 3D structures by grouping procedures or
image matching as both tasks are optimization problems where the probability of the unknown 2D or 3D model has to

be maximized.

1 Motivation

Images may be represented at different levels of abstrac-
tion, relational descriptions being the most general ones.
Therefore deriving relational image descriptions is a fun-
damental step in automatic scene interpretation. They not
only contain features or primitives and their correspond-
ing attributes, but also their mutual topological, geomet-
rical and possibly semantic relations and their attributes.
There are many applications relying on relational descrip-
tions such as image matching (cf. CHRISTMAS et al. 1994),
object or sensor orientation (cf. VOSSELMAN 1992) or ob-
ject reconstruction and recognition.

Interpretation

Figure 1: Relational description within image analysis

tasks.

For two classical tasks the information flow is shown in
Fig. 1. Given two images 4 and Ip, feature extraction
(FEX) leads to the relational descriptions D4 and Dp.
These may be immediately used for relational matching,
e. g. in order to derive a 3D-description Do of the scene.
Perceptual grouping (GR) may be applied to the initial
relational description (cf. HERAULT AND HORAUD 1992,
TREUTLER 1992) in order to obtain a relational descrip-
tion which leads to better results in the matching stage.

This may be due to the aggregation of features to higher
level features or to the increase of consistency within the
description. The same situation occurs when matching
symbolic image description D7 to symbolic object descrip-
tion Do in object location or interpretation problems (cf.
Fig. 1.b). The relational description here again may be
improved by grouping of features. In contrast to image
matching where grouping is performed data driven, thus
bottom-up, in order to use only very generic scene knowl-
edge in object location or recognition problems, the group-
ing may be performed partly model driven, thus top-down.
The motivation for the paper results from the view recon-
struction and matching to be optimization problems where
the probability P(M | D, F') of the unknown model M out
of several M; of the object is maximized for given data D
and the parameters used in the feature extraction process
F (cf. GRIMSON AND HUTTENLOCHER 1990).

The models M; may be anything specified by a set of pa-
rameters or a structure with attributed primitives and re-
lations. We assume the model to be specified such that
the true image structure can be predicted under the as-
sumption that the feature extraction would be perfect.

From the joint probability P(M;, D, F') we obtain

P(D | My, F)- P(M;, F)

P(Mi| D,F) = ) Y

This requires the knowledge of

o the probability a certain model M; occurs together
with the selected feature extraction process F',

e the conditional probability of a description D occur-

ring for given M; and F'.

Maximizing (1) over ¢ leads to an optimal selection/estim-
ation M; of M;.



The feature extraction process F' which is explicitely
shown in (1) obviously influences the result. Splitting
P(M;,F) = P(F | M;)- P(M;) would suggest F to be
dependent on the hypothesized model which e. g. could
include a model dependent adaption of parameters within
the feature extraction. We will not discuss this further and
will assume F' not to depend on M;.

In case of two images to be matched, the goal would be
to describe the mutual relation by some mapping func-
tion or to reconstruct the object based on two descrip-
tions D4 and Dp. Omitting the dependency on F eq.
(1) reads as P(M; | Da,Dp) = P(Da,Dp | M) -
P(M;)/ P(Da, Dp). If we split the conditional probabil-
ity P(Da,Dp | Mi) = P(Da | D, M;) - P(Dp | M;)
we obtain P(M; | Da,Dg) = P(Da | D, M;) - P(Dg |
M;) - P(M:)/P(Da, Dp) which, in case for given M; the
description D4 is not more or less likely if we know Dg,
thus

P(Da| Dp,M;)=P(Da| M) (2)
reduces to

Da| Mi)- P(Dg | Mi)- P(M)
P(Da, Dg)

P(M; | Da,Dg) = Ll

. . (3)
Comparing (1) with (3) reveals that for both tasks, recon-
struction and matching, we need the conditional probabil-
ities P(D | M;). These explicitely describe the quality of
the description 1. The scope of the analysis is to predict
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Figure 2: shows possible results of the feature extraction
of a trihedral corner.

the probability of the relations between features from a few
measures, which depend on the control parameters of the
feature extraction process and on the local property of the
image. E. g. a trihedral corner consists of 7 features with
a great number of mutual relations and itself is described
by two angles, two intensity contrasts and a noise variance
making a full analysis intractable.

Fig. 2 shows several possibilities a corner may appear after
feature extraction which, however, may be described by a
small number of local distortions: the point may be de-
tected or not, neighbouring segments may be merged, the
edge may be partitioned into several parts. Other defects
are spurious features which may occur due to noise effects.

This paper presents a first investigation of the quality of
relational descriptions derived from digital images. We
analyse the effect of noise and scale on the description of
local image patterns. The analysis refers to our procedure
for extracting features and their relations (FucHs et al.
1993, FORSTNER 1994) and partly to the application we
are dealing with, namely extracting man-made 2D or 3D
structures from images.

2 Basic Tools

2.1 The Relational Description

The symbolic description of an image needs to represent
the essential parts of an image related to some task. The
quality of such a description has to refer to the ideal im-
age, which requires to setup an appropriate image model.
This image model itself is described using a symbolic rep-
resentation. We assume the following model for the ideal
image to hold:

1. The image is partitioned into segments S;. Within the
segments the intensity function or any other locally
determinable function of the intensity is assumed to
be piecewise smooth.

2. The boundaries of the segments are assumed to be
piecewise smooth.

Thus, the ideal image 7 may be represented as the union
of three sets of features, namely points P = {P;}, linear
features £ = {L,} and segments S = {S;}, with Z = F =
PuULUS. Each feature may have attributes. In our
context, we actually only use the following attributes:

P+ (25,95) (4)
L+ {(z5,9), (L)} (5)
Si o+ {(zs,95) | (25, 95)€S;} (6)

which we mentioned here for completeness.

There are many relations between these features which
might be useful for image analysis. Here we consider the
following relations:

wc (P,L) = mecmence (P, L) (7)
sepP (S;,,L,S;,) = sEparaTEs(S;,,L,S;,) (8)
Ne1(P,L) = weicaBour (P, L) (9)
NeI (P, S) NEIGHBOUR (P, S) (10)

More complex local patterns may be described using these
relations. The geometric attributes are reduced to those
which are necessary to establish the four relations men-
tioned above. Therefore no further quality parameters,
such as standard deviations, are analysed in the following.
The estimated image also symbolically is described us-
ing the three feature types Pi:,L:,S: denoted with a
hat, indicating ’‘estimated’. The feature extraction ex-
plicitely provides the attributes of the estimated fea-

tures, especially the length I(L;), and the relations
ve(P, L), sep(Si,, L, Si,) NEI(P,L) and NEI(P,S) using

their exoskeleton.

We thus want to compare the two descriptions

D = {P;},{L;}, {5} {mve(P, L)}, {seP(S;,, L, S52)),
{ner(P, 1)}, {nur(P,S)}} (11)

of the given image and
{{P:} AL}, {Si}; {mve(P, D)}, {ser (S, L, S},
{~mr(P, L)}, {Ne1(P, S)}) (12)

D:

of the noisy image for different test patterns and parame-
ters of the feature extraction.



The main scope of the analysis presented in this paper
is to show how the quality, i. e. the probability of the
mentioned relations are derivable from the probability of
detection and the probability distribution of the attributes,
especially the length I(L;) of the linear features.

2.2 Feature Extraction

Feature extraction aims at replacing the image by a suit-
able representation here a symbolic one. Our feature ex-
traction scheme aims at a simultaneous and coherent treat-
ment of all features, i. e. points, edges and segments, and
at reducing the number of control parameters to an abso-
lute minimum in order to simplify the quality prediction
of the feature extraction process.

The feature extraction is performed in three steps:

1. The image pixels are classifiedinto three classes lead-
ing to segment, line and point regions. The classifica-
tion is based on a measure for homogeneity

h=tT.g (13)

and a measure for isotropy

v =1/22(Teg)/M(Teg) . (14)
Both use the average squared gradient
Teg = Gox (Veg - Veg") (15)

where

o, 0
Veg = (5-Gs 5-G)" xg = (92 9,)"  (16)
9, ° 9,

where G and G, indicate 2D-Gaussians with isotropic
scales s and t.

Thus we use two scales s and t:

(a) The smoothing scale s in (16) reduces the effect of
noise in the image when calculating the gradient.

(b) The integration scale t in (15) is used to take
the full gradient information within the window
G into account. Integrating the squared gradi-
ent reduces the bias at lines, moreover is able to
detect the centre of symmetric lines, a property
which we, however, do not further analyse in this

paper.

With h we obtain homogeneous segments where h <
Th. The threshold is derived from the automati-
cally estimated noise variance (BRUGELMANN AND
FORSTNER 1992) and a prespecified significance level
a (cf. sect. 4.1). Within the nonhomogeneous regions
We use v > Umin for classifying point and line regions.
The threshold vmin can be chosen quite freely between
0.1 and 0.5 .

2. Within the point and line regions the location of the

points P; and of the edges L; are obtained by non-
optima suppression: edge pixels are defined by rela-
tive maxima of h across the edge. Points are defined
by the relative minima of the trace of the estimated
covariance matrix when locating them within a win-
dow

trCpp =5 -tr(Te,q)" (17)

with
S = o2 4 22 2. 2
=g %2 Gy, + 2929y * 2yGy, + gy *y Gy,  (18)

being the estimated sum of the squared residuals of a
least squares fit of all edge elements within the window
G:,. Experiments suggest to use a larger integration
scale t, for locating the points than ¢; for locating the
edges.

3. The relations between the three feature types now can
be derived from their exoskeleton. This skeleton lies
between the (thin) points, the (thin) edges and the
segments, possibly requiring to first get a free region
of one pixel width around the points or edges using a
dilation.

Summarizing the feature extraction is controlled by the
following parameters: 1. the smoothing scale s, 2. the
integration scale t; for lines, 3. the integration scale t, for
points, 4. the significance level «, 5. the noise variance
on, and 6. the threshold vyin for the isotropy v. We will
investigate the effect of the first four parameters on the
feature extraction. The noise variance o, is automatically
estimated from the data while the threshold vmin 1s fixed
at 0.1 .

3 Principle of Analysis

The goal of the analysis is to predict the quality of the
feature extraction, i. e. the probability that certain fea-
tures are detected and have certain mutual relations. As
the complexity of real structures is high we want to break
down the complete probability into parts which are sim-
ple enough to be analysed and sufficient for measuring the
quality of the complete description.

E. g. the possible distortions of a trihedral corner as first
mentioned in sec. 1 (cf. Fig. 2) may be analysed locally
by investigating the set of images shown in Fig. 3 .
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Figure 3: From left to right: a blank image, an edge with
contrast Ag = 32 [gr], corner images with contrast Ag =
32 [gr] and varying angle ¢ = 30°,60°,90°,120°,150°.

We use this example to show the line of our approach of
analysing complex patterns. In order to arrive at realistic
estimates for the quality values we run sufficient trials of
noisy images, between 10 and 50, fixing all parameters.
The noise is white and Gaussian, all experiments are per-
formed with floating-point images.

The quality depends on the signal-to-noise ratio defined as

SNR = 29 (19)

On

where Ag is the contrast of the edge and o, is the noise
standard deviation. We vary o, while keeping Ag = 32 [gr]

fixed using SNR = 0.7 to SNR = 8.0 in steps of v/2 .

We distinguish three types of measures:



1. Probabilities give direct access to the desired quality
measures for matching.

2. The density of spurious features give indications
about the proper choice of control parameters.

3. The quality of edge extraction with respect to group-
ing also gives indications on the proper choice of con-
trol parameters.

3.1 Probabilities

We determine three measures which will give us explicit
access to probabilities of relations.

1. The probability

P(Precovered) = P(P | P) (20)

of a given point P to be found.

This probability will depend on the angle of the cor-
ner. One can expect the system to have difficulties
with the obtuse angle ¢ = 150°.

2. The probability

P(Smerged) = P |S,(L) = Si(D) (21)

of two segments S, and S; on the right and left side

of an extracted edge L to be identical, in case of
NEI(Sy, L, S;) is needed to evaluate the decision to split
the segment S =S, = S; in the prolongation of L (cf.
Fig. 2.b and 2.d).

3. The coverage
e(ly==2221 2 (22)

of an edge L by the extracted edges |:z will serve us for
predicting the likelihood of IN¢(P, L) (cf. sect. 5.1).

3.2 Spurious Features

Spurious features may disturb the image analysis. We use
the following values to describe the property of the feature
extraction in generating spurious features.

1. The density
d(Pspurious) = #(P | =P)/a [#/128% pel]  (23)

based on the number #P of extracted points P which
are not matched to a given point. As the number will
increase with the area of the image Z (strictly with
the area of £L U S) we refer this number to the image
area. The unit of a is chosen to be [128% pel].

2. The density

d(Lspurious) = #(L | =L)/a [#/1282 pel]  (24)
similarily measures the number of spurious edges L
with respect to the area a.

3. The average length
I(Lspurious) = I(L | =L) [pel] (25)

will indicate whether short edges are allowed to be
eliminated.

The three measures d(Pspurious),d(L spurious) and
I(L spurious) will be analysed on a blank image.

3.3 Quality of Edge Extraction

As we are interested primarily in gross disturbancies, we
describe the quality of edge extraction by the following
measures.

1. The density
d(Ponl) = #(P | L)/l [#/128 pel] (26)

is the number #P of extracted points P erroneously
sitting on an edge L with respect to a reference length
I, here of [128 pel]. This gives the density of points
sitting on a smooth (infinitely long) line.

2. The density
d(L partitioned ) = #(L | L)/1 [#/128 pel]  (27)

is the number #L of edges L which are sitting on a
given edge L with respect to a reference length I, here
128 pel. This gives the degree of partitioning of an
(infinitely long) edge, or the edge segment density.

3. The average length
I(L matched) = (L | L) [pel] . (28)

Observe that the ¢(L) =

I(L matched)/I(L).

d(L partitioned) -

3.4 Incidence Relations ¢ (P, L), nc(P,S)

For grouping the incidence relations 1mc(P,L) and
INc(P,S) are of direct importance. We therefore deter-
mine P(IN¢(P, L)) and P(iNnc(P,S)) in dependence on the

image structure, namely the angle ¢ of the corner.

We will see in sect. 5.1 that P(INC(P, |:)) can be derived
from ¢(L) and P(P | P).

3.5 The Transition Matrix

For analysing the relation between given and estimated
features we build up a transition table T' = (;;) indicat-
ing whether given and estimated features meet. For deter-

mining the relation MEET(Fg, F;) we use the exoskeleton

leading to regions R(F;) and R(F;) around each feature
and determine t;; by

(29)

. _{ 0 ifF;NR(F,)=0andF, nR(E:) =0
ij = 1



Thus, t;; = 1 if a given feature is close to an estimated.
The distance threshold hereby is defined by the skeleton.
ti; = 0 definitely excludes any type of closeness.

The sums

Py = Zti] and (30)

m; = Zt” (31)
j

have a very definite meaning:

1. p; measures the degree of partitioning

p; > 2 a given feature F; is partitioned
into p; features

p;=1 a feature F; is not partitioned

p; =0 a feature F; is lost.

2. m; measures the degree of merging

Figure 4: The 120° corner image with noise oz = 75 [gr®],
the ’ideal’ features F and the ’extracted’ features F derived
by feature extraction. The white parts correspond to the
segments, the black pixel chains correspond to the linear
features, points are indicated by black squares.

4 Results

4.1 Spurious Features

We first investigate the effect of the different control pa-
rameters on the generation of spurious features, namely
the significance number «, the scales s and ¢; in order to
fix these values in further analysis.

m; > 2 m; given features are merged
into one estimated F; Fixing the scales to s =1,% = 1.4 and ¢, = 2 and varying
m; =1 the estimated F; feature is not a a we obtain the following results (cf. Table 2):
merging of several given features ) o
. e 1) Increasing the significance level S = 1 — « decreases the
m; =0 the estimated feature F; is .
- number of spurious features as to be expected. The length
spurious. . . .
of spurious edges is obviously constant. As the number of
spurious features is already small for o = 0.05, we will use
this significance number throughout the following tests.
Pa | m(P) Ly Le | m(L) Sg  Se | m(S) m(F)
- a =005 ]0.01]0.001 [unit]
1 1] 8] 1 1] 1 0 0 o 1
2 || o 1 o o o d(l:jspurious) 1.4 | 0.06 0 [#/128%pel]
d(L spurious) 1.4 | 0.04 0 [#/128 pel]
T}:g ! ! o 1 ! o 0 0 2 (L spurious) 2.3 | 2.0 0 [pel]
I:44 0 o 0 1 1 0 0 o 1
L5 1] 8] 1 1] 1 0 0 o 1
Lg 0 o 1 0 1 0 0 o 1
I:NT 1] 8] 0 1 1 0 0 o 1
Ls 0 o 0 1 1 0 0 o 1 Table 2: shows the dependency of spurious features on the
significance number a.
p(L) 1 3 a o o
2) The dependency of the length of the spurious edges on
89 0 0 o0 0 1 1 2 2 the smoothing scale s is shown in Fig. 5 . The integration
scales are chosen to depend on s by t; = v/2-sand t, = 2-s.
(%) o o o 1 1 The length of the spurious edges obviously increases nearly
proportional to s.
»(F) 1 4 1 1 1

Table 1: Transition table for the example shown in Fig. 4.

An example of such a transition matrix for Fj and F; shown
in Fig. 4 is given on Table 1. The degrees p; and m;
for partitioning and merging are given for each individual
feature type and all features. The given point P, was

lost, the estimated point P; is spurious among the set of
points. The edges L; (right) and L. (left) both are splitted.
The two segments S4 and S. have been merged into one

estimated segment So. The off diagonal parts of the table
indicate transitions from one feature type into another, e.

g. the point P, has been ’changed’ into the edge L,.

10 I(L spurious) — 1

o N b O @

01 2 3 45 6 7 8

Figure 5: shows the average length of spurious edges {(L |
—L) in dependency on s.

3) The dependency of spurious features on the integration



scale t; is given in Table 3.

Obviously increasing t; leads to a significant suppression
of spurious features. As too large integration scales reduce
the resolution of neighbouring edges, we will use the ratio
1:v/2:2for s:t :1t,in the following. As the smoothing
scale s leads to a uniform reduction of noise, we fix it
to s = 1 and will show in sect. 5 how to predict the
performance for s # 1.

tp=]10 |14 |20 | 28] 4.0

d(Pspurions) | 2.4 | 1.3 |04 | 0 | 0
d(L spurious) | 9.7 | 1.4 | 0.2 | 0.1
/(L spurious) | 2.3 | 2.4 | 3.0 | 2.0

Table 3: shows the dependency of the spurious features on
the integration scale ;.

4.2 Edge Extraction

The quality of edge extraction depends on how easily the
original edge can be recovered from the extracted edge
segments. All the following results are based on tests on
the edge image and on the five different corner images.

The average number d(L partitioned ) (cf. (27)) of edge seg-
ments referring to a normalized reference length of 128 pel
is shown in Fig. 6 (left) for all 6 images.

12 d(L partitioned) — | 140 I(L partitioned) ——

01 2 3 45 6 7 8 01 2 3 45 6 7 8

Figure 6: Left: density d(L partitioned) in dependency on

the SNR. Right: average length l(|: | L) in dependency
on the SNR.

The numbers are consistent for SNR < 2.8, thus for rel-
atively noisy images. E. g. for SNR = 1.8 a line of 128
pixel length can be expected to be partitioned into approx-
imately 9 segments. Their length can be expected to be
about 8 pixels (cf. Fig. 6, right) leading to a coverage of
approximately 60% (cf. Fig. 7, left). For values SNR > 3.0
the partitioning is not realistically estimable, as the used
images are too small to contain edges of length > 128
pixels. Fig. 7 (left) however suggests that for SNR > 4,
i. e. for 0, < Ag/4, the full edge length can be expected
to be recovered, independent of its length. This is sup-
ported by the probability P(S merges) that two neighbour-
ing segments which are separated by an edge are merged
(cf. Fig. 8). For SNR < 2 this probability has been es-
timated to be close to 100%, while for SNR > 3.5 it is
practically zero. Moreover, there is a slight tendency that
increasing the integration scale ¢; leads to a sharper dis-
tinction between good and bad: either edges are detected,
then they are complete or they are not detected.

12 oy — 1 12 dPonl) — |
1 1 1 1
08 { o8
06 { o6
0.4 1 04
0.2 1 02
0 0
01 23 456 7 8 01 23 456 7 8

Figure 7: Left: coverage c(L) in dependency on the SNR
. Right: density d(ponL) in dependency on the SNR.

However, even for SNR > 4 there is a small probability
P(Ponl) (cf. Fig. 7, right) that a spurious point P parti-
tions an edge. In this case, the point is linked to the two
neighbouring edges with very high probability, as e. g. in
Fig. 4 .

1.2

1
0.8
0.6
0.4
0.2

0

P(S merged) — |

01 2 3 45 6 7 8

Figure 8: shows the probabilty P(Smerges) in dependency
on the SNR.

4.3 Point Detection

The quality of detecting junction points depends on the
angle of the adjacent edges. We therefore investigated the
detectability of points and their relations to the adjacent
edges and segments on corner images with varying angle
¢ (30°,60°,90°,120° and 150°).

Fig. 9 shows the detectability P(P | P) of points using the
standard setup (s = 1,4 = v/2,t, = 2) for the 5 corner
images. In all cases except for ¢ = 150° the detectability
increases with SNR. For ¢ = 30° and 120° the SNR needs
to be larger for P to be detactable than for ¢ = 60° and
90°. For obtuse angles ¢ = 150° the corner point is de-
tected by chance.

In case the point actually is detected, we can estimate
the probabilities that it is linked to its neighbouring edges
or segments. The right column shows the average num-
ber of m™Nc(P,L) which by division by 2 is identical to
P(mc(P,L)). Obviously obtaining the relation ™c(P, L)
for ¢ = 30° is not certain even for large SNR, while for
© = 60°,90°,120° for large SNR one can expect to obtain
both links.

The point-to-segment neighbourhood however can nearly
never reliably be recovered. For SNR > 3.5 and acute an-
gles ¢ = 30° and ¢ = 60° at least the link to the outer
segment can be detected with high probability.

5 Predictions

We now want to show what type of predictions on at-
tributes or relations of more complex patterns may be
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Figure 9: Dependency of a corner point on the angle ¢.
Left column: probabilty P(P | P) in dependency on the

SNR. Right column: average number of INc(P, L) in de-
pendency on the SNR.

made based on the statistics of the occurence or values
of simple attributes or relations.

5.1 Likelihood of ¢ (P, L) from c(L)

For identifying junctions it is important to know the prob-
ability a detected junction point P is actually incident to

its neighbouring edges [1 E. g. there are four possibilities
a corner may appear after feature extraction (cf. Fig. 10).
Cases 2 and 3 will be equally likely.

Assuming P(INC(P, [11)) = P(INC(p, [12)) we have with

P P P P
O — — O
» C » »
L2 L2| L2 L2
a b c d
Figure 10: shows the four possibilities a corner can have

relation INC to its neighbouring edges

B[n, p] denoting the binomial distribution #INC(IS, |:) ~
B2, P(ne(P, L))] .

We now argue that the probability of INC(lAD
pends on the expected coverage ¢(L) (cf. (22

|:) solely de-
)

)). The prob-

ability of a spurious point P falling into a partition of L not
covered by some L; is assumed to be equal to the proba-
bility a pomt is not incident to an extracted edge L;. Thus
P(—IINC(P L)) =1— E(c(L)) or P(INC(P L)) = E(c(L)).
This yields the general expression for the probability of a
corner P being actually linked to 0,1, 2 of its 2 edges |:,'

#mvc(P, L) ~ B[2, E(c(L))] . (32)

The reasoning obviously is valid for angles between 60° and
120°. For acute angles the interference of the two edges
reduces the likelihood of detecting both links, whereas for
obtuse angles the number of detected points was not high
enough to obtain reliable estimates.

E. g. if the coverage ¢(L) of an edge is known to be 0.6 we
find

P(#mc(P,L)=0) = 06°=0.16 (33)
P#mc(P,[)=1) = 2.06-04=048 (34)
P#mc(P,l)=2) = 04%=036 (35)

thus .
E(#mc(P,L))=2-06=1.2 . (36)

In case of a trihedral junction the probabilities for the three

edges to be incident with the junction point P are different
which leads to

E(#mc(P, L)) ZPINC J1L)-PP|P) (37)

where j relates to the three given edges on which the edges

¢ fall.

Example: Let the trihedral corner with intensities 108,
128 and 160 [gr] be given (cf. Fig. 11). The contrasts of
the three edges are 20, 32 and 52 [gr]. If we now select
SNR = 2.2 for the left edge with Ag = 32[gr] we can
expect the middle edge with contrast 20 [gr] to be highly
splitted and the neighbouring segments are merged as the
SNR = 1.37 (cf. Fig. 7 and 8). The link of the estimated
point to this edge also is unlikely as ¢(L) = 0.4. On the
other hand the right edge with contrast 52 [gr] will not be
disturbed (SNR = 2.2 -52/32 = 3.58) and the left edge
with medium contrast Ag = 32 [gr] will likely be splitted
without allowing the neighbouring segments to merge.

The noisy corner image and the extracted features are
shown in Fig. 11 (left and right resp.), thus confirming
the prediction. O

5.2 Noise reduction by Smoothing

We have always used a fixed smoothing scale s. We now
want to show how a change of s influences the feature
extraction. Observe that in (16) V.g = V* G.g thus con-
volution of g with G will reduce noise. Instead of g we
could use § = G.g which in case of ¢ = n, thus just noise
leads tom = G<.n . For the variance cr% we therefore obtain

a%://Gi(z,y)dzdy~ai . (38)
zJy

As the integral evaluates to 1/4ms? we obtain for the noise
in the filtered image

w(s) = yrcpcRi (39)



Figure 11: Left: the trihedral corner image with noise
o2 = 211[gr’]. Right: result of the feature extraction.
(For explanation cf. Fig. 4 .)

Thus the signal-to-noise ratio SNR(s) = Ag/ow(s) in-
creases linearily with s.

Example: As the SNR in example Fig. 11 for the left and
the middle edge were SNR = 2.2 and SNR = 1.37 resp., we
change the smoothing scale s in a way that the SNR of the
middle edge now is 2.2. The left and the right edge then
show SNR = 2.2 -1.6 = 3.52 and SNR = 2.2-2.6 = 5.72
respectively. Thus, these both edges will certainly be ex-
tracted. However, the middle edge is at the boarder of
being complete: the coverage ¢(L) >= 0.9 . The likeli-

hood P(Smerges) that the neighbouring segments merge
is approximately 20% . Two samples of the feature ex-
traction are shown in Fig. 12: Obviously the edge is either
complete or the two segments are merged. This supports

the steep curve P(S merges). We are not able to construct
a case where the segments were separated and the edge
being splitted within the edge region.

Figure 12: 2 results of the feature extraction of two in-
stances of the noisy image shown in Fig. 11 with s = 1.6,
t; = 2.24 and t, = 4.0 . Left: the 2 segments are merged
and the edge is splitted. Right: no splitting and no merg-
ing have been occured.

6 Conclusions

The paper provides basic tools for evaluating relational
descriptions derived from digital images. Dependencies of
the extracted features, their attributes and their relations
on the control parameters of the feature extraction and
on the local properties of the images have been analysed
theoretically and by simulation using a set of images con-
taining typical local image structures.

The contribution focusses on different aspects:

1. Investigations were done analysing the effect of the con-
trol parameters on the feature extraction. Besides an over-

all evaluation of our feature extraction module, the goal
was to be able to choose these parameters in a top-down
driven manner, of course depending on the application.

2. Analysing the occurence and the attributes of spuri-
ous features, especially in dependency on noise, scale and
significance level directly might be used to improve the re-
lational description given by the feature extraction leading
to better results in the matching stage.

3. Analysing the quality of the feature extraction, i. e.
probabilities of the occurence of features and their rela-
tions is necessary for any procedure optimizing the proba-
bility P(M; | D) as it is done within grouping and match-
ing tasks. Difficulties in evaluating the quality of real
structures which normally have high complexity are solv-
able by breaking down the structures into typical basic
patterns. Examples were given demonstrating the pre-
dictability of the quality of the description of more complex
patterns using the results of the analysis of only a few test
patterns.

The choice of the test images was highly motivated by
the applications we are dealing with, i. e. the reconstruc-
tion of man-made 2D or 3D structures, especially land use
mapping and house detection. We choose the image of
a trihedral corner due to its importance for image recon-
struction and 3D-object recognition. Depending on the
applications, of course, other structures are appropriate to
be analysed.
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