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Abstract

A domain-independent objective mechanism is de-
veloped for generalization of inear patterns. It is based
on the Minimum-Description-Length principle, seek-
ing the simplest description of a given polyline. The
hypotheses are generated by the farthest point algo-
rithm. The whole mechanism is objective in the sense
of without using any control parameter. This mecha-
nism has been tested on segmented images and polygon
maps.

1 Introduction

Generalization of linear patterns is a common prob-
lem in computer vision, computer graphics, and car-
tography. The generalization is always guided and
constrained by certain criteria for certain application
purposes. For example, in polyhedral scenes, long
straight lines are preferred which should be produced
or retained after the generalization. One of the pop-
ular and effective algorithms is the recursive splitting
according to maximum distance developed simulata-
neously by [2] in computer vision and by [1] in geoin-
formatics. This algorithm makes use of a control pa-
rameter: a threshold for the minimum distance to stop
the recursive splitting process. This threshold is sub-
jective and dependent on application situations. For
a given situation, the threshold is then fixed for all
the splittings, which yields very different effects to our
perception.

Our approach is to use the Minimum-Description-
Length (MDL) criterion to seek the simplest descrip-
tion of a given linear pattern, which produces the most
probable significant polyline for a given linear pattern.

2 Problem Formulation of Linear Pat-

tern Generalization

Let [ ] denote a series (an ordered point set) which
correponds to a list, { } denote a set, and {z} denote
the set consisting of the elements of a series . A linear
pattern L is represented by a series of points
L=[p1 p2 .. DPn]. Each point p; is defined by a
coordinate pair (z;, ;). As we assume L is extracted
from an image without any generalization, so every
pair of neighboring points p; and p;4+1 in the series
are actually connected in the space (image), but two
points p; and p;, | 7 —¢ |> 1 that are not neighboring
in the series are generally also not neighboring in the
space. Thus, the whole series forms a linear pattern

which is a polyline consisting of limited straight line
segments [p1 pa], [Pz P3l, .., [Pa—1 Pal.

The goal of generalization is to produce a new series
G = [p} ph pl,], where m < n, and each
p;} is a function of the original point set {L}. Intu-
itively, G with a minimal amount of data should pre-
serve the perceptual significance of L with the minimal
loss of information contained in L. Previously, actual
criteria were dependent on subjective satisfaction for
given applications.

The basic reason for generalization of a polyline
L into a simpler one (G is that we assume there are
positional noise N for the internal points of L. Here
we use symbol N to denote the series of those internal
points that cause lines to look noisy:

{L} ={G}+{N} (1)

Here we use 4+ and — to denote the union of two sets,
and the substraction of a set from another set.

Our basic strategy to generate a hypothesis GG is to
select significant points from L, which will then form
G. The other points of L that are not selected are
treated as the contents of the noise N. Therefore, G
and N can be expressed as follows:

G = [pPi, Piy --Pin (2)
Pix EL, i E{l,?,...,n},
ke{l,2,..,m}, i1=1, inm=n

v} {L}—{G} (3)

N = [Pii+1 Pir42 - Pis-1

Pis+1 Pis+2 - Piz-1

Pi.-1 | (4)

where k is the index for a point p;, in G, while this
point is indexed with iz in L. iy = 1 and i,,, = n means
the starting and ending point should be retained, be-
cause each such point has a topological role in the
polyline network.

The original recursive splitting algorithm of Duda
and Hart and all later variations of others use subjec-
tive control parameters for the transform from L to
G. Our approach is to maximize the aposterior prob-
ability of the data set L taking the generalized pattern
G as a model. A more general form of this Bayesian
criterion is the Minimum-Description-Length (MDL)

Pip_1+1 Piy_142



criterion [7] which enables us to combine variables of
different models in a uniform measure — the number
of bits. Let us suppose there be a set of generalized
patterns G = {Gy | k = 1,2,...,}, each G}, is an al-
ternative generalization of the original pattern L. Let
l(z) denote the description length of a variable . The
j(()int d)escription length of L and G as a model of L is
(L,G),

(L,G)=I(L | G)+1(G) = I(N) + I(G) (5)

The MDL criterion selects the best generalization G
with two conditions:
The necessary condition:
(L, Gr) < (L), Gr€G (6)
where [(L) is the description length of L without any
model. The sufficient condition:

(L,G) = min{l(L,Gy)|Gr G} (7)

With this criterion, the goal of generalization is to
seek a polyline (G that corresponds to the minimization
of the joint description length I(L, G).

3 Encoding Polyline and Noise

We now address the problem of how a polyline L
and a generalization G as well as the noise N can be
encoded in an optimal way. In this section, we describe
two random Markov chain models, one for polylines L
and G, and another for the noise N.

3.1 A Random Markov Chain Model for
Vector Coding

A direct and efficient encoding for a polyline L is
vector coding: A starting point p; = (21, y1) is given.
With index 7 starting from 2, each next point is en-
coded with a position difference vector d; = (u;, v;)
stemming from its previous point p;—1 = (Z;—1, ¥i—1),
pi = pi-1 + d;.

The length [ of this encoding for the polyline L

(L) = (po) + Y- U(po) = U(po) + 1) (§)

Let us use the isomorphism between a complex num-
ber and a vector in 2-dimensional space,

Pic1 = ui+jv; =s; - (9)
where j = v/—1 and

di =pi —

s
si = \Ju? +v2, ¢; = arctan — (10)
yu. i

K3

According to the MDL principle, the description
length of this vector is

I(dy) = ~Ibp(di) (11)

where [b is the logarithm with base 2, p(d;) is the
probability of d; which is to be computed according
to a stochastic model described as follows.

Because each d; is a position difference vector of a
point p; relative to its previous point p;_1, therefore
in order to encode this kind of vectors in an efficient
way, we must have a stochastic model which describes
the variation of the length s; over s;_1, and the angle
¢; over ¢;_1, withi =3, 4, .., n.

Consider the ratio between d; and d;_1,

— i — eritiai (12)
where

ri =In

;=0 — dima (13)

Si—1

To encode d;, as d;_1 is already encoded, so we only
need to encode the differential part, The description
length of d; can then be formulated as

I(d;) = —lbp(d;) = —=lbp(ri, ;) = —lbp(g;) (14)

where p(r;, ;) is the joint probability of r; and «y,
and g; denotes (r; a;)%.

With this expression, it is now clear that /(d;) is a
markov chain with the assumption that the logarithm
of the length ratio r; and the difference of the direc-
tions «; are stochastic. In general, we assume they
follow the normal distribution

gi=(ri )’ ~N(0,C) (15)

where C is the covariance matrix. The probability
density function of g; is

1 Lopca >
J=——  exp|—-gTClg; 16
p(8i) 2r/[C] p< 58 g (16)

We further assume the two variables are indepen-
dent, so the covariance matrix C is diagonal, which
may be estimated from the given data. Conversely, if
these parameters are given, a class of polylines can be
generated from this random Markov chain model.

Let Z denote the estimated value of 2. According to
formula (14), the description length (d;) is computed
as

Vo (oo LT (0

l(d;) = 3 <1n(27r(7,0a) + 2((&T) + <5'a) )) (17)
According to formula (8), the total description

length of the original polyline L is

I(L) =1(6r) + 1(0a) + U(p1) + I(d2) + Zl(di) (18)
" n—2 )
In2

I(d;) =

=3

(In27)+1Iné, +Ind,+ 1) (19)

For details of the computation of each term in this
formula, see [6]. G is also a polyline, the description
length of G is also to be computed with the formula
(18) with G replacing L.



3.2 A Random Markov Chain Model for
Positional Noise

Linear patterns including lines and edges extracted
from images are comtaminated by image noise, round-
off errors of rasterization (non-optimal resolution),
and imperfect low-level algorithm for edge/line detec-
tion or region segmentation. Because we only consider
the polylines, we assume a polyline G as an ideal lin-
ear pattern is transformed to a detected rasterized lin-
ear pattern L which contains positional noise for each
internal pixel. As G consists of a number of line seg-
ments [Pi, Pi.), [Pis  Pisl, - [Pin_y  Pin), so the
generalization G and the noise N can be decomposed
as

G = 021:_116;16 (20)
Gk = [pik pik+1]
N o= opsiN (21)

Nk = [Pir41  Pirs2 Pirgi—1]
where we use ¢ to denote the concatenation of two
or more series. With this decomposition, N can be
considered as the noise to Gy. Because G is supposed
to be an ideal line segment and Ny is a rasterized
series, so the positional noise Ny takes the form of shift
of each internal point in the direction perpendicular
to G, because the shift along G, is negligible to the
shape of Gy.

In order to consider these shifts, we need to first
transform the coordinates of points of N into a lo-
cal reference system taking G}, as the x-axis direction.
Then, ideally the y-coordinate for each internal point
of Ny, should be zero if there is no noise. The positional
noise takes the form of non-zero y-coordinates. Gener-
ally the positional noise for two neighboring points are
correlated. It is obvious that the difference between
two neighboring y;_1 and y; is generally smaller than
| y:—1 | and | y; |, so it is cheaper to only encode
such dlfferences ThlS kind of encoding may lead to a
Random Markov Chain model for the positional noise
along L;:

(J=tp, i+ 1, igr1—1) (22)
where a is a parameter of correlation, ¢, is a variable
(error term) which follows a normal distribution:

Yi+1 = ay; + &k,

e~ N(0, o) (23)

where o} is to be estimated from the given data Ny,

where ¢; = Yi+l —ay;.

With a = 0 the noise is uncorrelated, which refers
to roughness. It is equal to say that the yJ s themselves
follow a normal distribution. With @ = 1 the noise is
correlated, which refers to smoothness. In general,
estimated a is between (0,1). Because we use a fixed

description length of this parameter, so a needs not to
be encoded.

Therefore, the description length for each internal
point p; is

llp;) = —le(Pj)I—le(yJ’)

e2
= b J
\/Z"rtr,c xp 5',%

55z)  (25)

In(27) + In &y, +

an(Z 20

The description length of Ny is then

Tht1

Uow) + Y Upy) = U6w) + 1(yin)

J=ik

I(Ny) =

i1 — U

+ 21n2

(In(27) + 2Inay + 1) (26)
For I(y;, ), we should assume it is a random in the
whole range of y’s in Ny: [yﬁf}n ,yg,fga;]

(i) = —1bp(ir) = 1b (yhde — Yoriy). Tet Go be the
resolution of &y is, then (o) = lb(&D ). The total
description length N given GG as a hypothesized gen-
eralization of L is then

(N)=I(L]|G) mzlz Ni) (27)

4 A Recursive Mechanism for Hypoth-
esis Generation and Minimization of
Objective Function

Our objective can now be clearly defined: We are
seeking a generalization GG such that

(L,G)=I(L | G)+ I(G) = I(N) + (G) — min (28)

This is our objective function to minimize. The prob-
lem is two-fold: at one hand, we need to generate
alternative hypotheses of generalization; at the other
hand, we need to select better hypotheses with shorter
joint description length I(L,G) in order to reach the
minimum of (L, G). To solve this two-fold problem,
we will use the recursive spliting mechanism similar to
that proposed by Duda and Hart, but with a different
but well prlnc1p1ed criterion. In the following, we will
describe three significant hypotheses and assoc1ated
joint description lengths.

For generality, let us suppose we are considering
a portion L; ; of an original linear pattern L: L; ; =
[pz Pit+1 p;], where j—i > 2. When i =1, and
J=n, the L;; refers to the original series L.
Hypothe51s 0:

It is obvious that the simplest generalization G( ) of
L;;is

6% =p; vl (29)



without any internal points. In this case, the total
description length of L; ; with GZ(-’OJ-) as a model is

lo(Lij) = UGY))+UND;) (30)
UG = (i) + 1(py) (31)

where N(k) denote the positional noise in L; ;, given

G( ) as a model of L; ;.

Alternatlve Hypothesis 1:

Alternative hypotheses for generalization can be gen-
erated in many different ways. However, the most ob-
jective way is to split this series at an internal point
pPs, 1 +1 < s < j—1into two subseries L; ; and L ;,
where index s is determined by

=1 (32)

i.e. ps is the farthest point from the line defined by
p; and p;. Notice p, can be in either side of the line

|y, | = max{y, |[k=1i+1,..

Gg?j). In this case, the generalized series at this stage
is

¢V =Ipi ps Pyl (33)

The description length I; of L;; by taking Gg}j) as a
model is

(NS +1GEY) (34)
(pi) +1(p)) +1(p;)  (35)

Li(Lij)
(e

where p’, is the new coordinate of p; in the local co-
ordinate system taking [p; pj] as the x-axis.
Alternative Hypothesis 2:

If we consider the points of N(O)Z.’j, they may ap-

pear at both sides of the line G(°), there could be
a maximum value and a minimum value of the new
y-coordinates at two different sides. Let p;, and p,,
with s; < sy denote the two extremum points (we
do not disinguish which one is the maximum or mini-
mum) with the condition:

Ysg " Yso < 0 (36)

So, the second alternative hypothesis is
2
G =pi Po Pe P (37)

If the condition (36) is not satisfied, then GZ(-?J-) does
not exist. 7

The description length [; of L; ; by taking G(Z)
a model is

INEY + 0GPy (38)
I(pi) + 1(p;,) + 1(p,,) +1(p;) (39)

N
—~
Q
S
S—
|

where p}, and p}, are the new coordinate of p;, and
Ds, in the local coordinate system taking [p; p;] as

the x-axis.
Dropping the equal terms in (30), (34), and (38),
these formulas can be rewritten as
lo(Lij) = 1(Nij) (40)
h(Lij) = IU(pL)+IN) (41)

b(Lij) = Uph)+1(pL)+UNT)  (42)

where each p}, k = s, s1, 52 is supposed to be a ran-
dom in the bounding box (w; ;, h; ;) (for width and
height) of all the points between p; and p;,

l(pk) =1b w; ; + b h@j (43)

The decision is now to select one from the three hy-
potheses with smallest description length . If the hy-
pothesis 0 is selected, then stop for this local L; ;,
otherwise, L; ; is splitted into two or three new sub-
series.

Starting from ¢ = 1 and j = n, the original series
L is first splitted into two or three sub-series. Each
new subseries can be tested again for further splitting.
The test with a selection of the hypothesis 0 is a hard
criterion to stop a local split. This recursive split-
ting of L; ; is a gradient decendent approach to reach
the minimization of the total description length of the
original series L together with the final series GG as the
most probable model. The final generalized series GG is
an ordered collection of the original starting point pq,
all the accepted splitting points, and the original end-
ing point p,. Finally, the necessary condition (6) can
be tested. If it is true, then finally accept the final
generalization G. A straightforward implementation
of the mechanism described above is a recursive algo-
rithm with the computational complexity O(nlogn).
It is also possible to design a nonrecursive algorithm
for implementing the recursive mechanism for gener-
alization, but the complexity should be the same as
the recursive one.

5 Experiments and Further Remarks

We have tested this mechanism on linear edges ex-
tracted from raster images (see Fig. (1)-(3)). In or-
der to study the influence of image noise, we have
generated a polygon map by using a generic struc-
tural model [5], thus providing an ideal edge map.
Then, a raster image is generated from this maps by
randomly assigning a gray value to a polygon, and
adding a signal-dependent noise to each pixel. The
simulated image is segmented through a general MDL-
based region-merging algorithm. The crack edges are
then extracted. Notice that all the crack edges form a
complete network, so each polygon is completely sur-
rounded by a series of crack edges. In case of uncor-
related noise model with ¢ = 0, in Fig.2, we can see
more knoting points are retained from L into G. In
case of correlated noise model with @ = 1, in Fig.3, the
extracted edges are more generalized, with less details.



Because we use polyline-split mechanism for hypoth-
esis generation, a generalized polyline is defined by
an ordered retained points of the original linear pat-
tern. Therefore, compared with the ideal edge map,
the generalized polylines do not exactly coincide on
the original vectorized edges. A postprocessing would
be to fit each generalized polyline to its real edge posi-
tion by least-square method [4]. This work is beyond
the scope of pure generalization of provided linear pat-
terns.

6 Conclusions

The mechanism described here for generalization of
linear patterns is objective because it is based on MDL
criterion, thus without using any control parameter. It
is also efficient, because it is implemented in a recur-
sive algorithm, with complexity of O(nlogn). This
mechanism and criterion used can be further applied
with other approaches which can generate hypothe-
ses of generalization in different ways. However, be-
fore applying this mechanism to any specific problem
domain, the validity of the models proposed here for
linear patterns needs to be verified. Once the proper
valid models are available, this mechanism can be eas-
ily adapted.
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Figure 1: Extracted edges from a simulated polygon
map image

Figure 2: Generalization under uncorrelated noise
model

Figure 3: Generalization under correlated noise model



