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ABSTRACT:

Textures in images have a natural order, both in orientation and multiple narrow-band frequency, which requires to
employ multichannel local spatial/frequency filtering and orientation selectivity, and to have a multiscale characteristic.
Each channel covers one part of whole frequency domain, which indicates different information for the different texton.
Gabor filter, as a near orthogonal wavelet used in this paper, has orientation selectivity, multiscale property, linear phase
and good localization both in spatial and frequency domains, which are suitable for texture analysis. Gabor filters are
employed for clustering the similarity of same type of textons. Gaussian filters are also used for detection of normal image
edges. Then hybrid texture and nontexture gradient measurement is based on fusion of the difference of amplitude of
the filter responses between Gabor and Gaussian filters at neighboring pixels by mainly using average squared gradient.
Normalization, beased on the noise response and based on maximium response are computed.

1 Motivation 1. The structural approaches (cf. e. g. Fu 1982, Vorhees

Texture analysis continues to be a bottleneck in Computer
Vision, especially for natural scene interpretation. Texture
is one of the basic characteristics of visible surfaces and of
similar importance for perception as colour. It therefore
plays a central role in a number of applications such as
remote sensing, environment monitoring, medical image
processing and quality assurance.

There are a number of tasks which are either much more
complicated than their “untextured” counterparts or ex-
plicitely rely on the existence of texture.

e Segmentation and feature extraction aim at a (more
or less) unsupervised derivation of a symbolic image
description where the features, points, edges and seg-
ments are used for further processing. This may e. g.
be used to derive a crude 3D-description for symbolic
image matching.

o Classification of images aims at a direct derivation of
a class label which usually carries a meaning in an
application context. Texture may be helpful e. g. in
remote sensing for increasing the quality of multispec-
tral classification.

e Shape recovery [Super and Bovik 1992], in contrast to
the two previous tasks, requires texture or is at least
much easier with textured surfaces as many matching
algorithms, be it intensity or feature based, are likely
to fail in textureless areas. On the other hand, texture
gradient, i. e. the gradual change of texture density,
gives a direct cue for orientation of the underlying
surface.

The approaches to texture analysis may be roughly de-
scribed as structural, statistical and filter based.

and Poggio 1987) assume texture elements to exist,
which in a regular or irregular manner constitute the
texture. Examples are wallpaper patterns, the struc-
ture of honeycomb or - more irregular - the skin pat-
tern of crocodiles. The roots of this approach go back
to the simple observation that texture in an image is
caused by a truely three dimensional structure, con-
sisting of parts which are evolved or generated by
the same process parallel over time. This is in con-
trast to statistical and filter based approaches which
implicitely assume the texture to be an irregular re-
flectance function on an otherwise smooth surface.
The reason why this structural approach has not re-
ally succeeded in texture analysis is the practically
unlimited combination of basic patterns which them-
selves may also vary to a large degree. Therefore the
generation of such patterns may very well be success-
ful, e. g. when using fractal type structures, which
is useful in computer graphics. The inverse problem
however, has not been shown to be solvable over a
larger range of patterns.

. Statistical approaches are based on the opposite line

of thought: It is irrelevant how a texture is generated
as long as its statistical properties which are observ-
able in an image are sufficient to perform segmenta-
tion or classification. The number of texture descrip-
tions which have been proposed is large [Ahuja and
Rosenfeld 1981]. One may distinguish ad hoc descrip-
tors as the variance, the entropy or other measures of
the local neighbourhood of a pixel and model based
descriptors which allow generation and analysis of tex-
ture such as co-occurance matrices [Haralick 1979,
Elfadel and Picard 1994], autoregressive models or
Hidden Markov Random Fields [Hassner M. 198081,
Kervrann and Heitz 1993, Chen and Kundu 1994]. A
common property of all statistical approaches is their



implicit relation to the grid structure of the image.
This prevents scaling up and down the descriptors
(e. g AR-coefficients) and multi-image integration,
e. g. during matching. Though the coefficients usu-
ally are not rotation invariants which may be neces-
sary for classification, some rotation invariant texture
descriptors have been developed [Kashyap and Lapsa
1984].

3. Filter based approaches also follow a phenomeno-
logical reasoning. They assume the image function
to be locally describable by their amplitude spectra
[Lonnestad 1992, Chen and Kundu 1994, Chang and
Kuo 1992, Bigin and du Buf 1994, Lee and Yuille
1992, Dunn and Wakeley 1994, Manjunath and Chel-
lappa 1993, Fogel and Sagi 1989, Ng and Kittler 1992,
Malik and Perona 1990]. In spite of close theoreti-
cal connections to the statistical approaches, the filter
based approaches seem to have some distinct proper-
ties.

e They are biologically plausible, as physiological
findings support the idea of a filter bank with
filters which are orientation and scale sensitive.

o They are continuous models which may be de-
scretized for implementation. For linear geomet-
ric transform the filter responses are predictable,
allowing to integrate several images.

e They have experimentally shown to be generic in
the sense that natural and artificial textures can
successfully be analysed.

In spite of the good results reported, there is no com-
monly accepted way to select the filter bank and to
link the different channels.

The primary motivation for the approach described in
this paper was the need to extend our feature extraction
concept [Forstner 1994] so that not only colour images
[Briigelmann and Férstner 1992], but also textured im-
ages can be handled. The basic idea is to locally represent
the image structure by a 2 x 2 matrix containing the av-
eraged spatial squared derivatives (SSD) from which the
homogeneity, the isotropy and the orientation of the lo-
cal, possibly vector-valued image function can easily be
derived and used for detecting points, lines and segments.
None of the known texture analysis procedures provided
this local energy measure. As we have had good experience
with the approach by [Malik and Perona 1990], we wanted
to apply a filter based approach based on some kind of
wavelet. However, in contrast to the scope of Malik and
Perona, we are primarily interested in analysing natural
scenes, particularly aerial images which allow to replace
the nonlinearities in their approach, possibly loosing some
texture discrimination power at artificial images.

2  Finding Texture Boundaries

Texture segmentation is performed in three steps.

1. Analysing the local Fourier spectrum by a filter bank
leading to a multichannel representation ax of the im-
age.

2. Combining the channels to obtain a scalar or tensor
valued image indicating the total response of the im-
age.

3. Detecting texture edges by some scheme known from
scalar image edge detection.

2.1 The Multichannel Representation

We use the well-established Gabor wavelets due to the fa-
vorable properties they have shown in texture segmenta-
tion. They are orientation and scale sensitive and are de-
fined as filter pairs G} and Gj, being windowed cos and sin
waves.

G = gy coslrUis+ V)] ()
Gy = g(z,y;sk) sin2n(Urz + Viy)] (2)

with
Uy = cosoi[sk; Vi = sin pr/sk (3)

or with the complex valued filter
Gr =G5, + jGi = g(z, y; sk) - exp[2n(Urz + Vay)]. (4)

The window function ¢ is a Gaussian

! -exp(—ﬂ). (5)
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g(z,y; s1) =

Remark: One can also choose a nonisotropic window func-
tion in order to put more emphasis on scale or orientation
sensitivity (cf. Yuille and Geiger 1990). In our experi-
ments we restricted to isotropic windows. O

The Fourier spectrum Gy of the Gabor filter Gy is given
by a shifted Gaussian

Gr(u,v)
= 2msy - g(u, v;1/(27sk)) * 6(u — Ur, v — Vi)
= exp{—27"si[(u — Ux)® + (v — V&)*]}. (6)

2 sets of Gabor filters (impusle response) are shown in Fig.
1, which show their orientation and scale selectivity and
their spatial localization property. We now obtain the

Figure 1: shows 2 sets of Gabor filters (impusle response)
with s, = 4 [pel] and s; = 16 [pel] and orientations 0° and
45° resp.
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magnitude or amplitude of the filter response to the given
image function f(z,y)

ar(z,y) =| Grx f|=\/GEx f+ G« f. (T)

Observe that (7) constitutes a nonlinear operation in the
segmentation scheme. It is well-known (cf. Dunn and
Wakeley 1994) that purely linear techniques cannot work;
on the other hand using just the amplitude or amplitude
squared and neglecting the phase of the complex Gabor
response G x f results in loss of discrimative power for
certain textures as has been shown by [Malik and Perona
1990]. As mentioned in the introduction, we assume the
loss caused by this first nonlinearity not to be relevant in
natural scenes.



The vector-valued image {ax(z,y)} can be interpreted as
a multispectral or colour image of which the edges have to
be detected.

Example 1 Fig. 2 shows a test image with vertical sin-
waves with wavelengths A = 2,4, 8 and 16[pel]. Fig. 1b, c,
d, e show the amplitude responses of the Gabor wavelets
with ¢ = 0 and s; = 2,8, = 2\/5,53 =4 and s; = 4/2.
The responses are largest in Fig. 1c and e where the chosen
scales s are tuned to the image pattern. At other scales
$kr a non-zero response occurs. Thus a thresholding on
the amplitude responses as means for texture segmentation
will fail. However, summing up the gradient magnitudes
of all amplitude responses yields the edge strength image
shown in Fig. 1f from which the texture boundaries may
be derived using non-maximum suppression. O

Figure 2: a) shows an artificial image consisting of 4 parts
with scales 2, 4, 8 and 16 pixels. The amplitude of the
Gabor responses with scales 2, 2.8, 4 and 5.6 are shown
in b), ¢), d), €) respectively. f) shows the total gradient
magnitude of the amplitude response.
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Example 2 A similar test pattern is shown in Fig. 3a
together with the response of a Gabor wavelet tuned to the
vertical pattern (3b). Observe that all type of boundaries
occur: blurred step edges as well as positive and negative
line edges. The phase shift between the two left patterns
is revealed though the phase in the Gabor response has
been eliminated. (This effect has been studied by Dunn et
al. (1994). The gradient image is shown in Fig. 3c and d
namely dax/dz and dar/Jy indicating that searching for
relative maxima here will also not give the desired edges.
]

Figure 3: a) shows an artificial image with different ori-
ented patterns. b) is the amplitude response which shows
3 types of edges. c) and d) are the gradient images of the
amplitude response of b). Relative optima would lead to
double edges between the two left textures.
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We therefore use our feature extraction scheme (cf.
[Briigelmann and Foérstner 1992] for detecting region
boundaries, which is able to detect edge and line bound-
aries simultaneously.

2.2 Integrating the Channel Responses

The multispectral boundary detection scheme determines
the average squared gradient

Tar = g¢ * (Vear - V2 ax) (8)

of each channel k. Here
3] 3] T
Vsar = Vgs * ap = (ggS agy) n (9)

denotes the gradient of ax with smoothing kernel g. The
width s of this kernel should be adapted to sx of the Gabor
filter, e. g. $ = sx or s = 2s;.

The integration of the squared gradient with the window
g: guarantees that edges and lines can be detected simul-
taneously. It strongly motivates this second nonlinearity.
It can be shown that a line of width 2a is detected and
not two edges if the integration scale is chosen to be larger
than 1.5a (cf. Forstner 1994) suggesting tx = 2s (cf. Fig.
4).

Figure 4: a) shows a graph with a light line, a step edge,
a dark line and a step edge. Using a small integration
scale for the squared gradient results all edges, while us-
ing a large integration scale for the squared gradient (c)
identifies the lines and the edges simultanously.
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The edge strength hx of each channel can be derived from
hi = trTax = gex || Viar ||° . (10)

In order to integrate the different channels, we use a
weighted mean
ﬁ:zrak - wg (11)
k

avoiding a further nonlinearity.
We investigated two choices of weights

a. The weight wy is chosen according to the noise gradi-
ent response of the k-th Gabor filter
wip = 1/0}, . (12)

This implicitely assumes the channels to be indepen-
dent; an assumption which can be only approximately



true, as Gabor wavelets do not form an orthogonal ba-
sis.

In our experiments we estimated the variance a,%k by
using a simulated noise image. The value E(a%k lg =
n) may also be derived analytically.

b. The weight is chosen according to the range of ax thus

wy = 1/ max hx(z,y) (13)
zy

assuming that hx(z,y) = 0.

This choice is motivated by the fact that weak texture
edges in small scale channels may be buried in distur-
bances caused by improper scale tuning of larger fil-
ters (cf. the example of nonconstancy of the responses
in Fig. 1c/e).

2.3 Locating Boundaries

From the total average squared gradient Ta we can now
derive three measures to be used for the boundary detec-
tion.

1. The edge strength
h=trla (14)
which should be locally optimum across the edge.

2. The orientation

Y= L arctan % (15)
2 (T'a)11 — (Ta)2z

which is in the range 0 < ¢ < 7.

3. The isotropy measure
_ 4det(Ta) (Al - A2>2
T otr(Ta) T \ M+ (16)

which 1s small for Ay > ;.

We only used the edge strength and the orientation for
detecting texture edge pixels. The isotropy measure is
shown in the graphs; its potential for detecting texture
junctions has not been investigated yet.

3 Experiments

3.1 Implementation

We have realized the concept and tested it on various kinds
of images.

The easiest implementation of the filters is using Fourier
techniques. Though using the classical Fast Fourier Trans-
form restricts the size of the images to powers of two, this
is sufficient for testing the concept. The Gabor filters may
be replaced by similar filters, e. g. using derivatives of
the Gaussian (cf. Dunn and Wakeley 1994, Li and Shao
1994), which can efficiently be implemented in the spatial
domain.

We used the above mentioned Gabor filters with regularity
spaced orientation, and logarithmically spaced scales:

pr=1-Ap ,

amAT  m=0,...,.M (18)

Sm = So

leading to a set {Gr} = {G(z, y; $m, 1}, inducing a map-
ping {l,m} — {k}.

In addition we use Gaussian’s g(z, y; sm) for each selected
scale s,,. Thus for each scale we have m +1 filters, a choice
similar to [Malik and Perona 1990]. The Laplacian has not
been found necessary in the examples we tested.

3.2 Choice of Filter Orientations and Scales

The automatic choice of the ¢; and s,, is an up to now
unsolved problem. The reason simply lies in the definition
of a texture which nearly always shows to be constructed
of basic texture elements which themselves may also be
textured (cf. the herringbone pattern analysed by Witkin
1983, who observed the recursive structure of this texture).
Tt is therefore the task of the routine which calls the texture
segmentation module to specify in which range it treats
structure as texture. In our experiment we defined these
values interactively. If not stated otherwise, we use a fixed
number of orientation, namely ¢ = 1-30°,1 = 0,...,5
while we manually fix the range [Smin, Smax] of scales which
increase with a factor of ﬁ(iAs = %)

3.3 Results from Artificial Data

We first present the results of the texture edge extraction
for artificial data. Fig. 5, 6, and 7 are synthetic data which
are supposed to demostrate the ability of the approach to
handle texture of different orientation, phase and scale. In
all case the homogeneity h, the isotropy ¢ and an edge
overlay is shown.

The homogeneity response h reveals the edges to be easily
detectable, the strength however varying to a large degree.
The isotropy ¢, which should be low (dark) at edges, con-
firms the subjective quality of the edges, being quite large
at places where the edge has been detected.

The isotropy image ¢ in Fig. 5c and Fig. 6c clearly shows
the ansisotropic areas, i.e. the texture edge areas (dark).
The light (isotropic ) areas indicate either homogeneous
texture or txeture corners.

The texture collages built from Brodatz-textures [Brodatz
1966 ] show the ability to discriminate the different tex-
tures. The textured areas are 32 x 32 pixels.

The homogeneity images k in Fig. 9a and c for the small
collage Fig. 8 reveals clear differences between the two
normalization scheme. The noise normalization yields
smoother results, whereas the maximium normalization
stronger reacts onto higher frequency changes, as to be
expected.

The isotropy images ¢ in Fig. 11a and c of the large collage
Fig. 10 indicate the noise normalization to give a clear in-
dication of the strength of the orientation of the edges. The
isotropy image of the maximium normalization Fig. 11c is
not very informative. This corresponds to theory, as the
noise normalization has a statistical motivation (weight =
1/variance) which the maximium normalization is lacking.



Figure 5: shows an artificial image with differently ori- Figure 8: shows collage of four Brodatz-textures
ented textures, the gradient magnitude,h, the isotropy ¢
and the overlay of the extracted edges. Observe that ¢
clearly indicates anisotropic areas (dark) and the phase
shift between the left textures have been detected. Pa-
rameters: Ad =45, Spmin = 2, Smax = 11.3, As =1/2.

W N e
SRR
{ \\..._\\;\\lﬂ" .
Figure 9: shows the gradient magnitude h and the over-
i lay of the extracted edges for the previous figure. The
textures are normalized to g = 128 [gr] and o = 32 [gr].
a), b) and c¢) show the homogeneity h, the isotropy ¢ and
the edges for the noise normalization, d), €), and f) show
the corresponding results for the maximium normalization.
Parameters: A¢ = 30°; Smin = 4, Smaz = 45.2, As = 1/2.
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Figure 6: shows an artificial image with textures of differ-
ent phase, the gradient magnitude h, the isotropy ¢ and
the overlay of the extracted edges. All 4 edges have been
detected. Parameters: A¢ = 45°, Smin = 2, Smaz = 8,

As=1/2.

Fig. 12 shows a collage of two textures. Obviously
the maximum normalization (13b) leads to a more closed

’ ‘ 1 boundary of the circular region than the noise normaliza-
. . tion in Fig. 13a.
' ‘ ‘ ‘ Figure 10: shows a collage of 16 Brodatz-textures
.‘.. .‘.. [ _ e
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Figure 7: shows an artificial image with different scaled
textures (cf. above), the gradient magnitude h and the
overlay of the extracted edges. All 4 edges have been de-
tected. Parameters: A¢ = 45°%, Smin = 2, Smaz = 16,

As=1/2.
Fig. 14 shows the result of the texture edge extraction
‘ scheme on a textureless image. The results for the two
normalization schemes are quite different: The noise nor-
malization leads to blurred edges, suggesting the largest
scale (here 2) to dominated whereas the maximium nor-
malization tends to stress the smallest scale (here 1). In

all cases no thresholding is performed.




Figure 11: shows isotropy ¢ and the edges with noise- and
maximium normalization for the previous figure.
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Figure 13: shows the extracted texture edges from the
previous figure with noise normalization (a) and maximum
normalization (b). Parameters: A¢ = 30°, smin = 2,
Smaz = 6.35, As =1/3.

Figure 14: Toy image.

Figure 15: shows the extracted image edges from the pre-
vious figure with noise normalization (a) and maximum
Parameters: A¢ = 307,

normalization (b). Smin = 1,

Smaz = 2, As = 1/3.

The examples clearly demostrate the approach to be able
to extract edges of Brodatz-texture [Brodatz 1966]. the
selection of scale however was tricky. The examples with
natural images will more clearly show the difference be-
tween the two normalization schemes.

3.4 Results from Natural Scenes

Using section of aerial images [Gerster 1975] is to exploit
the potential of the method for extracting texture edges
which could be the basis for further segmentation. All
examples are analysed using both weighting schemes. The
scale parameters were interactively adapted, in all cases
except the 4 directions ¢ we chosed.

In figure 17 both results capture the main texture edges.
Noise normalization appears to yield smoother and less
spurious boundaries. However the long texture boundary
at the lower left part seems to adapt more to the real
boundary with maximium normalization.

Figure 16: A section of an aerial image (Gerster 1975, p.
189)

i

Also in figure 19 all texture boundaries have been detected.
The horizontal edge in the upper left of the image is bet-
ter recorded by the maximium normalization, where the
boundaries of the small isles in the lower part of the image
are better captured with noise normalization. Also here
noise normalization yields the smoother edges.

Fig. 20 is a complicated case as it is questionable whether
the structures should be treated as texture or rather should
be analysed by grouping the fields. The image, however
shows quite regular and nearly periodic structures, which
suggests a filter based approach can be successful. Both
normalizations (cf. Fig. 21) lead to quite good results.
The noise normalization results fails to capture some short



Figure 17: shows the texture edges of the previous figure
with noise- (a) and maximium (b) normalization, A¢ =
45°) Smin = 2, Smaxz =4, As=1/3.

Figure 18: A section of an aerial image (Gerster 1975, p.
219)

Figure 19: shows texture edges of previous image with
noise- (a) and maximium (b) normalization, A¢ = 45°,
Smin = 2, Smax = 4, As = 1/2
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texture edges in the middle of the image. Both normaliza-
tion do not find the bounday between the waved and the
straight fields in the lower right of the image.

Figure 20: A section of an aerial image (Gerster 1975, p.
214)

Fig. 22 shows a field area with quite pronounced oriented
textures. Both normalizations (Fig. 23) lead to quite con-
vincing results, the noise normalization altogether appears
to be a bit more close to reality.

Figure 21: shows texture edges of the previous figure with
noise- (a) and maximium (b) normalization, A¢ = 45°,
Smin = 2, Smaz = 11.2, As =1/2.

Figure 22: A section of an aerial image (Gerster 1975, p.
189)

Figure 23: shows texture edges of the previous figure with
noise- (a) and maximium (b) normalization, A¢ = 45°,
Smin = 2, Smax = 4, As = 1/3

Observe that texture edges that are realized as small road
are correctly extracted together with pure texture edges.

The last natural image in Fig. 24 is taken from a forest
area which exhibits some regular and some irregular tex-
tures. Here only the noise normalization (Fig. 25) yields
acceptable results, whereas the maximium normalization
(Fig. 25) is not able to grasp even the clear boundary
between the regular textures.

4 Conclusions

This paper presented a filter based approach to texture
edge extraction using Gabor wavelets. The two nonlin-
earities within the procedure are squarings, one for ob-
taining the amplitude response of the filter, the other for
deriving the squared gradient. The squared texture gradi-
ent has proven to be successful in detecting the different
types of edges occuring in the amplitude images. The dif-
ferent channels have been integrated using two weighting



Figure 24: A section of an aerial image (Gerster 1975, p.
189)

Figure 25: shows texture edges of the previous image with
noise- (a) and maximium (b) normalization, A¢ = 45°,
Smin = 2, Smaz = 11.2, As =1/2.

schemes: one based on the energy of the gradient response
to a noise image, the other based on the maximum am-
plitude response. The noise normalization reacted more
smoothly and more predictable onto texture edges while
the maximum normalization scheme was able to grasp finer
structures.

The approach was implemented and tested on a variety of
real images and showed promising results.

The main problem left is the choice of the scale range and
density, which in our experiments have been set interac-
tivily. Also the use of the full information in the average
squared texture gradient needs to be explored and is topic
of our current research.
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