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Abstract

Increasing the performance of Computer Vision al-
gorithms requires both, robust procedures for han-
dling non-modelled errors and diagnostic tools for
achieving autonomy in the evaluation of the achieved
results.

The role of diagnostic tools for model evaluation
and performance prediction is discussed.

Quality or performance refers to:

1. the precision of the estimated quantities (effi-
ciency) 2. the sensitivity of the estimated quantities
with respect to systematic and gross errors. 3. the de-
sign of the experiment or the used actual data. 4. the
correctness of results and of reports on the correctness
of the result.

The performance may be evaluated a. by controlled
tests using simulated or real data. This is necessary
to prove either the usefulness of the algorithms or the
adequateness of the used model. b. by diagnostic
tools. This is necessary for achieving autonomy in
the chain of automatic procedures within a complete
system where generally no reference data are available.

The performance of Computer Vision algorithms
can be significantly increased by diagnostic tools, both
by detecting singular or weak configurations within
high break down estimation, e. g. RANSAC, and by
providing a highly reliable selfdiagnosis of the algo-
rithm itself using the internally available redundancy.

Results from extensive empirical tests demonstrate
the feasibility of the proposed tools.

1 Motivation

One of the research goals in Computer Vision is to
provide tools for automatic scene interpretation, which
may be used within a system that at least partially re-
lies on information provided by imagery. The quality
of the vision tool, as any other tool for supporting au-
tomation, is as good as its ability to provide a wellde-
fined output. According to PREGIBON [1986] a tool
can be termed to be successful if

1. it can handle XX % of all new problems it faces.
2. for the (100 - XX) % it cannot handle, it knows
it.

3. You are happy with XX.

This implicitely requires the tool to contain means for
a reliable selfdiagnosis.

The design of vision algorithms is hard not only be-
cause the lack of a coherent theory (HARALICK [1985])
but also because the lack of tools and knowledge to
predict the performance even for comparably simple
tasks as the extraction of image features, the recon-
struction of visible surfaces, or the determination of
the orientation of the camera from given points. Error
handling therefore is a central issue in image analysis.

A typical example is the determination of the six
parameters for translation and rotation of a camera,



which forms a link between observed image features
and geometric parameters:

e The correspondence problem is far from being
solved for general cases. Existing solutions have
to deal with large percentages of matching errors.
This prevents the direct use of classical estimation
procedures and requires to look for robust proce-
dures which, however, make a thorough analy-
sis of the quality of the final result at least diffi-
cult, as the underlying theories (1) often only give
asymptotic theorems.

e In case approrimate values are not available or
only of poor quality their determination appears
to be a far more challenging problem than the
refinement via a least squares estimation. The
direct solutions, either with minimum or redun-
dant information play a central role, especially in
the presence of outliers.

e Self-Calibration, where calibration, orientation
and generally also scene reconstruction is per-
formed simultaneously, is often required as cam-
era calibration in a laboratory often is not feasible
or not sufficient. It increases the difficulty of er-
ror analysis by at least one order of magnitude as
deficiencies in design, modelling and mensuration
have to be handled simultaneously and therefore
prevent an algebraic analysis of the system. The
difficulty of integrating all types of observational
values lies in the necessity to formalize the eval-
uation process in order to adequately handle the
different dimensions (pixels, meter, radiants, etc.)
of the observations and their influence on the final
result.

The paper is motivated by the urgent need to pro-
vide tools for analysing the result of vision algorithms
both by exploiting the redundancy in the data and by
controlled tests. It stresses the need to complement
the strong tools from robust statistics by diagnostic
tools as both are intimately linked (cf. HUBER [1991]).

The paper is organized as follows: Section 2 dis-
cusses the performance evaluation of automatic proce-
dures at a systems level elucidating the places within
a vision algorithm where diagnostic tools may come
into play. As many Computer Vision tasks can be
formalized as estimation, section 3 discusses the dif-
ferent types of errors and the issues in error handling.
Section 4 provides the tools for the solution of three
classical tasks, 4.2 evaluating the stability of estimates
in relation to specified requirements, 4.3 evaluation
the sensitivity of the estimates with respect to model
errors, and 4.4 evaluating the result of controlled tests.
The examples in section 5, taken from classical tasks
in Computer Vision, demonstrate the feasibility of the
concepts, based on extensive tests.

2 Performance Evaluation of Auto-

matic Procedures
Evaluation of the the performance can rely either on
internal or external knowledge. We assume the proce-
dures to be evaluated to be describable as a black box

with some specified types of input and output data.
The output data consist of the result as such and its
quality. E. g. a feature detector may give the coordi-
nates of distinct points in the images as result together
with their covariance matrix as quality description as
output, derived from the raster data of the image as
input.

The internal evaluation of the result is based on the
model, the structure and the values of the given data.
It exploits the redundancy in the data with respect
to the model as far as possible and is based on an
estimate for the accuracy of the given data, hypothesis
tests and the analysis of the homogeneity of the data.

The external evaluation i1s based on a comparison
of the result of the procedure with some reference.
This reference itself may be precisely known, e. g. in
the context of simulations, or be derived by some in-
dependent measurements, which will have an usually
low uncertainty. External evaluation is necessary to
prove the validity of the internal model of the pro-
cedure. It requires objective measures for evaluating
the differences between experiment and reference data.
The quality of the difference in general is influenced
by both the uncertainty of the result, which may ob-
tained by the internal evaluation and the uncertainty
of the reference data.

Thus at this level of evaluation we have four cases
depending on whether the result is actually correct
and whether the report of the correctness of the result,
provided by the internal evaluation is actually correct
(cf. Table 1).

The first aim of the development of an algorithm is
to increase the probability pg = poo + po1 so that it
actually yields correct results. In the case of no selfdi-
agnosis, the result is assumed to be correct, thus the
percentage of erroneous decisions is p1 = 1 — pg lead-

ing to costs 0 = C1p1, where C7 are the expected
costs per failure.

Integrating selfdiagnosis, however, changes the
scope of the development, e. g. to maximize the prob-
ability of correct decisions p, = pgg+p11 while staying
with pgg larger than some specified requirements (cf.
XX % in the introduction). The costs C™M for making
wrong decisions now is c = Co1po1 + Ciop1o which
may be much smaller than C'(%) as the costs C'(1) (as-
sumed to be = C4g) for making a decision error of type
IT (false positives) usually is much larger than the costs
for making a decision error of type I and the probabil-
ity of making erroneous decisions may be made much
less than p; by diagnostic tools, which are meant to
identify incorrect results with a high probability pi;.

We therefore will find diagnostic tools to be useful
for:

e increasing the performance of an algorithm by in-
creasing the likelihood to provide correct results
as such (poo). This refers first to proper plan-
ning of the design of the experiment, i. e. the
boundary conditions for the application of the
procedure. This will provide the basis for robust
procedures to work reliably, as they require some
homogeneity, i. e. lack of leverage points. The



Table 1: shows the possible result of empirical tests together with their probabilities

report of selfdiagnosis: result is

correct Wrong,
correct decision wrong decision (I)

correct

: Poo Po1

reality
wrong decision (II) | correct decision

wrong

P1o P11

diagnostic tools, however, may also be used to in-
crease the performance of estimators themselves
which rely on a stochastic algorithm, as e. g.
RANSAC or median least squares estimators, by
identifying singular or instable configurations.

increasing the reliability of the quality measures
for self evaluation in order to identify incorrect
results (p11).

While this discussion holds for any type of auto-

matic procedure we will concentrate onto tasks which
are formalizable as parameter estimation.

3 Parameter Estimation

This section describes the used model especially to

introduce the notation, discusses the error types and
specifies the issues in error handling in more detail.

The Model

Let us assume the model to explicitely describe the

observation process

E(l) =9(8) (1)

where the expectation of the n observations I = {l;}
via g in general nonlinearily depends on the u un-
known parameters @ = {f5;}. The stochastical proper-
ties of the observations are captured by the covariance
matrix

D) = ¥ =6;,Q, (2)

which may be split into a variance factor 62 and a
weight coefficient matrix @ being the inverse of the
weight matrix P.

In case this is the only information available the

principle of maximum entropy results in the following

full model

I~ N(g(8), %) (3)

hypothesizing I to be normally distributed. The re-
dundancy of the system is

(4)

In case the redundancy equals 0 or in the un-

r=n-—1u

likely case the observations are consistent, the as-
sumed stochastical properties have no influence onto
the estimate. The only task then is to invert (1) to

obtain 8 = g~ (1), where I is a subset of I of size u.

3.2 Error Types

In general all components of the model will have an
influence onto the result. The key question is how an
automatic system handles errors in these assumptions.
One may distinguish three types of errors:

1. Data errors are errors in the values of I. They
relate to points, lines or other features in the im-
age or in object space, where measurements are
taken. They may really be mensuration errors, e.
g. caused by failures in the detection algorithm
or matching errors leading to wrong relations be-
tween image and object features. Depending on
the complexity of the scene and the quality of
the used algorithms the percentage of errors may
range between a few and over 80 % of the observed
values.

. Model errors refer to all three parts of the model:
the functional relation g, the covariance matrix
Y1 and the type of the distribution, here N. Ex-
amples for this type of error are manifold:

e too few, too many or the wrong set of param-
eters, e. g. when using shallow perspective,
projectivity or parallel projection.

e wrong weighting, e. g. when assuming the
same accuracy for all detected points,

g.

e neglected correlations, e. in Kalman-

filtering or

e wrong assumptions about the distribution,
e. g. when handling one-sided errors.

Observe that data errors and model errors for-
mally cannot be distinguished; as a refinement of
the model may always specify the type of error in
the observations.

. Design- or configuration errorsrelate to the com-
plete set of functions g = {g;}. Such errors cause

the estimate 3 to be nonunique in some way. Mul-
tiplicity of solutions is the best case of nonunique-
ness. Depending on the degree of redundancy we
may distinguish at least three cases:

(a) nondeterminable parameters. Critical sur-
faces belong to this class. An example would
be a spatial resection with three points and
the projection centre sitting on the critical
cylinder.



(b) noncheckable observations or parameters.
Here the determination of the parameters
may be possible, but errors in the observed
values of in the estimated parameters intro-
duced in a Bayesian manner, are not de-
tectable due to a too low redundancy. An
example would be a spatial resection with
three points in general position.

(c) nonlocatable errors. Here a test may be able
to show discrepancies between the data and
the model, but no identification of the error
source is possible. An example would be a
spatial resection with four points in general
position.

We concentrate on errors which can be modelled
as errors in the expectation of the observations (mean

shift model).

3.3 Issues in Error Handling

There are at least two basic questions automatic
procedures need to be able to answer:

1. How sensitive are the results?

The results may be uncertain due to the large
number of errors mentioned above. Evaluating
real cases has to cope with the problem, that sev-
eral such errors occur simultaneously. Instabili-
ties may be hidden within a system of high total
redundancy. Then we may discuss

e determinability of parameters

e controllability of errors and the effect of non-
detectable errors

e separability of error sources.

We will formalize this classification in more detail
and discuss the first two items explicitely.

2. How small is too small?

Most algorithms are controlled by thresholds or
tolerances to be specified by the developper or
the user.

When referring to observations or parameters
thresholding may be interpreted as hypothesis
testing, which allows to derive the thresholds
by specifying a significance level and using error
propagation. We will not pursue this topic.

When evaluating the design the formalization be-
comes less obvious, e. g. when having a small ba-
sis in relative orientation (2D — 2D), small angles
in spatial resection (3D - 2D) or small distances
between the point in absolute orientation (3D —
3D). In all cases the configuration is close to sin-
gularity. But then the question arises: how to
evaluate small deviations from a critical surface?
We will show that a generic and formal answer to
this question can be given which is based on the
local geometry of the design.

The final question is "How good is the overall per-
formance?” which requires empirical tests for compar-
ison with real data. It is however not only necessary
to look at the differences but to have a rigorous statis-
tical test which checks whether the procedure exploits
the information contained in the data. Moreover it
should give a clear indication whether the internal per-
formance measures can be used as prediction for the
external performance.

The next section will collect the necessary tools
needed for internal and external evaluation of estima-
tion procedures.

4 Tools

4.1 Quality Insurance

Treating image understanding tasks as estimation
problems allows us to fully exploit the rich arsenal of
tools from estimation theory. Regarding the specific
problem of data and model errors we specifically need
to use the techniques available from robust statistics
and regression diagnostics following two different aims
(HUBER [1991]):

e The purpose of robusiness is to have safeguards
against deviations from the assumptions.

e The purpose of diagnostics is to find and identify
deviations from the assumptions.

4.1.1 Robustness

There are two levels of robustness, depending on
whether the errors are small or large. Data or model
deviations are small in case linear approximations are
sufficient. This leads to a rule of thumb that small
deviations are deviations less than about 30 % of the
values, including all functions of the observations. It
e. g. corresponds to a requirement angular errors to
be less than approx. 20°.

1. Robustness with respect to small deviations.

The socalled influence curve (HAMPEL et al.
[1986]), which measures the effect of errors onto
the result, may be used to measure the quality
of robust procedures in this case. Maximum-
likelihood (ML) type, or M-estimators are the cor-
responding tool to deal with small deviations.

2. Robustness with respect to large deviations.

The break down point (ROUSSEEUW/LEROY
[1987]) measuring the maximum allowable per-
centage of errors still guaranteeing the estimateor
to yield results with limited bias, may be used to
evaluate the quality of procedures in this case.
Estimates with a high break down point, up to
50 %, such as least median squares, are the cor-
responding tool to handle large deviations.

Observe, that the effect of random errors onto the
result is not covered by the term robustness. These
effects usually are measured by the precision of the



estimates. The reason for this distinction is that ran-
dom errors are part of the original model thus do not
represent deviations from the model, and are taken
into account by all basic estimators, like least squares
or ML-estimators.

4.1.2 Diagnostics

As already indicated above, there are three levels of
diagnostics which all refer to small model errors:

1. Determinability of parameters or singularities in
the estimation process all measure the instability
of the design with respect to random perturba-
tions.

Standard deviations or in general covariance ma-
trices are the diagnostic tool to detect such a situ-
ation. Due to the small size of the random errors a
linear substitute model, derived by linearization,
may be used to evaluate such instabilities.

We will discuss this in detail in section 3.2.

2. Controllability of observations and detectability
of model errors specify the applicability of hy-
pothesis tests.

The diagnostic tool are minimum bounds of the
size of observational or model errors which can be
detected by a test with a certain given probability.
The sensitivity of the result is measured by the
effect of nondetectable errors onto the result.

Both tools may be used for planning as they do
not depend on the actual measurements.

The actual influence of the observations of model
parameters measured in a leave-one-out fashion
may be decisive for the acceptance of an estimate.

We will discuss these tools in detail in section 3.3.

3. The locatability of observational errors of the sep-
arability of model errors specify the ability to cor-
rectly classify or identify the error causes.

This can be described in terms of a confusion ma-
trix, like in statistical pattern recognition, the dif-
ference being the here the entries of the confusion
matrix depend on the expected size of the errors
and on the design or configuration.

The diagnostic tool therefore are lower bounds
for observational errors or model errors which are
identifiable or separable with a certain probabil-
ity.

In section 4.3 we will formally relate separability
to controllability especially with repect to sets of
observational model errors, but not discuss the
notion in detail.

4.2 Instabilities of Estimates or "How
Small is too Small?”

Instabilities of parameters occur in case the config-
uration produces some critical manifold (surface) the
solution belongs to. One usually distinguishes:

1. Singularities of the first kind. Here a complete
manifold of the parameters is consistent with the
observations.

2. Singularities of the second kind. Here small de-
viations in the observations result in large devia-
tions in the parameters.

An example for a singualarity of the first kind
is the critical cylinder in spatial resection. It
may be formulated as a rule: IF the projection
center O € cylinder(Py, Po, Ps) THEN O is not
determinable.

This rule is the result of an algebraic analysis and
due to its theoretical character generally valid in the
context of spatial resection and precise.

Such algebraic results, however, have some disad-
vanteges:

e The statements do not contain any information
how to evaluate deviations from the ideal config-
uration.

e The statements do not give any hint to generalize
to other situations. Other problems, e. g. relative
orientation require a separate analysis.

e The statements do not give any means to evaluate
the orientation even of one image within a set of
several images to be oriented simultaneously. It
may very well be, that in a multi-image setup
with a large redundancy the orientation of one
of the images can not be determined due to the
presence of the above situation.

Such hidden instabilities reveil the limitation of purely
algebraic approaches which can only be applied to very
restricted situations and cannot be generalized.

Thus algebraic techniques cannot be easily trans-
ferred into automatic procedures evaluating the sta-
bility of an estimate. The solution to this dilemma
is based on the observation, that the instabilities are
local properties in parameter space and can be fully
analysed using the covariance matrix of the parame-
ters. This leads to a shift of the problem. Instead of
a deterministic analysis we now are confronted with
the problem of evaluating the quality of a covariance
matrix. The shift of the problem and it’s solution goes
back to (BAARDA [1973]).

The evaluation method consists of two steps:

1. Specification

Specifying the user requirements in terms of a so-
called criterion matriz, say H, which gives an
upper bound on the desired covariance matrix,
corresponding to the desired lowest precision.

2. Comparison

Checking whether the achieved covariance ma-
trix,

G=X;,=(X"2Xx)"! (5)

1s better than H.

We will discuss this comparison first.



Figure 1: shows the relation G < H between two 2 x 2
covariance matrices G and H, represented by isolines
of constant probability density of the corresponding
normal distribution.

4.2.1 Comparing Covariance Matrices

The comparison of covariance matrices is interpreted
as the requirement the standard deviation of an ar-
bitrary function f to be better when calculated with
covariance matrix G than with H

G<H ~ f<0'f,W1thf_eTB,foralle

(6)
= Vel Ge this

Using error propagation, e.
leads to (cf. Fig. 1)

e’'Ge < eTHe, for alle (M)
or
e’ Ge
A= ————-<1 8
eTHe — (8)

which requires the determination of the maximum
eigenvalue of

Ge = \He. (9)

The squareroot v/Apqe indicates the maximum ra-
tio of the actual and the required standard deviation.
This evaluation may be simplified using

K = H'’GH™'? (10)
e’Ke
A= <1 (11)

which is equivalent to

Amax (K) < L. (12)

Equation (10) is favorable in case H easily can be
diagonalized (cf. the example below).

The maximum eigenvalue of K in (10) may be re-
placed by a less tight norm in order to avoid the rig-

orous determination of the maximum eigenvalue, e. g.
the trace:

Ao (K) < trK < 1. (13)

4.2.2 Specification of a Criterion Matrix

The specification of a criterion matrix can be based on
the covariance matrix ¥ ;; derived from an ideal con-

figuration. This has the advantage that the user can
easily interprete the result. In case an ideal configura-
tion cannot be given the criterion matrix H = SRS
may be set up by specifying the standard deviations
o;, collected in a matrix § = Diag(o;) and correla-
tions p;;, collected in a matrix R = Pij» derived from
some theoretical considerations, e. g. interpreting the
sequence of projection centres in a navigation prob-
lem as stochastic process, where the correlations p;;
depend only on the time or space difference between
points P; and Pj.

The method is able to capture various deficiencies
in the design of the configuration of an orientation pro-
cedure, without having to discriminate between differ-
ent types of instabilities (cf. section 5. Such situations
also may arise in more complex problems where an al-
gebraic analysis is not possible whereas this method is
able to find the instabilities.

When using this method for designing a configura-
tion the eigenvector belonging to the largest eigenvalue
gives insight into the most unprecise function of the
parameters, which may be used to look for specific
stabilization means.

4.3 Model Errors or ”How Sensitive is the
Result?”

The stability of an estimation, specifically an orien-
tation, evaluated by the covariance matrix only takes
random perturbations into account. The result, how-
ever, may be wrong due to gross errors, e. g. caused
by the matching procedure. As well, an oversimpli-
fied model may lead to precise but incorrect results.
Both error sources, blunders and systematic errors,
only can be detected in the case of redundant obser-
vations. This is a necessary but - as we will see - not a
sufficient condition. Redundancy allows us to perform
tests on the validity of the assumed model without ref-
erence to additional data used during the estimation.
Such tests may lead to the detection or even identi-
fication of the error source. Of course, the outcome
of these tests may be false. Redundancy, however,
increases the stability of the solution and the correct-
ness of the outcome of statistical tests. The theory for
performing such a test is described in the literature
(cf. BAARDA [1967]/[1968], Cook/WEISBERG [1982],
FORSTNER [1987]). The structure of that theory, it’s
use in estimation problems and examples from orien-
tation procedures will be given.

4.3.1 Detectability and Separability of Errors

We first want to discuss the type of evaluation which
can be performed depending on the redundancy r of
a system.

1.»=0 In the case of no redundancy, one can
only evaluate the sensitivity of the result with re-
spect to random errors as shown in the last sec-
tion. No check of the observation is possible what-



soever, They may remain incorrect without any
indication.

2.r = 1 In the case of redundancy » = 1, a
check on the validity of the model is possible. The
existence of blunders may be indicated, but they
are not locatable, as a ”leave-one-out test” always
leads to a valid solution.

3.r =2 A redundancy of r = 2 is necessary
in order to be able to locate simple blunders. A
leave-one-out test generally will be able to find
the unique consistent set of observations. Double
errors are not locatable, however their existence
is usually indicated.

4. r>2  For alarger redundancy, r — 1 errors are
locatable, whereas r errors are only detectable.

The maximum number of detectable errors is n/2,
i. e. 50 % of the data, as more than n/2 observa-
tions may mimic a good result. Thus, 50 % is the
upper limit for the so-called breakdown point of an es-
timator. The breakdown point of an estimator is the
minimum percentage of others which may cause the
estimator to give wrong results, i. e. may lead to a
bias of any size. The normal mean has the break-
down point 0, the median 50 %, an indication of it’s
higher robustness. Practical procedures may be better
as they may use specific knowledge about the struc-
ture of the problem (cf. the straight line detection
procedure by (RoTH/LEVINE [1990]).

In case of a small percentage (< 1%) of not too
large (<30%) gross errors, the detection and location
may be based on the residuals

vo=g(B)—y D(y) =0iQ =P~ (14)
Using the maximum likelihood estimate
B=(X"PX)"'X"Py-g(B"”)  (15)

we can express changes Awv of the residuals in terms
of changes, thus errors Ay of the observations

Av = —RAy (16)
with the projection matrix
R=I-U (17)
with the socalled hat-matrix (cf. HUBER [1991])
U=XX"PxX)'X"P (18)

(16) is graphically shown in Fig. 2.

This matrix may be used to analyse the ability of
the estimation system to apply selfdiagnosis with re-
spect to errors in the observations, as only effects that
can be seen in the residuals are detectable.

We distinguish two levels of evaluation

1. detectability or checkability; and,

2. separability or locatability.

Figure 2: shows the four cases for analysing the pro-
jection matrix R with respect to sensitivity (diagonal
matrices) and separability (off-diagonal matrices) for

single or groups of observations.

riiD D Tij

i

Both evaluation measures may refer to single or
groups of observations. Thus we have 4 cases.

1. Detectability or checkability rely on the diagonal
elements or diagonal submatrices of R.

a) Single observational errors can only be de-
tected if

7 > 0. (19)

The diagonal elements 7;; sum up to the to-
tal redundancy r, i.e. Y 7y = r. This in-
dicates how the redundancy is distributed
over the observations. The corresponding
test statistics for detecting single errors for
given og and uncorrelated observations is

=2 P UN@©,1)  (20)

ao T

b) Groups of n; observation can only be de-
tected if the corresponding n; X n; submatrix

| Rii[|>0 (21)

of R is nonsingular. Otherwise a spe-
cial combination of observational errors may
have no influence on to the residuals. The
corresponding test statistic is

1 TR;iQ,v;
7= L Ui BEQuvi e o)

ao ng

which reduces to (20). The observations may
be correlated within the group, but must be
uncorrelated to the others. \/F,,, denotes
the distribution of the square root of a ran-
dom variable being F),,,-distributed.



2. Separability or locatability in addition to the di-
agonal elements of R rely on the off diagonals.

a) The separability of two single gross errors

~ evaluates the likelihood to correctly locate
an error, 1. e. to make a correct decision
when testing both. The decisive measure is
the correlation coefficient of the test statis-
tics (20) which is

Tij
Tis * Tjj

Tables for probabilities of erroneous deci-
sions when locating errors are given by
FORSTNER [1983].

Correlation coefficients below 0.9 can be ac-
cepted since the probability of making a false
decision even for small errors remains below

15 % 1.

b) The separability of two groups of observa-
tions I; and I; depends on the maximum
value

pij = (23)

P = Amaz Mij (24)
of the n; x n; matrix
M;; = R; R} R;; R’ (25)

which for single observations reduces to (23).

No statistical interpretation is available due
to the complexity of the corresponding dis-
tribution.

Example: Detectability of Errors

Relative orientation with 6 corresponding points
yields a redundancy of » = 6 —5 = 1. If the images are
parallel to the bais and the points are situated sym-
metrically as shown in (3) then the diagonal elements
ri; are 1/12 for points ¢ = 1, 2, 5 and 6 and 1/3 for
points 3 and 4.

Obviously errors are hardly detectable if they occur
in point pairs 1, 2, 5 or 6. In all cases no location of
the false matches is possible as r = 1. O

Example: Separability of Errors

Spatial resection with 4 points symmetrically to the
principle point is known to yield highly correlated ori-
entation parameters. Depending on the viewing angle
@, the correlation between the rotation w (z-axis) and
the coordinate yg of the projection centre, and be-
tween the rotation ¢ (y-axis) and the coordinate zg is
(cf. Appendix)

1Precisely stated: If the larger of the two test statistics |z;|
and |z;| in (20) is chosen to indicate the erroneous observation,
if the critical value is 3.29, corresponding to a significant level
of 99.9 % and a single error can be detected with a probabil-
ity higher than 80 %, then the probability of making a wrong
decision between I; and [; is approximately 13 %.

17 27 1 3 2 3
37 47 377 477
57 67 577 677

Figure 3: Numbering of 6 points in a stereo pair.

1
P p——— (26)
1+ sin? %

For a CCD-camera with a focal length of f = 50
mm and sensor size of 5 mm, /2 = 1/g20 thus | p |=
0.999997. For an aerial camera RMK 15/23 with a
focal length of 15 em and image size of 23 cm, «/2 =
2/3, thus | p |= 0.914.

Thus testing the orientation parameters w, ¢, zg
and yo may easily lead to incorrect decisions for CCD-
cameras when testing their significance, whereas errors
in these parameters are detectable. O

4.3.2 Sensitivity of the Estimates

In spite of testing for blunders, errors may remain un-
detected and influence the resulting estimate. The
sensitivity of the result is often the only information
one needs for evaluation. One may determine an up-
per limit for the influence of a group of observations
onto the result. R R

The influence A;f(3) onto a function f(3) of the
unknown parameters caused by leaving out a group y,
of observation is limited:

Azf(B)SAzfmax(B) (27)
with (cf. FORSTNER [1992])

Aifmar(é) = CFz M Of(B) \/n_z (28)
where n; is the size of the group, o) the standard
deviation of the function f(3) is derivable by error
propagation measuring the precision of the result, 7;
of the test statistics (22), measuring the quality of the
observation group and the geometry factor

pi = Amac{(Z0) = Too) B3, (29)

Trx

evaluating the mensuration design. The value p; ex-
plicitely measures the loss in precision, i. e. the nor-

malized increase Z'(ﬁlg — Y gp of variance of the result
when leaving out the i—th group l; of observations.
For a single observation it reduces to

1 — 7y

; = 30
Hi rir ( )

with the diagonal elements r;; of R (cf. (17)).



The value A;fimar(8) (28) measures the empirical
sensitivity of the estimate with respect to blunders
e. g. matching errors in groups I;; empirical, as it
depends on the actual observations via T;.

If T; is replaced by a constant &g, indicating the
minimum detectable (normalized) error, we obtain the
theoretical sensitivity

Aoi f(B)<Avi fnax (B) (31)
with
AOifma:c(;B) = 60 s g Uf(ﬁ) . \/n_z (32)
It may be used for planning purposes since it does
not depend on actual observations and can therefore
be determined in advance. &g is usually chosen to be
larger than the critical value k for 7;, e.g. 8o = 1.5k or
69 = 2k and can be linked to the required power of the
test (cf. BAARDA [1967]/[1968], FORSTNER [1987]).
Both sensitivity values contain the product of terms
representing different causes. This e. g. allows to sac-
rifice precision, thus increase standard deviation oy,
by paying more for leaving a larger redundancy, thus
lowering the geometric factor y; for all observations or
vice versa.

Observe that the analysis is based on values which
have a very precise geometric meaning. This allows
for an easy definition of thresholds, even if one is not
aquainted with the theory below. As well, a clear
comparison between different configurations is possi-
ble even for different types of tasks. Because the evalu-
ation refers to the final parameters, it also may be used
when fusing different type of observations. As model
knowledge may be formalized in a Bayesian manner,
the effect of prior information onto the result of an
orientation may also be analysed.

Summarizing the evaluation of the design using the
comparison of the covariance matrix of the parame-
ters with a criterion matrix and using the different
measures for the sensitivity has several distinct prop-
erties:

e it is a general concept

e it works for all types of critical surfaces and solves
the problem of critical areas

e it works with all problems of estimation
e it may detect hidden singularities

e it also works in the complex situation where ob-
servations of different types are mixed (points,
lines, circles, ...) or in the context of sensor fusion
where also physical measurements (force, acceler-
ation, ...) are involved

e it is related to a task, thus explicitely depends on
user requirements. This enables to argue back-
wards and optimize the design.

e it provides measures which are easily inter-
pretable.

4.4 Empirical Tests or "How good is the
Procedure?”

The final step in developing a procedure is to test its

performance using reference information. We there-

fore assume the procedure to provide estimates ﬁ (15)
for the parameters,

v Po

n—u

(33)

~2
0g =

for the unknown variance factor o2 and the covari-
ance matrix ¥ ;5 (5). We also assume that the result

is normally distributed, which, even in the case where
robust estimators have been used, is a reasonable as-
sumption due to the central limit theorem.

We now assume to have reference or ”true” values
B, for the parameters?. There may be two situations:
either they are derived by some mensuration of (usu-
ally superior) precision or they are simulated. This
yields:

1. B, B(B,) = B, D(B,) = g,
2. B, E(B,) =B, D(B,) = o.

the second case obviously being a special case of the
first one.
The result of the estimation procedure yields either

B, Ts5=01Qs (34)

or, with the estimated variance factor 2

B, 855 =060Qs5 (35)

The comparison of B with 3, usually is based on
the estimated differences

AB=p-8, (36)
by giving the r. m. s. difference

(37)

This measure obviously only is meaningful in case the
parameters [; are of the same type, e. g. coordinates
in object space during surface reconstruction. Other-
wise no averaging can be performed.

By referring to the individual variances we would
obtain the (partially) r. m. s. difference

(38)

2We assume here that values for all unknown parameters
are available, otherwise, the expressions have to be modified
slightly.



This dimensionless quantity should be close to 1, sug-

gesting it to be a reasonable test statistic for evalu-

ating the estimation. It, however, is an unsufficient

statistic, as it neglects the mutual correlations be-

tween the estimates, moreover it does not take the

uncertainty of the reference data into account.
Therefore we may use the statistic

1. .
22 LA AT 1
= uAﬁ SAﬁAﬁAB (39)
with the covariance matrix
EAﬁAﬁ:Sﬁﬁ-l_Sﬁtﬁt (40)

It can be shown that $? is a sufficient statistic for
o2 if the estimate 3 is unbiased. Thus, under these
conditions, we obtain the following test statistic

52

T = ~ Fur (41)

2 s
0q

which is Fisher distributed, as the parameters B and
the residuals v are independent (Zﬁv = o).

The tests statistic T; obviously may be used to de-
cide whether the internal estimate 62 for o2 can be
used for prediction of the external accuracy, captured
by §2.

The bias bg = E(3 — B3,) can be estimated empiri-
cally in case repeated experiments are available. Then
techniques from multivariate statistics may be used for
evaluation.

We have to distinguish two cases for applying these
statistics.

1. The requirements of the user usually refer to a
certain type of parameter, e. g. obJect coordi-
nates, which should show a homogeneous preci-
sion. This implicitely means, the covariance ma-
trix should be diagonal, with equal entries, rep-
resenting the required variance: H = O'ZI, which

could be checked with the tools from section 4.2.2.
With this assumption the r. m. s. difference from
(37) really gives a statistic for the average preci-
sion, in case the uncertainty of the reference data
can be ignored. In most practical cases X5 will

not be diagonal, which leads to deviations from
the ideal structure, resulting in errors in the stan-
dard deviations of functions of the estimates up
to a factor 3-5 in both directions, thus to relative
weight errors in the result of 81 to 625 (!). These
worst cases, however, can be avoided in case the
number of reference values is large enough ( >

100) and the variances 0?9 do not differ too much.

Therefore the report of the Aﬁz is a reasonable
first step towards proving the qualitity of a pro-
cedure.

2. The requirements of the developer, however, are
guided by model building. The model is termed

Figure 4: shows two sets of image points used for
image orientation by spatial resection. Sets of three
points may lead to results of different stability as
shown in the table for three sets of the left configu-
ration (a).
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good, if it captures all information provided by
the data, here I. This can be checked by a hy-
pothesis test using T3, in case Ty > Fy 14 the
hypothesis that the differences between experi-
ment and reference data are only caused by ran-
dom perturbations has to be rejected. This test
usually is much sharper than the one performed
by a user, as also small effects may influence T3,
whithout necessarily bothering the application.

No general hints can be given how to change the
model, as all model errors may lead to a rejection
of the hypothesis. Of course, model errors may
stay hidden as discussed in the previous section.

5 Examples

The following examples are taken from two projects
where vision algorithms are used to automate tasks
which up to now had to be performed by human op-
erators.

5.1 Analysing the Stability of the Solu-
tion

The first three examples are based on the pro-
gram AMOR (c. f. SCHICKLER [1992]), which contains
three different robust procedures, namely clustering,
RANSAC and ML-type estimation for automatically
determining the exterior orientation of a camera. The
procedure is based on the matching of 2D-line seg-
ments extracted in the image with straight 3D-line
segments describing the form of socalled control points,
mainly consisting of roofs of buildings. Sets of straight
line segments are grouped into ”points”, which the
analysis partly refers to. The aerial images used here
usually contain 5-10 such objects/points which are
more or less well-distributed over the field of view.

Five image points situated as in Fig. 4 are to be
used to estimate the 6 orientation parameters of the
image based on given 3D-coordinates with a spatial
resection (3D — 3D). Due to gross errors in the data a
RANSAC procedure (cf. BOLLES/FISCHLER [1981]) is
applied, randomly selecting 3 points and directly solv-
ing for the orientation parameters The quality of this



| configuration | Amaz
1 1/2/3 0.8
2 2/3/4 88.0
3 1/3/4 13.2

Table 2: shows the stability of sets of three points used
for spatial resection (cf. Fig. 2).

selection has to be evaluated automatically in order
to immediately exclude unstable configurations. The
above mentioned technique for evaluating the stability
of a configuration is applied.

The criterion matrix is derived from a least square
fit with 4 points symmetrically sitting in the four cor-
ners of the image (cf. Appendix). The resulting co-
variance matrix ¥ = Sﬁﬁ yields the criterion matrix

H=16% (42)

thus requiring the standard deviations of the orien-
tation parameters within the RANSAC-procedure to
be better than 4 times the standard deviation of the
ideal configuration. ¥ is sparse allowing to easily, i. e.

algebraically determine the matrix H 7 in (10) (cf.
Appendix).

For several triplets of points the ratio \/Anyaz 18
given.

The good triangle (1,2,3) obviously leads to suf-
ficiently precise orientation parameters. The second
triplet (2,3,4) consists of three nearly collinear points,
which obviously is an undesirable configuration. The
third triplet (1,3,4) causes the projection centre to ap-
prozimately lie on a critical cylinder, causing the diag-
nostic value \/Anmqr to be significantly larger than 1,
expressing the fact that some function of the orienta-
tion parameters in that configuration has a standard
deviation being appr. 13 times larger than required.
The small triplet (2,5,11) in Fig. 3-1b also leads to
a weak determination of the orientation parameters

with a value VA0 &~ 4.
5.2 Analysing the Sensitivity

This example shows the power of the sensitivity
analysis for evaluating the success of an automatic
procedure. The sensitivity analysis may be used to
evaluate the quality of the orientation with respect to

a) matching errors of individual line segments; and,

b) matching errors of complete sets of line segments,
representing one object.

The reason for this distinction is that both errors
may occur; the first one being very common, the sec-
ond one (whole sets of line segments) within the clus-
tering procedure performed for each object individu-
ally.

a) Matching of 2D image line segments to 3D object
line segments.

Table 3: shows the empirical and the theoretical sensi-
tivity of the result of an orientation with straight edge
segments.

Empirical | Theoretical
Edge # Aif/O'f Aoif/a'f
4 0.07 2.62
5 0.65 1.51
8 0.50 3.44
9 0.80 3.13
10 0.82 2.81
21 0.68 4.42

We have to deal with groups of 4 observations,
namely the 4 coordinates representing the start
and end point of the line segments. The 4 x 4
covariance matrix ¥, of this group also con-
tains the correlations between the coordinates,
which may be derived during the edge extrac-
tion process. We use a similar approach as DE-
RICHE /FAUGERAS [1990] and FORSTNER [1992]
for representing the uncertainty of the line seg-
ments.

A typical result, as given in Table 3, can be sum-
marized in two statements:

1. Empirical sensitivity: The maximum occurs
at edge #10. The result may change up to
0.82 its standard deviation if line segment
#10 would be left out, which is fully accept-
able.

2. Theoretical sensitivity: The maximum oc-
curs at edge #21. The result may change
up to 4.42 times its standard deviation if a
matching error remains undetected, which is
at the border of being acceptable.

Thus, the result appears to be acceptable with
respect to the redundancy in the estimations.

b) Match of a set of 2D image line segments to 3D
object line segments.

Let us assume the m sets of segments to be
matched, have k;, 7 = 1,-- -, m line segments each,
and we have to fear a matching error for a com-
plete set. Then the sensitivity analysis has to be
based on sets of 4 x m; coordinates for the m; line
segments.

Figures 5a and 5b show the position of the sets
within two aerial images (¢ = 15 c¢cm) to be ori-
ented.

In Fig. 5a, one of the five sets, namely #3 was not
matchable, leaving the spatial resection with 4 ob-
jects in the 3 other corners and in the middle of



Figure 5: shows two sets of image points used for im-
age orientation by spatial resection. The readius of
the circles indicate the theoretical sensitivity, i. e. the
amount the result might change if the point (set of
straight line segments) would be wrong without no-
tice. In Fig. a (left) the point #3 has been detected
to be wrong, thus only 4 points are left for spatial

resection
(Y
02 6

the image. The circles around these ”four points”
have a radius proportional to 8o; = Agifmaz/0f
and indicate how sensitive the orientation is with
respect to nondetectable errors within the clus-
tering procedure. Because of the geometry factor
i (29) is dominant, the circles indicate how the
precision deteriorates if one of the 4 sets is left
out:

set 4 the three others 1, 2 and 5 form a well-
shaped triangle, and thus guarantee good
precision.

set 2 the three others 1, 4 and 5 nearly sit on
a straight line leading to a highly unstable
solution (near to singularity of first type).

set 1 the three others, 2, 4 and 5, form a
well-shaped triangle. However, because the
plane going through the sets is nearly par-
allel to the image plane, the projection cen-
tre closely has near to the critical cylinder.
Leaving out

set 5 also leads to a nearly singular situation.

The situation in Fig. 5b shows a more irregu-
lar distribution with 8 sets. Since set 5 was not
matched, set 1 1s most influential in the orienta-
tion, but less than sets 1, 2 and 5 in the case of
Fig. 5a.

5.3 Evaluation of the Performance of an
Orientation Procedure
Table 4 summarizes the result of 48 image orienta-
tions.

The total number of correct and false decisions of
the selfdiagnosis is split into the cases where the im-
ages contained 6 or more points, 1. e. sets of straight

line segments and cases with 5 or less points. An orien-
tation was reported as correct if the empirical and the
theoretical sensitivity factors A;f/o; and Ag;f/oy
(cf. eq. (28) and (31)) the standard deviations of
the result were acceptable (Apqr < 1 cf. eq. (13)).

46 out of 48 orientations were correct and this was
reported by the selfdiagnosis. In one case the orienta-
tion was incorrect, which was detected by the analysis.
This appeared in an orientation with only 4 points,
thus only one redundant point. Therefore altogether
in 47 out of 48, i. e. in 98 % of all orientations the
system made a correct decision. In about half of the
cases (22 out of 46) the RANSAC procedure was able
to identify errors which occured during the cluster-
ing and correct the result of the clustering, which was
repeated with this a priori knowledge.

One orientation failed without being noticed by the
system, which corresponds to 2 % false positives. This
was an orientation with only 5 points.

The orientation of the 48 images was based on 362
clusterings of model and image line segments. 309,
thus 85 %, were correct. As the errors in clustering are
either completely wrong and therefore eliminated from
the further processing or are wrong by a small amount,
it is quite likely that 2 clusterings are incorrect by only
a small amount, which may not be detectable by the
RANSAC or the robust ML-type estimation, mimicing
a good orientation.

The result achieved in this test is a clear reason to
require at least 6 points, i. e. sets of straight edges,
for a reliable orientation in this application. As can
seen in the table, then all 39 orientations not only
could correctly be handled by the automatic system,
but actually lead to correct orientation parameters.

This example reveals the diagnostic tools to be ex-
tremely valuable for a final evaluation of an automatic
procedure containing robust estimation procedures as
parts.

5.4 Empirical Evaluation of a Surface Re-
construction Procedure

The last example is taken from the empirical in-
vestigation of the program MATCH-T reported by
KrzySTEK and WILD [1992]. The program deter-
mines the visible surface, represented as a finite ele-
ment grid as z = z(z, y), using a feature based match-
ing technique (cf. FORSTNER [1992]), which uses an
M-estimation for eliminating wrong correspondencies.
The regularization, based on the curvature of the sur-
face and a bilinear interpolation within the surface
patches, leads to a highly overconstraint estimation
problem, which is solved directly in a stripwise fash-
ion.

Table 5 summarizes the main characteristics of
three projects where empirical tests have been per-
formed. From the many interest points (being in the
range of a million) a small percentage has been se-
lected by the robust estimation procedure. Via the
interpolated surface they have been checked by in-
dependent photogrammetric and tacheometric (field)
measurements. The partial inversion of the normal
equation matrix yields internal, thus theoretical val-
ues G5 for the precision of the determined height i. e.



Table 4: shows the result of an extensive test of orienting aerial images

report of selfdiagnosis

correct wrong

46(39/7 0(0/0

correct id/ ) fal ( /2

reality (correct decision) (false positives)

1(0/1 1(0,1

o ay O]

(false positives) | (correct decisions)

z-values of the surface.

They are to be compared with the r. m. s. height
differences betwen the automatically measured heights
amd the heights at the reference positions. In case
the results showed significant bias, the differences were
bias corrected, which seemed adequate for that test.
Thus the form of the surface actually is evaluated.
The coincidence between theoretical and empirical ac-
curacy 1s obvious, much more, as the r. m. s. values
also contain the uncertainty of the reference measure-
ments.
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A

Algebraic expression for the nor-
mal equation of the spatial resection
with four parts in symmetric posi-

tion.

Let points P;(X;,Y;, Z;),i = 1,...,n be given and
observed in the image. The linearized observation
equations for the image coordinates (z',y’) depend-
ing on the 6 orientation parameters, namely the rota-
tion angles w, ¢,k and the position (zg, Yo, z0) of the
projection centre can be expressed as

! oA

de! = —%dmozo — %dmozo + _:Lcy dw  (43)
;13/2

+e(l+ C—2)d<z$ + y'dk (44)

¢ y/ y/2
dy = —deozo — Edyozo —c(1+ c—z)dw(45)

ol o

+x Y dw — 2'dr (46)
valid for each image point P'(2’,y'). ¢ is the camera

constant and H = z is the distance of the object point
p(z,y,2).

In case n = 4 image points lie in symmetric po-
sition (+d,+d) in the image (cf. Fig. 6) and the
z-coordinates of the points P;(z;, y;, 2;) in the coordi-
nate system of the camera are equal to H = z;, we

Figure 6: shows the normalized situation for the spa-
tial resection used as a reference for precision.
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can collect the coefficients of the 8 x 6 matrix as in
the table.

The algebraic expression for the normal equation
system assuming weights 1 is given by
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1. The normal equation matrix is sparse. It collapses
to two diagonal elements and two 2 x 2 matri-
ces. This allows algebraic inversion, which may
be used for a direct solution of the orientation in
real time applications.

2. The correlation between zg and d¢ (y-rotation)

Lo 0 o0 o o
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and yg and dw (z-rotation) are correlated by

P = —prep = B (49)
’ ’ V/Nag - Nyy
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2
as d/e = sina/2 (cf. Fig. 6).

. Taking the square root N'/2 of N is trivial for
the diagonal elements for dzg and dx and requires

to take the square root T2 of two 2 x 2 matri-
ces T which easily can be determined using the

eigenvalue decomposition T = DAD? yielding
TP = DA?D” (52)

for p = 1/2 or, as needed in (10) for p = —1/2
(DT =D 'and A = Diag(A1, A2)).



