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e IMAGE MATCHING

16.1 Introduction

16.1.1 Image Matching and Object Reconstruction

Many computer vision tasks require the analysis of two or more images. Time-
varying sequences for recognizing parts on a conveyor belt based on their three-
dimensional shape or for the visual inspection of the geometry of manufactured
parts; for the medical diagnosis of beating hearts; for monitoring land use; for de-
riving topographic maps from satellite or aerial imagery; can only be accomplished
if, at least, pairs of related images are available. Other examples include the anal-
ysis of slices of computer tomography images. In principle, the inherent goal of
these tasks is object reconstruction, that is, the determination of an object’s pose
or shape.

The situation we predominantly want to discuss here is symbolically sketched
in Fig. 16.1(a). A concrete example is given in Fig. 16.1(b). The object is mapped
into the images /' and /2, and possibly further images /¥, via the transformations 77,
and T3, and possibly additional transformations 7. These transformations describe
all aspects of the imaging process, namely, illumination, reflectance, sensing, and
the like. They essentially depend on the geometry of the object (form, pose), of the
illumination sources (point, line, or area source), of the sensing devices (interior
orientation), and so on.

The mapping can be summarized as

1" =T3(P6,Pr\ PP DA, -.)

This chapter was written hy Wolfgang Forstner.
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Figure 16.1 General setup of object reconstruction and image matching. (a) The
object is mapped to /' and 12 via the transformations Té and sz,, If enough images
I¥ are available, the reconstruction of the imaging process is possible in principle.
If the reflectance properties of the surface O can be derived from one image, the
compound transformation 7} = 7'} - (T3)~" contains only geometric parameters
that may be derived by using image-matching techniques. (b) The setup for two
perspective images (from Wrobel, 1987). The reconstruction of the surface is
possible either by a direct solution of the parameters describing the surface’s
geometry and reflectances or by forward intersection after having established
correspondences between homologue image features and interpolation.

where pG,Pr,Pp,P4, ... represent generally unknown parameters specifying the
geometry and the reflectance properties of the object, the pose of the camera
k, and the atmospheric response. Nearly all object reconstruction tasks, such as
those mentioned above, can be modeled this way, possibly after including dynamic
models for describing the change of the object over time. If enough images are taken,
one in principle can recover the parameters from the observed intensities. Otherwise
further regularization has to be applied by putting additional constraints onto the
parameters. For analyzing perspective images, the most general case that has been
realized assumes that the atmospheric parameters are known, the orientation param-
eters are restricted to six per image, and the reflectance and surface functions are
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described in a finite-element fashion (Helava, 1988; Ebner et al., 1987; Wrobel,
1987).

The ‘general model assumes that the relation between object points or features
and image points or features is established. This correspondence between object and
image can be found automatically if constraints hidden in the transformation can be
made explicit— for example, if the object’s geometry is restricted to a polyhedron
and if the surface reflectance obeys some regularities. In many cases these constraints
and regularities are tight enough to enable one to find homologous features in the
images— that is, to establish correspondences between image features— without ex-
plicitly referring to the object’s properties. In the extreme case, only two images
are sufficient to recover the object’s form. It is this special case of image matching
that we want to discuss in this chapter.

Formally, we want to assume that the transformations T* are one to one, except
perhaps up to a few parameters. Thus we assume that we can derive the reflectance
parameters pp from one image, given all other parameters. This implicitly excludes
transparent surfaces or occlusions. The image I° can be predicted from I' by using
the compound transformation

T, =Ty T =Ty (T3) "(Pa,PrsPP1sPP2sPas )

The geometric part now contains the inverse perspective of image /7, thus including
the surface undulations, and also the perspective of image 7'. Only part of the pose
parameters, pp, and pp,, can be derived, namely, those that do not depend on the
external coordinate system of the object. The radiometric part is eliminated or at
least restricted to a few parameters py if the reflectance does not depend strongly
on the shape or the pose of the object, as in, for example, diffuse reflectance. In
this case the difference between /' and /% is governed by the form of the object.

Under these restrictions the task of image analysis in all these applications is to
establish correspondence between the images or to bring the images into registration.
For perspective images the techniques of analytic photogrammetry (see Chapter 14)
may be used to determine pose parameters or three-dimensional coordinates of
object points.

16.1.2 The Principle of Image Matching

Image matching starts from two digital or digitized images or image patches /’ and
I". Their size may vary from 5 x 5 pixels for tracking points in image sequences
to 10,000 x 10,000 pixels for registering satellite images. Let the points P’ and
P" of images 1" and I" have coordinates (r’,c’) and (r”,c") and intensities g’ and
g", respectively. Assume that if (r',¢’) and (r”,c”) are corresponding points, their
coordinates can be related by

(r',e")y =Tg(r",¢"; po) (16.1)

where T is a specified geometric spatial-mapping function reflecting the knowledge
about the geometric relation between the images, and p is a set or a vector of
unknown parameters.
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The intensities on one image can be related to those on the other by

g =T,g";pn (16.2)

where the intensity-mapping function 7'; contains the knowledge about the intensity
relation between the images, again with the vector p, being unknown. This leads
to the complete model of image matching

g'(r,c)y =T {g"[Ts(r",c";pc)); 1} (16.3)

The mapping functions T’ and T'; may be deterministic, stochastic, and/or piecewise
continuous.

For optical or range images, the correspondence of points P’ and P means that
P’ and P" relate to the same point on the object. An arbitrary pair of points (P’, P")
may have two states: P’ and P” are corresponding or they are not corresponding.
As shown in Fig. 16.2, the problem of image matching or correspondence now
consists of two parts:

1. Finding all corresponding points;
2. Determining the parameters ps and p; of the mapping functions 7 and 7';.

The solutions of parts 1 and 2 are not fully equivalent: The solution of part 1
usually does not imply a solution of part 2, as no explicit or implicit determination
of the intensity mapping is available. But the solution of part 1 can be derived from
the solution of part 2 if the spatial mapping is applied to all positions. In practice,
however, this is neither feasible nor necessary, as the mapping function for physical
reasons can generally be assumed at least piecewise smooth; thus only a limited
number of corresponding points are sufficient to reconstruct the mapping function.
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Figure 16.2 Principle of image matching and correspondence: (1) Find corre-
sponding points P’ and P”, and (2) determine mapping function 7.
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This implicitly assumes that the sampling theorem holds for the representation of
the geometric spatial mapping.

Most approaches use only a limited number of points and explicitly or implicitly
use mapping functions of the type represented in Egs. (16.1) and (16.2). The solution
is always based on the intensity functions g" and g” or on the attributes ¢’ and a”
of the points

P/ — Pr(rl’cf;a/) and P/I — P”(I‘”,C”;a'/)

derived from the intensity functions in a neighborhood around (r,¢’) and (r”,c").
The solution then is achieved in a three-step procedure:

1. Select appropriate image features in one or in both images, possibly by using
an interest operator to derive a list of interesting points or edges in one image
and another list for the second image. The selection of image features in only
one image may be done using the intensity function as the describing attribute.
The list of all (feasible) positions in the second image must then be searched
by an area- or intensity-based image-matching procedure.

2. Find corresponding feature or point pairs (P/, P), with P/ from the first list and
P/ from the second list, that fulfill the criteria of similarity and consistency.
Similarity is based on the attributes @/ and @/ of the features or points and thus
on the properties of the intensity function, whereas consistency is based on the
degree to which the spatial-mapping function is fullfilled. Both similarity and
consistency usually are used in an algorithm to find an optimal solution, which
obviously requires a relative weighting between similarity and consistency.

3. For stereo images, one may have to interpolate the parallaxes (r” —r',c” —¢’)
between the selected feature or point pairs in order to obtain a dense parallax
field. This interpolation may be based on the spatial-mapping function. How-
ever, quite different interpolation schemes may also be used, especially if 7' is
only given implicitly, for example, by the algorithm to optimize the consistency.

Practically all methods for image matching follow these steps but use signifi-
cantly different image features, similarity or consistency measures, algorithms, and
mapping functions. Some methods are based on the structure of the image content,
and thus on a relational description of the images (Price,1985; Boyer and Kak, 1986,
1988). These methods will be discussed in the following two chapters in detail.

16.1.3 Image Matching Procedures

Table 16.1, which is by no means exhaustive, summarizes the main properties of
some matching algorithms. The applications lie in image sequence analysis (TV
scenes, robotics, tracking, visual navigation) and in surface reconstruction from
stereo images. The approach of Stockman, Kopstein, and Bennett (1982) and Stock-
man (1987) has also been applied to object location in industrial environments.
Most interest operators either try to use no knowledge about the scene and se-
lect edges, blobs, or statistically defined points or they rely on special properties
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Table 16.1 Properties of some correspondence algorithms for image matching.
Features and
Attributes Mapping
of Interest Similarity Function and
Author Year  Operator Measure Interpolation Algorithm  Application
Hannah 1974 Variance Correlation NP /- Local search ST
1989 Moravec H
Barnard and 1980 Moravec Intensity NP/- DR ST
Thompson ¢ difference
Dreschler 1981 Corners Intensity NP /- DR IS
Blobs difference class
Interest value
Baker and 1982 Edges Sign NP/ DP ST
Binford Strength Linear
Grimson 1981 Edges Direction NP/ NN ST
1985 sign PW, smooth
Stockman 1982 Abstract Class Similarity Clustering  Registration
Kopstein, and edges transfor- object
Bennett mation location
Stockman 1987
Benard 1983 edges grad. + intens. NP DP ST
blobs diff., direction linear

Source: Adapted from Forstner, 1986a

Note: NP=non-parametric, PW =piecewise, DR=discrete relaxation, R=relaxation, IS=image se-
quence, DP=dynamic program, NN=nearest neighbor, H=hierarchical, ST=stereo, and ACF=auto-
correlation function.

of the scene, assuming the ability to find corners or junctions of edges. In all cases
the attributes of the features are derived from local neighborhoods of the points.

The applied similarity measures reflect the assumed intensity-mapping function.
In the most simple case of identity mapping g’ =T,(g") = g”, intensity differences
serve to measure similarity. If the product moment correlation coefficient is used to
measure similarity, 7', implicitly is assumed to be linear: g’ = ag” +b. If, however,
the intensities are assumed to vary regionwise, properties of edges may be used to
measure similarity.

A similar link between consistency measure or interpolation method and sur-
face type can be established in the case of stereo images in normal orientation
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s
Table 16.1 — Continued

Features and Mapping
Attributes of Similarity Function and
Author Year  Interest Operator ~ Measure Interpolation Algorithm  Application
Nagel and
Enkelmann 1983  Corners Intensity PW smooth R IS
difference
1986 Interest dto.
value
Forstner 1984 Roundness SNR Affine R ST
1986 and curvature of Interest value dto.
ACF corners Distinctness
Blobs
Zimmermann 1984 Blobs Class NP/~ NN IS
and Kories
Faugeras 1985/ Edges Orientation NP /- Hypothesis ST
Ayache and Faverjon 1987 sign Verify IS
technique
Ohta and Kanade 1985 Edges - Intensity NP DP ST
difference
Kanade 1987 Interest value Linear
Barnard 1986 Intensity Intensity PW/ Stochastic R ST
values constraint  dto. H
Wftkin, Terzopoulos,
and Kass 1987 — Correlation  PW smooth ~ H multigrid general

signal

(Fig. 16.3). Constant or piecewise constant T'; (a) corresponds to surfaces or surface
patches parallel to the image planes; linear 7; (b) corresponds to locally tilted
planar surface patches; and smooth or piecewise smooth 7'; or interpolation function
(c) corresponds to smooth or piecewise smooth surfaces. Observe that, owing to
occlusions (d), smooth surfaces may lead to discontinuities in the mapping.

The main difference between the methods is how an algorithmic solution for
the consistency of the match is achieved. Most methods are iterative. Relaxation
schemes seem to be the most flexible for a solution of the highly complex optimiza-
tion problem, as no parametric form of the mapping function is required, though a
parametric form may be used to advantage. In order to speed up convergence, hi-
erarchical or scale space techniques, possibly together with multigrid methods, are
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Figure 16.3 One-dimensional surface profile observed from two line cameras
by using orthogonal projection: (a) horizontal, (b) sloped, (c) smooth, and (d)
piecewise smooth with occlusions.

applied. These approaches guarantee a solution nearly in linear time. Dynamic pro-
gramming also needs no explicit geometric model but optimizes a cost function that
takes the similarity of the features into account. In image sequence analysis, consis-
tency can be achieved by selecting the nearest neighbor to a point, taking care that
the mapping is one to one. These methods can handle occlusions, specifically if the
mapping function is assumed to be piecewise smooth. An interesting noniterative
approach is the search for a cluster in parameter space of the transformation.
The scale space technique of Witkin, Terzopoulos, and Kass (1987) concep-
tually can handle more than two images, a feature they demonstrated with one-
dimensional signals. Table 16.1 does not include the recent approaches by Ebner
et al. (1987), Helava (1988), and Wrobel (1987), who independently proposed sur-
face reconstruction schemes with an explicit, finite element approach. They assume
piecewise smooth object surfaces. Conceptually they can handle multiple images
and then recover possibly locally varying parameters of a reflectance model.
Though quite a variety of approaches exist, certain trends can be observed:

e Most algorithms contain a finite element description that includes discon-
tinuities, which seems to be sufficient for matching two images. If more
than two images are available, image matching will loose its power, as truly
three-dimensional representations of the object to be recovered have to be
used.

e Both intensity-based and feature-based methods are in practical use and may
be combined. The result of the feature-based method usually provides the
basis for the intensity-based procedure.
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L
Table 16.2

Precision of image matching and edge detection (all figures in pixels).

Empirical Computer  Theoretical
Author Year Findings Simulations Values Applications/Remarks
Sharp, Christensen,
and Gilman 1965 1 - — Digital terrain models
Bernstein 1973 0.1 - — Registration
(cf. 1983)

Klaasman 1975 - - 0.05 Edge detection
Cafforio and Rocca 1976 0.1 — — TV image sequences
McGillem and Svedlov 1976 -— - 0.5/SNR  Registration
Hill 1980 - 0.02-0.1 - Binary images

Target location
Huang/Hsu 1981 — 0.02-0.1 - Parallax estimation
Forstner 1982 —_ — 0.01-0.1  Target location
Thurgood and Mikhail 1982 — 0.02-0.1 - Target location
Ackermann and Pertl 1983 0.1-0.2 — — Parallax estimation
Ho 1983 — — 0.02-0.2  Binary images

Target location
Griin/Baltsavias 1985 0.05-0.1 — — Parallax estimation
Vosselman 1986 0.02-0.03 — — Target location

Source: Adapted from Forstner, 1984.

e Hierarchical or scale space methods are commonly used to solve the problem
of initial approximate values, which nearly all methods require.

Unfortunately, most approaches lack self-diagnosis, and little information on
the achievable accuracy is provided by the matching technique itself. Self-diagnosis,
however, is indispensable for real applications in order to automatically detect fail-
ures of the system and to be certain that the system produces meaningful answers.

Table 16.2 summarizes reported results on the precision of intensity-based
matching algorithms and edge detectors in terms of standard deviations. The results
are given separately for empirical findings or estimations, for computer simulations,
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and for values derived theoretically. There is a tendency toward subpixel accuracy,
namely, 0.1 pixel or better. Such results were reported by Bernstein (1973) and Caf-
forio and Rocca (1976). They seem to be realistically obtainable under production
conditions and come close to the corresponding results from computer simulations
and theoretical studies.

This chapter shows how and under which conditions such high accuracies can
be achieved with both intensity-based and feature-based methods. Our development
of the algorithms will provide tools for self-diagnosis that can be used first to design
matching procedures properly and then to check the performance at run time. The
underlying concepts utilize classical least-squares estimation techniques and error
propagation, allowing one to derive the precision of the final results in terms of the
intensity signal, the noise, and the particular algorithm.

Section 16.2 discusses intensity-based matching of one-dimensional signals, Sec-
tion 16.3 generalizes the results to two-dimensions. The selection of distinct points
in Section 16.4 is discussed. Our approach is based on the expected matching ac-
curacy. It also provides an interpretation of the selected points being independent
of intensity-based matching, namely as selection of corners and centers of circular
symmetric features. Section 16.5 presents a feature-based matching algorithm us-
ing a maximum likelihood type estimation for the geometric transformation. Section
16.6 provides the necessary tools for deriving three-dimensional coordinates from
points matched in stereo pairs. Empirical results from an implemented system close
the chapter.

Intensity-Based Matching of One-Dimensional Signals

Intensity-based matching techniques directly refer to the model equation (16.3) and
aim at estimating and evaluating the parameters p; and p,. To give insight into the
principles, we first develop methods for matching one-dimensional signals. As even
this task is demanding when taking the statistical properties of the data into account,
we restrict this discussion to the case in which one of the signals is assumed to be
perfectly known. This situation is relevant to an object location procedure. The
model then can be written as

gx) =T {fITc(y;p)lip:} +n(x)

where g’,g”,r’, and r” have been replaced by g, f,x, and y, respectively, and the
observational noise component n(x) is stated explicitly. We first assume that f(y)
is given by sampled data and a fitting or interpolation scheme that allows one to
use a derived or estimated continuous f(y) from which the first derivatives can be
obtained analytically. This is just like the facet model (Chapter 8). Because of the
highly nonlinear character of the estimation problem, we always assume that ap-
proximate values p}” and p’ are known from some prior information or prediction
scheme. This initial approximation permits us to replace the nonlinear problem by
a linear substitute problem whose solution then gives rise to better approximations.
In this way we naturally arrive at an iterative solution to the nonlinear problem. We
therefore always assume that second-order effects are sufficiently small specifically
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(a) when interpolating /* or its derivative, (b) when neglecting the random nature
of f if it is derived from real data, or (c) when deriving variances for the estimated
parameters. A variety of controlled tests have shown that the approximations related
to these assumptions are fully acceptable in most applications.

16.2.1 The Principle of Differential Matching

The simplest kind of matching is that of two one-dimensional signals derived from
two views of the same scene. For now, one could think of these signals as being
image rows.

To simplify the explanation of the estimation procedure involved in the match-
ing, we assume that there are no intensity changes due to viewing direction and
that

Y(xi) = x; — u(x;)

where #(x;) is the unknown deformation at x; to produce the corresponding point
in the object. The nonlinear model can thus be expressed as

8&(xi) = flxi —a(x)] + n(x,), i=1,...,m

which is valid for all m observed values g(x;), i = 1,...,m, and where n(x;) is
the additive noise at position x;, which we assume to be independent and identically
distributed with mean zero and variance o2. The nonlinear model makes the assumed
observation process explicit. An example for the functions f and g is given in
Fig. 16.4. We now assume that we already have a function approximation u, of the

o)
4
>y
2(x)
t
u(x,)
v x o

Figure 16.4 Assumed observation process. The observed function g(x) is a noisy
version of the deformed function f(y). The deformation u(x) = x — y(x) refers
to the coordinates of the observed function g(x) and is positive in the example
point x;, as the point x; corresponding to y(x;) is to the right of y(x;).
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function u. For example, this approximation can be considered given because of
the highly constrained geometry inherent in many factory-floor vision tasks. With
approximate values #,(x;) given, we can write
u(x;) = uo(x;) + Au(x;)
where the ATJ(x,-) is the unknown correction for the unknown value #(x;). Thus the
nonlinear model can be written as
g = Jf(x; — )+ n;
:f(xi_lIg,'—@,')+n,-, i:l,...,m
with the abbreviations g; = g(x;), @, = a(x;), n; = n(x;) Uy = uyx;), and
Au; = Au(x;)).
Now we linearize f around the point x; — u#,; to obtain

g =f(xi —uy) — f'(x; — uOi)K\ui + %f”(xi — Ui — SZT‘:')(ED:’)2 +n;

for some ¢ € [0, 1], and where f'(y) =df/dy and f"(y) = d*f/dy*.
In the following we assume that /' does not vanish and that the second-order
term is negligible. With the differences
Agi = Ag(x;) =g(x;) — f(xi — o)
and the derivative

S =f'(xi —uo)

we then obtain the /inearized model in which Ag; and f/ are known and Z\u, is
unknown:

Agi = —f Du;+n;, i=1,...,m (16.4)
or explicitly
d — .
g(xi) = fIxi —uo(x)] = ——-% v ugy DUD) +0(x), P=1,...,m

We can easily determine the random variable Aw; assuming f/ # 0 :

o Agi
Au; = —— 16.5)
7! (
or explicitly
o g(xi) — flxi — uo(x)]
Au,' - - 70
dy ly=x; —up(xj)
Thus

U = g + Ay,

The estimated local deformation— that is, the shift &#(x;)— therefore simply uses the
difference of the functions at the corresponding position x; — uy(x;) and x; of f
and g and the slope f’ (Fig. 16.5). This procedure is also termed the differential
approach when estimating the optical flow (cf. Huang, 1981). As the variance ozAgi
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Figure 16.5 Principle of the applied differential approach to estimate the local de-
formation Au(x;). The functions g and f are assumed to be locally approximable
by a linear function. Then one is able to derive the shift Au; = —Ag;/f] from
the difference Ag; of f and g at the corresponding positions x; and x; — uo(x;),
which depends on the approximate deformation uo(x;) and on the known slope
[l =tana.

2
n

of Ag; is equal to the noise variance o
of the estimate i; = uy(x;) + Au;

we obtain for the standard deviation o,

0y = ;’f— (16.6)

The precision of the estimate obviously depends on the slope f/ of the given
function and is high at edges with high slope, which is to be expected. No estimate
for u is available if f/ = 0, and for small f; the weight, w;, = f/?/o?, of this
estimate is low.

As there is no redundancy in this estimate, it is unreliable in the sense that
errors in the approximate values uy(x;) and the model—especially wrong assump-
tions relative to the invariance of lighting— fully influence the estimate. Therefore
additional constraints are necessary to improve the result. Specifically, knowledge
about the structure of #(x) can allow the use of larger windows. In the following
section we discuss deformation functions u(x) with increasing complexity and add
parameters for brightness and contrast differences.

16.2.2 Estimating an Unknown Shift

We assume here that #(x) is only a uniform shift, #(x) = @, so that y(x;) = x; — u.
Further, we assume that u, is an initial approximation for u, so that we can write

@ = uy + Au for all x. Then by linearizing f around x; — u, for each i, there
results

SIxi — (ug + E\u)] = f(xi —uo) = f'(x; — uo)ﬁ

The linearized model can then be expressed as

g(x,) = flxi —ug) — f'(x; —u)Au+n;, i=1,....,m
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or in short -
='—fil Au+ni9 i:I’---)m (16-7)

holding for all m observed values g;. Minimizing Q = " n? by choosing the
appropriate value of Au yields

o

— 2
A Z(f,/Ag.+fAu)

= ZZ fiAg +2 (Zf,-lz) Au =

from which follows the estimate

SSAg Ylgex) - f(xi — up)lf(x)

Au=-E — = ~ = - (16.8)
LSt 2L x)P
i=1 i=1
To get information about the precision of the estimate &, we write the estimate
as "
o= u, + Za,»Ag, =u,+a Ag
i=l1
where
a; = —fll/z:filz
a,
a;
a =
am
Ag,
Ag,
Ag = .
Agm

Letting o2 = E[(# — E(i1)]?, we obtain
o =E{[uo+a" Ag —E(uy+a" Ag)|[uo+ Ag"a — E(uo + Ag"a)]}
=E{d" [Ag - E(Ag)][Ag" - E(Ag")]a}
=a'"E{[Ag ~ E(Ag)][Ag" — E(Ag)] }a
Since the covariance matrices ZIAK A and X)M are equal to Diag(a}) = o}, -1,

n

o, =a" %,,a =a"Diag(ol)a

_ (f: a,2> o?
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As

m
-
i

a; = T m

= OINID DIV It
i=1 i=1

we finally obtain for the variance of #

o2 = In_ (16.9)

If we define the mean squared gradient of f| by

0} = T (16.10)
m
we can represent the standard deviation for the estimated shift & by
o
= " 16.11
%= oy, 6.1

In an intuitive manner the standard direction depends on the number m of the
observed values, the noise variance o2, and the texture or edge busyness measured
by the mean squared gradient of the object.

We would obtain the same result for the estimate # and its variance by taking

the weighted average of the individual Au; from Eq. (16.5). For weights we use
f?

XS

j=1

which sum to 1 and are inversely proportional to the variances of the Au that are

given by Eq. (16.6). That is,

W,':

(16.12)

m/\

3 Auiw;
Au="
Wi

—

D
& A
5 sps

The estimate obviously is independent of the assumed variance o? of the noise.

As the common denominator ¥ f j'.z in the weights of Eq. (16.12) cancels in the
estimates equation (16.13), one can simply use w; = f/ as weights. Thus only those
parts where the slopes f/ are nonzero contribute to the estimate, which accords with
intuition. The selection of edges is often based on the relative maxima of f*; this
can be interpreted as a selection of places that locally contribute the most to the
estimate of the signal’s geometry. The interest operator presented in Section 16.4 is
a two-dimensional version of this idea.

(16.13)
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If m is large enough, the noise variance can be estimated from the residuals of
the least-squares fit:

| J— 2
6= Y gty — s~ i) (16.14)
i=1
One can show (Koch, 1987) that the precision of the estimated noise standard de-
viation ad,, is

a;

1
g T 6,, (16.15)
V2(m —my)
with the number m, = 1 of the unknown parameters, if the simple model of
Eq. (16.7) really holds. Thus at least 72 samples are necessary to yield an ac-
curacy of better than 10% in 6,.

. EXAMPLE 16.1

Let an edge model f(y;) and the observed edge g(x;) be given:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
fi |10 10 10 10 20 30 40 40 40 40 40 40 40 40
g |— — — 14 13 14 26 37 42 41 42 — — —
Agi|l— — — 4 -7 -16 -14 -3 2 1 2 — — —
fl10 0 0 5 10 10 5 0O o0 0 0O 0 0 O
n |— — — 4 3 -48 28 -18 2 1 2 — — —

The pixel spacing is Ax, the gradients f/ = (fi,, — fi-1)/2[gr/Ax], and the
approximate value u, = O[Ax]. Omitting the first and last three observations,
we obtain the estimate

_Zfi/gi . __5 4 4+10-(=7)+10-(—16) +5 - (—14)[gr?/Ax]

=

S 25 + 100 + 100 + 25[gr?/Ax?]
o —-280[gr?/Ax] _
= 350ert AT 1.118[Ax]

The theoretical precision of this estimate, when assuming o, = 1[gr], is

0p = —mr = er] ~ 0.06[Ax]
S S /250[gr?/Ax?)
and thus less than one-tenth of a pixel. Only observations 4, 5, 6, and 7 have
nonzero weights and hence contribute #. The residuals n(x;) are compara-
tively large. The estimated noise standard deviation according to Eq. (16.14)
is 0, ~ \/1 /(8 —1)-45.32[gr?] ~ 3.1[gr]. This is significantly larger than
1{gr]. There are obvious differences in brightness, contrast, and possibly also

in scale.
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16.2.3 Estimating Unknown Shift and Scale

We now augment our model by assuming that the transformation contains a param-
eter compensating for unknown scale:

Vi=§X;—X) -l =5X; — il

Note our use of a fixed reference point x,, which we will later choose for our
convenience. From here on we work in the reduced coordinates

Y,' =X; — Xo
The linear model reads as
gx)=f(sxi—ua)+nx;), i=1,....,m

Using approximate values s, and u, for the unknown parameters s and # and lin- -
earizing around soX; — U, yields

8(x;) = f(s$oX; — ug) — f'(SoX; — Uo) E‘

+ f'(50X; — o) X; As + n(x;)
This result leads to the linearized model
= ~f,-/5\u +f/5c',-§s +nx), i=1,....,m

again holding for all m observed values, and where As satisfies s = 5, + As.
Minimizing Q = %~ n?(x;) with respect to the two unknown parameters, we set
00/8Au =0 and 9Q/0As = 0 to yield
o0 I

B (Agi+f] Au—fx,As)
0Au aAu,X,:

:2Zfil( Agi + f] B\M — fi%i A\S) =0
i=1

and analogously
o " LR e
vl =23 fixi( Mg+ f] Au~ f/% As) =0
i=1

After some rearranging we can obtain the matrix equation
(’ Zfrlz ‘Zfi,2’_‘i Aj . _Zfil Ag;
”}_:fizfi Zfr Z'Yiz As ) Zf,"fi Ag;

where the sums are to be taken over all i, i = 1,...,m. The solution of this
2 x 2 normal equation system yields the least-squares estimates for the unknown
corrections Au to u and As to So:

e

ﬁ:u0+Au, .SA‘:SO—*‘&Y
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The variance of the noise can again be derived from the residuals

1 — —~
~2 ! - 2
O = E (Agi +f] Au— f/x; As)

In order to analyze the estimates in detail, we shift the coordinate system such that
the off-diagonal term in the normal equation becomes zero. The shift x, then has
to be chosen so that 3" /%%, =0 or

“ 12
BT g AO)
Zf 5

This is the weighted center of gravity of the object, where the weights are again the
squares of the gradient of f evaluated at the correspondmg positions So(x; —Xo) — .

With this choice of f xo, the estimates Awu and As are statistically independent.
The estimate here for Au is identical to the estimate without scale parameter. Thus
if one is free to choose a point in the image to be transformed into the object by
using y; = §(x; —X,) — i, one may use the weighted center of gravity and solve for
the shift only. Also, the precision of this shift is independent of the scale.

In general, a point x; in the image corresponds to the predicted point yi =
8(x; — xo) — @ in the object. The variance of the predicted point p; is given by

Xo = (16.16)

dy y=s0(xi—x0)~uq

ag =02 ( 1 (x: -xo) )

Yi n Z fi’2 Z f’ZYZ
Thus the variance of points, transformed from the image into the object, increases
with increasing distance from the weighted center of gravity. The weighted center
of gravity x, from Eq. (16.16) is the point that, when transformed into the object,
has the smallest variance.

We will generalize this result in the two-dimensional case and use it as a basis
for the derivation of an interest operator in Section 16.4.

(16.17)

. EXAMPLE 16.2

With the same data as in Example 16.1, we want to determine the shift
and a geometric scale s. We assume #, = 1, approximating the first estimate,
and 5o = 1. The 2 x 2 normal equation is

250(gr?/AX?]  —1625[gr?/Ax] (Au) _ [ 100[gr?/Ax)
—~1625[gr?/Ax] 10725[gr?] As )\ —685[gr}

which yields the estimates

@ =uo+Au=1-1002[Ax] = —0.002[Ax]

and
§ =80+ As =1-0216[1] = 0.784
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With the assumed noise standard deviation g, = 1{gr] and the inverse Q =
N,
(0.2640[sz/ng] 0.0400[Ax /gr?)

0.0400[Ax /gr’] 0.006156[1/gr?]

we obtain the theoretical standard deviations according to

04 = 0,0y = 1[gr] - /0.2640[Ax /gr?] ~ 0.52[Ax]

05 = 0,v/On = llgr] - \/0.006156[1/gr?] ~ 0.08
The shift is significantly less accurate than in Example 16.1 without the scale
parameter. The geometric scale can be determined to approximately 8%. The
reason for the increased standard deviation of i is that & now refers to the
origin of the coordinate system alone, which (cf. the table in Example 16.1)
lies to the left of the used interval.
The weighted center of gravity of f is

o TSP 54410.5410.645 Tlgr/Ax]
Yo 2501gr*/Ax7]
In a similar manner we obtain

Xop = 7.12[Ax]

=5.5[Ax]

If we now transform x,,, we get the predicted point yo, = 8 - xo, — 1 = 0.784 -
7.12[Ax] — (=0.002[Ax]) = 5.59[Ax], which is very close to the weighted
center of gravity 5.5[Ax] of f. Its precision is identical to the precision of the
shift in Example 16.1, namely, o, = 0.06[Ax], as it is independent on the
scale! This also can be proved by error propagation using yo, = (—1 Xp)(# 5)".
Thus

02 = a2(—1 x0)Q(—1 xo)"

Yog

16.2.4 Compensation for Brightness and Contrast

If object and image have different brightness and contrast, we have to compensate
for this difference. Without any geometric scale parameter, the nonlinear model
then reads

g(x) =af(x; —u)+b +n(x) (16.18)

where a represents change in contrast and b change in brightness.

If we start from an approximate value a, for @ and u, for u, we obtain the

linearized model in a manner similar to that just described. We let Ag; = Ag(x;) =
g(x;) —aof(x; — u,) and obtain

Ag,‘ = ‘*aofi/@+fiz(;+[3+nj, i:1,...,m
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(We do not need an approximate value for b, as the model equation 16.18 is linear
inb.)
The normal equation system for the least-squares solution is then given by

a(z)z:—fi’2 —ao Zfi’fi —dy Zf,', & —dy Zfi/Agi
a0y fifi Y S? Y fi Aa | = Y. filg

~ao ) f! 2 fi 21 b Y Agi
e
(16.19)
where df )
= 9JY)
fi - dy y=xj—uq

and f; = f(x;, — uy), and again the sums are to be taken over all i.
The estimates thus are

i =u,+Au, @ =a,+ Aa, and b

The precision of the estimates can be obtained by using the inverse Q = (g,,) of
Q' of the 3 x 3 normal system in Eq. (16.19), that is

0i = Ony\/Gn
04 = On\/qn
0p = On\/q3

The noise variance may be estimated from
1 “ -2

A2 A~ oYy

0= E: (g(x)) —af(x; — i) b] (16.20)

i=1

- EXAMPLE 16.3

With the same data as in Example 16.1 we want to determine the shift and
two radiometric parameters for brightness and contrast. We obtain the 3 x 3
normal equation system (16.19) (cited without dimensions):

250 750 -30 it 100
~750 7900 230 al=1-9
-30 230 8 b -1

The estimates are therefore
@ =1.796[Ax], a=0.883, b =6226[gr]

With the inverse normal matrix Q = N~'

0.007877 —0.000686  0.04909
—0.000686  0.000836 —0.02662
0.04909  —0.02662 1.074
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and the estimated noise standard deviation from Eq. (16.20)
o, = 1/20.48[gr2] /(8 — 3) ~2.0(gr]
we obtain the empirical standard deviations for the estimates

64 ~2.0v0.007877 = 0.18[Ax]

and similarly
6, ~0.059, and d; = 2.1[gr]

The fit between model and data obviously is significantly better than in the two
previous examples as the estimated noise. The standard deviation is reduced to
only 2[gr], which is due to the better modeling of the radiometry.

16.2.5 Estimating Smooth Deformations

If the transformation y = T'¢(x) = y(x) (cf. Section 16.2.1) cannot be approximated
by a linear function, or if one wants to use larger windows but the transformation
is still smooth, it may be represented by

Yi = y(x;) = x; —u(x;)

with some smoothness constraints on u(x). These could refer to the first, second,

or higher derivatives of y or any function D, = D(u',u”,...) of the derivatives of
u(x;). Thus we could require
E D, (u)] =0, VD] =0p, j=1,...k (16.21)

holding for all j from 1 through k. D, for example, stands for a linear combination
D, = a, uj[u(x)] +a; uju(x)] +---

of the derivatives of u evaluated at x;.
We now want to estimate the u; = u(x;) by using the observed values

g(x;) = f[xi — u(x))] +n(x;) (16.22)

and the a priori knowledge about the smoothness of #(x) in a Bayesian manner. We
can maximize the a posteriori probability

p(g | u) p(D, | u)
[ [ p(g | uw) p(D, | u)dgdD,

Assuming Gaussian distribution for both g; = g(x;) and D, (u) with

iy = ) (g =Y
plgi | 1) = prs) exp [ 5 <—7;,7—> }

1 1 /D, \°
p(Du,' ' u) = —— eXP A (‘_‘j‘)
2map, 2 \ o,

p(u |gvDu) =
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and the independence of g; and D, , we obtain the expression

Q(u) = —log p(u |g,D,)
_1 g — S —u)\" | 1 D, (u(x)\’
=3 z': (-——-.—__am ) +5 Z‘ (———o ) + const.

Dj

to be minimized with respect to u;.

Now we treat the case in which the smoothness is measured by the second
derivative u"(x;) of u(x). The variances of n; and of u”(x;) are assumed to be
constant; thus 02 = o2 and 02, = o? (c stands for curvature). Then we have to
minimize '

1 1 ¥
Qu) = 2[Q(u) —const.] = — Z le: — f(xi —u)) + = Z {u/ o)

(16.23)

The first term in Eq. (16.23) measures the similarity between the given and the

observed functions; the second term measures the smoothness. This is equivalent to

using, in addition to Eq. (16.21), the fictitious second-derivative curvature-related
observations

c(x;) =u"(x;) +v(x)), Jj=1,...,k (16.24)

with ¢(x;) = 0 and ¢? = 02, and to determine the u(x;) by a weighted LS technique
with the weights being the inverse of the variances. The random variations in the
second derivative are represented by v (x;). If we now represent the second derivative
u"(x,) by

u”(x;) = u(x;_1) —2u(x;) + u(x;,)

with approximate values u(x;) = u,;, and thus

u(xj') - u(Xj) + AUO(Xj)
= Ug;j_y —2“01' +u0j+| +(A“j-—1 —2Au,~ + Au,-H)

then we arrive at the linearized model

Agi=—flAu+nii=1,...,m (16.25)
—Coj = Auj_y =28u; + Dy v, j=2,...,m -1 (16.26)
with
Agi =g(x;) — flxi — uo(xy)]
. _df Q)

fi - —d—.y_ y=xj—uo(x)

Coj = Ugjy — 2Ug; + Ugj

v =v(x;)

Equation (16.25) represents the observation process and Eq. (16.26) represents the
smoothness constraint.



16.2 Intensity-Based Matching of One-Dimensional Signals 311

The model can be conveniently written in matrix notation

—c=A;, Au+v (16.27)

with the m x m matrix A, containing the derivatives f; on the main diagonal
S

A, = Diag (f}) = Vi

mxm

S

and the (m — 2) x m matrix A, consisting of m — 2 rows with (1 —2 1) around the
main diagonal

1 -2 1
1 -2 1
1 -2 1
A; =
(m=2)xm 1 _2 1
| -2 1
Minimizing
Qu)=w, -n"n+w, v (16.28)

with respect to u yields the normal equation system
w,ATA, +w. ATA,)) Au = w,ATAg —w.Alc) (16.29)

with the weights w, = 1/02 and w. = 1/¢2. The normal equation matrix N is a
pentadiagonal matrix

1 -2 1
-2 5 -4 1

, 1 -4 6 -4 1
w, - Diag (f;?) + w, - )

I -4 5 =2
1 -2 1
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and the right-hand sides are given by

wn - S} : Ag; - We - Coi
w, - le : AgZ - W. - (_ZCOI +C02)
w., - f3 - Ags - We - (co —2Ccn +Co3)
Wo o Sy o Dgma — We o (Coma —2Com2  +Com)
Wn - f;ln»»l : Agm~| - W : (COm—l _ZCOm)

w, - fp,n : Agm - We - Com

This system can be solved by factorization in O(m) time, leading to estimates
Au = (Au,) and thus to i, = uo, + Au, or i = uy+ Au.

Often the noise variances o2 and o? are not known. Without proof (Forstner,
1985) we give an estimate for both variances, which in an iterative manner could be
used to obtain optimal estimates for both the u; and the variances o2 and o2. The
estimation requires the diagonal terms g;; of the inverse Q = N ' of the normal
equation matrix. They can be calculated by using a standard routine from a library
for solving sparse equation systems.

Including the case of individual variances ¢, and afj, the estimates are given

by
G = rl (i‘: (g(x,-) —fxi - ﬁ(x,v)])z/ai,) oy,
and .
0 = ri (TZ; [a(x;-)) = 2a(x;) + ﬁ(xj+|)]2/03,> o,
with
Q=N
qii = (Q)ii

Uy = > S = 41N -4/,

i=1

rn =m—u,
rc‘_'(m_z)“rn

which simplify for 0, = ¢, and o.; = d.. These estimates assume that no outliers in
the observations g(x;) and no discontinuities are present. The case including outliers
and discontinuities may use robust estimation techniques, iteratively weighting down
the individual observations depending on the residuals #; and v i

The relative precision of the standard deviations ¢, and 6. is approximately
1/\/2r, and 1//2r, thus leading to reliable results only for sufficiently long pro-
files. The technique may easily be generalized to two-dimensional functions.
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16.2.6 Iterations and Resampling

As f(x) is highly nonlinear, the estimates in general are only improved approximate
values. Especially if the initial approximations are crude, the estimates have to be
further refined if one wants to exploit the precision inherent in the data. This leads
to an iterative estimation scheme.

We obtain the estimates after the vth iteration by, for example,

a” =a"" + Aa”
—(»)
4 = 4" + Au (16.30)

The constant shift b of the intensity values can be estimated directly, thus we take
b©@ =0 for all iterations.

As the positions y; = x; — u(x;) are noninteger values in general, we have to
interpolate. Specifically we need

SIxi — uy(x)))
and
LA
dy ly=xi—uoxp

For choosing a proper interpolation, we have to require that the optimization function

Q(u) be smooth or, equivalently, that the elements in the normal equations change

continuously with changing approximate values u,(x;). Otherwise small changes of

uo(x;) may lead to large changes in the estimates and hence to unstable results.
Therefore f(y) and f'(y) at least have to be interpolated linearly:

u
S —u) = (1 —u/Ax) f; +A—xf.;. (16.31)
o —uy = —u/Ax)f + L—;‘;f,.’_,, 0<u<Ax (1632

where Ax is the spacing of the x;, 0 < u < Ax, and, for example, with the first
derivative f’(x;) from a second-order facet model

, 1
fi= IAx
Here we use the abbreviations f; for f(x;) and f/ for f/(x;). Obviously f(x; — u)
and f'(x; — u) do not refer to the same smooth function f(x), as f'(x; — u) refers
to a second-order interpolation scheme of f(x). If we require that f(x; — u) and
Sf'(x; —u) refer to the same smooth function, we have to interpolate f(x; — ) with
a second-order function, for example,

fisr = fiz1) (16.33)

) 1 1
.f(xi+u):fi+fil'u+ifi”'u2! lu| < EAX

with f'(x;) as in Eq. (16.33) and

n 2
fi = Z}; [fisr =2fi + fii]
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As the slope at x;+Ax /2 is then 2(f;,, —f)/Ax, and thus twice the first differences,
one could instead use the smoothed function

= 1
Sxi+wy=fi+f u+ %f,.”-uz, lu| < EAX
with
1
fi= §(fi.—l +6fi +fi-1)

[
1! = gz in = fio)

" 1
Ji'= A—xg(fm =2fi+fio)
Both functions f(x; + ) and f(x; + u) pass through the points %( fin +f) and
%(f,-_‘ + /1) and have a common slope with the neighboring interpolation elements.

. EXAMPLE 16.4

a. With the same data as in Example 16.1, we now perform a second iteration
for the shift estimate only. The main data are summarized in the table:
i 4 5 6 7 8 9 10 11
y | 2.8 388 488 588 688 7.88 8.88 9.88
g 14 13 14 26 37 42 4] 42
f 10 10 18.81 28.80 38.80 40 40 40
Ag [4.00 3.00 -4.81 -2.80 -1.80 2.00 1.00 2.00
[’ 0 44 94 10 56 06 0 0
n |4.00 3.00 -1.93 0.07 1.08 2.00 1.00 2.00

Linear interpolation has been applied to both f and f’ (cf. Egs. 16.31
and 16.32); for example, f(6 — u") = f(6 — 1.118) = f(5 - 0.118) =
(1-0.118) - f5s +0.118 - f, = 0.882-20+0.118 - 10 = 18.81. The normal
equations are

(Zf;z) Au= > flai=2394 Au =68.725

leading to the correction Au® = 0.288[Ax] and to a better estimate u® =
u'"+Au® = 1.406[Ax] for the shift. Observe the second iteration leading
to a change (0.288) in the estimate that is significantly larger than the
internal precision (0.06, cf. Example 16.1) of the estimate.

b. In the case of the model of Example 16.3 with the additional radiomet-
ric parameters, a second iteration would yield the shift with its standard
deviation

u =161[Ax], o0; =0.15[Ax]
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and the estimated noise standard deviation
o, = 1.43|gr]

We will compare this result with the one obtained by cross-correlation in
Examples 16.5 and 16.6.

16.2.7 Matching of Two Observed Profiles

We have assumed that f(x) is known. Now we want to extend the matching proce-
dure to the case in which both profiles are corrupted by noise. We will show how
we can reduce the procedure to those methods developed so far.

We start with two noisy profiles

gi(x)) = f(x;) +ni(x)
8:(x) = f(yi) + ny(x))

and the geometric model
Yi=Xx; —u(x;)

We could have applied a symmetric model distributing u(x;) equally on both signals
(cf. Horn, 1987, sec. 13.9). This would have led to the same resuits. We again
assume that the noise components are independent and white with standard deviations
0., and o,,. The first profile g,(x;) is just the observed function f(x), and g,(x;)
is the observed and deformed function f(x). With approximate values uy(x;), thus
u(x;) = uo(x;) + Au(x;), and again neglecting higher-order terms, we can write

gilxi — uo(xi)] = flx; —ug(x)] +nilx; —uo(x;)]

and linearize

d
g:(x:) = flx; — uo(x;)] — _&,)

dy “Au(x;) + ny(x;)

Y=xi—uop(x;)

Using the abbreviations

Agi = g(xy) — gilx; — uo(x))]

y=xj—uq(x;)

and
;= nmy(x;) —mlx; —up(x)]
we obtain the linearized model
g Agi = —f] - Du(x)) +7;

in full correspondence to Eq. (16.4).
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To use this linearized model, we must take into account that the f/ have to be
estimated from the given data. This could be achieved by restoring g,(x) and g,(x),
yielding &,(x) and &,(x), which are actually estimates for f(x), and by taking the
average of the first derivatives g;(x) and g;(x) at the corresponding position. Thus,
for example,

. | 5
fil = E{g;[x, - uo(xi)] +g2(X,')}

The restoration of g, and g, can be based on any of the noise cleaning techniques
discussed in Chapter 7. The interpolation, however, again has to take into account the
requirements on the smoothness of the optimization function, as discussed earlier.
This noise-cleaning step for obtaining reliable estimates for the first derivatives is
necessary to achieve consistent results.

However, the determination of the function differences Ag; = g,(x;) — g[x; —
uy(x;)] must be based on the original data, as only then does the error model of
white noise hold. The interpolation, which may be needed to obtain g,[x; — uo(x;)],
introduces only negligible correlations (< 0.5) between neighboring Ag;’s. If the
degree of this smoothing is kept low, we can assume that 71(x;) = ny(x;) — n[x; —
uo(x,)] are still white but with variance 0% = o, + o, . For 0,, = 0,, we thus
obtain o2 = 202. For a constant-shift model #(x,) = i,

R )
o7 = ﬁz. g2x) — &1 (xi — )]

is now an estimate for the variance of the noise difference between the two profiles
and, in the case of 0,, = 0,,, can be used to obtain an estimate

i
V2

for the noise standard deviation and thus for the observational precision.

ag, =

16.2.8 Relations to Cross-Correlation Techniques

The earliest applications of intensity-based image matching in remote sensing used
cross-correlation techniques. The model assumed simply a shift between two cor-
responding image sections. To compensate for different brightness and contrast, a
linear transformation in the intensity values was assumed, though not always explic-
itly stated.

We want to discuss the relations between this classical technique and the dif-
ferential approach, as they give insight into the similarities and differences of both
methods. Though only one-dimensional images are treated, the result can be directly
transferred to more dimensions. The model reads as

g1(x:) = f(xi) +ni(x;)

&(x;) = f(xi —u) + ny(x;)
or

&2(x;) = g\(x; — u) +A(x;)
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with
A(x;) = ny(x;) — ny(x;)

The principle of estimating u is to search for the maximal correlation coefficient p,,

of g, and g, :

max Cov [gu(x, - u),gz(xi)] _ 015 (1) = o) — (16.34)
u \/V[gu(xf u)] Vg2 (x)] 0., (U)o,

with

1 [ n; 1 m m
Oprps () = }_:g.(xi —w)ga(x) — Z;gl(x,- - u);gz(x.ﬂ)}

[ 2
1 " 1 m
a:‘(u):m____] Lg%(xi"u)”;’; (Zgl(xi —'u)> :I
Li=1 i=1
[ 2
l m 1 m
azg - m—1 ;gi(x;) “m <;g2(x,)> } (16.35)

As the empirical mean and variances are taken into account, different brightness
and contrast are immediately compensated for. Thus cross-correlation corresponds
to least-squares matching, using the model of Section 16.2.4. Observe that the
cross-correlation term here is the product moment cross-correlation coefficient from
statistics, whereas the cross-correlation term as often used in electrical engineering
refers to the mean product of two signals and is not normalized with respect to the
mean and the variance.

The search for the estimate # in general leads to an integer position. The
rounding error is dominant in most applications; therefore an interpolation of the
correlation function is useful. Let the integer position of the maximum of p(u) be u,
and the two neighboring positions be # _ and u,, and let the corresponding values
of p(u) be pg,p_ and p,. Then using the quadratic interpolation of p(u) leads to
the following estimate u:

p'(uy) a0 —p) Py —p-

— ——u _————
* " 2p, —2p0 +p)

=u, - = =
o)) " 5m(p —2p0 +p)
(16.36)

where Ax is the spacing between the ;.

Thus subpixel accuracy is achievable. Not only was this initially claimed by
Bernstein (1973), but it was consistently proved empirically and theoretically by
many researchers. The correlation coefficient was used as an acceptance criterion
for the problem of setting a proper threshold to reject bad matches. Also, the
weakness of the correlation coefficient leads to the use of additional measures of
performance, such as the “drop™ or “‘slope” of the correlation function (Helava,
1976; Panton, 1978). This was used to prevent matches with a very flat correlation
function from passing.
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tEXAMPLE 16.5

With the data from Example 16.1, we want to estimate the shift by using
cross-correlation and to compare it with the results of the model, adding further
parameters for the differences in brightness and contrast. We therefore take the
same set of observed values g to g"'" and correlate them with windows of size
8 for f, thus setting g, = g and g, = f in Eq. (16.35). With the variances o=
o2, = 179.98[gr?] and o}(u) = o] (u), the covariances 02 4, (1) = 04, (u), and
the correlation coefficients p,,(u) in the table

U 02 (U) 0gg () pra()
3 183.9 160.5 0.8823
2 200.0 187.9 0.9901
1
0

183.9 1752 0.9628
135.7 128.2 0.8294
-1 554 64.1 0.6423
~2 12.5 20.9 0.4405

we obtain the optimal integer position u, = 2. The subpixel estimate is # =
2 -(.9628 —0.8823)/(0.8823 —2-0.9901 + 0.9628)/2 =2 —0.30 = 1.70[Ax]
(Eq. 16.36), which is close to the estimate 1.61[Ax] in the second iteration of
Example 16.4.

We now relate these measures to those developed in the context of the differential
approach. First let us assume that the two images are not shifted or that the optimal
shift has been applied to g,. Then assuming

&1(x) = f(x) +ny(x)

&(x) =a[f(x) +ny(x)] +b
where n; and n, are independent white noise with variance Op, = 0n, =0, and f is
stochastic with variance a} and independent from 7, and n,, we obtain the variances

2 _ 2 2
Og, —of+a,,

0, =a*(o} +0l)
and the covariance
2
Ogyg, =4 ° Oy
and therefore the correlation coefficient p,, (cf. Ballard and Brown, 1982)
2

g o
prp = 2182 _2_1._.2 (16.37)
0g,0,, oy +o,



16.2 Intensity-Based Matching of One-Dimensional Signals 319

or, with the signal-to-noise ratio,

SNR? = ‘-’%
NR?
P2 = —ST‘JSTQT:_T (16.38)
or
SNRZ = P12 (16.39)
1 —pp

Thus the maximum achievable correlation coefficient is limited by the signal-
to-noise ratio. On the other hand, we can derive the signal-to-noise ratio from the
empirical correlation coefficient. Moreover, if we know the variance a:l of the
observed signal, we can derive the noise variance

1 —pp
0r =0} (1 —pp) =0r—2
P12

(16.40)

As the correlation coefficient is identical to the cosine of the angle y between
the vectors g, and g,, we have three equivalent measures for evaluating the intensity
of two signals. Examples are:

SNR = 10 p =0.99 v =8°
SNR =34 p=vV2/2  y=45 (16.41)
SNR = 1 p =05 y = 60°

Values of p smaller than 0.5 thus correspond to a signal-to-noise ratio less than 1.
Reasonable critical values for p,, lie in the range between 0.5 and 0.7.

If we use Eqs. (16.37) and (16.39), we can rewrite the variance of the estimated
shift from Eq. (16.11):

, 1 1 o} 1 l—=p, o
R A (1642)
It now becomes obvious that the correlation coefficient gives only partial information
about the precision of a match: the number of points used—thus the window size
and the ratio ¢} /07, —is not used.

This ratio ¢7, /o7 relating the “‘edge busyness” 0}, to the variance of the sig-
nal can be shown to be proportional to the effective bandwidth of the signal, and,
owing to the moment theorem, equal to the (negative) curvature of the autocorrela-
tion function (ACF) of f(x) (Papoulis, 1965; Ryan, Gray, and Hunt, 1980). Thus
two profiles with the same length and the same variance may lead to significantly
different matching precisions (Fig. 16.6). The standard deviation o,(B) obtainable
with profile B is four times higher than the standard deviation o,(A4) with profile
Ao, (B)=4 0.(A).

Using the second derivative p”(u4) = (p, — 2py + p_)/Ax? of the empirical
correlation function p(u) (cf. Eq. 16.34), we obtain an expression for the variance
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g(x) 8(x)
b

A B

Figure 16.6 Two profiles of common contrast but different sharpness. If one
assumes a constant noise variance, matching with profile 4 leads to four times
bmaller/a standard deviation of the estimated shift than does matching with profile
B.

of estimated shift 1 Ax?
R X (16.43)
m 0o =Py +2p0 —p-

with the pixel spacing Ax. This may be used for evaluating the result of correlation
techniques and, of course, holds if the geometric model of a pure shift is approx-
imately valid and the position i has been estimated by some interpolation of the
cross-correlation function (cf. Eq. 16.36).

. EXAMPLE 16.6

The result of the correlation in Example 16.5 can now be evaluated. The
-standard deviation of the estimated shift according to Eq. (16.43) results in
o; =1/8-(1-0.9901)/0.9901/(—0.8823 + 2 -0.9901 — 0.9628) = 0.009251,
and thus o, = 0.096[Ax], which seems a bit too optimistic. The estimated
noise standard deviation, according to Eq. (16.40), o, = 1.41[gr], is very
close to the one (1.43[gr]) obtained in the second iteration of Example 16.4.
The difference probably results from the weak estimate of the curvature of the
cross-correlation function from only three points, which likely is biased toward
too high a curvature (Berman, 1989).

Intensity-Based Matching of Two-Dimensional Signals

The differential techniques for intensity-based matching can be directly transferred
to the case of two-dimensional functions f(r,c) and g(r,c).
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16.3.1 The Principle and the Relation to Optical Flow

In the most general case of matching an observed intensity function to a given one,
we start from the nonlinear model

g(ri,c) = f(pi,q) +n(ri,cp)y i=1,....m (16.44)

().~ ) (cs)
q), c/; v(r,c)/,

again assuming that the object is given at a grid, together with an appropriate
interpolation scheme, and that the noise is white with variance o7.

If we assume that approximate values u,(r;,c;) of the unknown deformation
[a(r,c), v(r,c)] are known, we obtain the linearized model

with

Agi=~fr; Dui = fo; - Bu, +n, (16.46)
with

Ag = g(ri,c) “f["f —up(ri,ci),¢; — Uo("iaci)]

S 0w

i Op  lp=ri—uotricog=ci—votricn
Y (?f(p g)

“i (?q P=ri —uq(ri €i)q=c; —vo(rici)

Au; =1(ri,c;) — up(ri,c;)
Av; =0(r;,c;) —vo(ri,c;)
n; = n(ri,c;)

Here we want to relate Eq. (16.46) to the optical flow equation used in motion
analysis.

If one treats f as a time-varying intensity field f(r,c,) with the velocity field
[u(r,c),v(r,c)] . the nonlinear model equation (16.44) can be written as

flr+ur,e)-dt, c tv(r,c)-dt, t + dt| = f(r,c,1)

with the the noise term omitted, thus referring to the expected value of g. If we now
linearize, for the sake of simplicity at u = v = 0, we obtain

af(r,c,t Of(rc n af(r,c,t)

fr,e,H+ g u(r,c)- d1+-»m-» w(r,c )dt+——~— dt = f(r,c,1)

Setting Vf = (f,, f.)" the spatial gradient of £, V = (u,v)" the velocity field, and
J = 0f [0t the temporal change of f, we obtain

VS VAf=0

the optical flow equation.
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The equation simply states that the intensity of corresponding points is time
invariant, and changes in f are due only to V. This relation approximately holds for
image sequences but neither at occlusions nor if the time spacing Af is large. While
occlusions cannot explicitly be handled with the model equation (16.44), changes
in illumination or reflectance may be taken into account by additional parameters.

Now Eq. (16.46) does not allow us to estimate Au(r;,c;) and Av(r;,v;) si-
multaneously, as only one observation—namely, Ag;,—is available. This so-called
aperture problem can be solved only by adding constraints on the deformation field
V(r,c) = {u(r,c), u(r,c)]. Several stages of constraints are of practical use here:

1. V(r,c) is constant. This is the classical assumption used also for cross-
correlation (Barnea and Silverman, 1972).

2. V(r,c) is a linear function in r,c. This would be a first-order approximation
of ¥, which for smooth deformations can be used for local estimates. The
first attempts to exceed a shift were made by Schalhoff and McVey (1979) and
Huang (1981) (cf. the review given by Forstner, 1984).

3. V(r,c) is smooth. This assumption allows one to model real situations, as in
satellite imagery, medical imagery, or reconstruction of smooth surfaces.

4. V(r,c) most generally is best modeled to be piecewise smooth. Then occlu-
sions may also be handled, though no explicit reference is made to the three-
dimensional structure in the model.

5. If image matching is used to evaluate stereo images; if the relative orientation
of the cameras, including their interior orientation, is known; and if the rows
of both images are parallel to the baseline, that is, the line through the two
projection centers, then u(r,c) = 0 for all r,c. Thus only v(r,c) is to be
estimated, which reduces the problem to profile matching, discussed in the
previous section. Now, however, the matching can be based on two-dimensional
windows, thereby stabilizing the estimates (cf. Section 16.6.3).

We want to treat only the first two cases—those with unknown contrast shift
and unknown linear transformation— but will include parameters for differences in
brightness or contrast. In addition, we discuss two special cases in order to motivate
the interest operator to select distinct points. The more general problem of estimating
a complete displacement field was treated in Chapter 15.

16.3.2 Estimating Constant-Shift Parameters

The simplest model for matching is
p=Xx-u, g=y—-v

This assumes solely a shift («,v) between the two windows of concern.
The linearized model then reads as

Dgi= -t B, Botm, i=l..m (164D
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with o (0.0)
_3f(p,9)

T = o e
_ofp,9)

S T

Agi =g(ri,c;) — f(ri —ug,¢; —vy)
up = u(r;,c;)

for all m pixels (r;,c;) in the window. In most cases the points (r;,c;) form a grid
with m = m,m, points, but Eq. (16.47) also can be used if the points do not form
a grid.

The normal equations are then given by

Ny =h (16.48)

with the 2 x 2 normal equation matrix N

22 Eﬂﬁ, NN
_ = = . 1 12
N = . y . p = (NZI Nzn) (16.49)

and the right-hand sides
if 7 Ag;
h=—|"" (16.50)
’Z%f o Agi

and y = (%\'y’), which can be resolved for j, for example, by using the weight
coefficient matrix of the unknown parameters j

1 N. -N
=N = 2 12
© NN, — N3, (—le Ny )

leading to the estimates ## = uy + Au and ¥ = v, + Av. We also obtain an estimate
for the unknown variance factor, identical here to the noise variance

2

Oy = m!_E ';[g(rhci) = f(ri —u,c; —ﬁ)]z
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This can then be used to obtain the covariance matrix 7‘4” of the unknown shift &

and v .,

,’i‘ 3, éfrifcj
Ly=0Q=d-| - (16.51)
anf(‘,’ Z' 3,

i=1

from which follow the standard deviations

. O = sz
N NIIN22 N%Z
and
a Nll
= :0 —_—
VOn \ NNz - N

The estimates are correlated with correlation coefficient
~Np

114Y¥22

Pas =

which could be used to further evaluate the estimates.
If we use estimates

o, = Z
afr —Zle -

and

3

L1
U;,/c = —”—t anf(’l -

for the local squared gradient, or

— 02 af'fc
VfVSft = Ir 5 (16.52)
Ofrefr Ope
we can rewrite Eq. (16.51) as
.2 2 -1
7:)75' = In . ( 9 af;fc) (16.53)
m Ofcfr Opc

Thus in addition to the estimates # and v, we obtain a measure for the (inter-
nal) precision of the estimates. This precision intuitively depends on the following
factors:

1. The noise variance o?. If we have good a priori knowledge about 02, we can
introduce it instead of the estimated value 62. As the model Eq. (16.47) will in
many cases be oversimplified, we will not generally use ¢2.
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2. The number m of used pixels. Thus the standard deviation decreases linearly
with the width of a square window. This holds only as long as new information
is collected when increasing the window, and thus only as long as the average
gradient in the window remains constant. Otherwise Eq. (16.51) demonstrates
no advantage in using larger windows, as the sums in brackets remain practically
constant.

3. The average squared gradient in the window (Vﬁ f T). This indicator of the
edge busyness is decisive for the precision of the match. We can show that it mea-
sures the curvature of the autocovariance (cross-correlation) function of f(r,c),
specifically the negative Hessian of the autocorrelation function of f(r,c), if
we assume f has zero mean and is thus a direct generalization of the relations
to cross-correlation techniques discussed in Section 16.2.8.

The advantage of using Eqgs. (16.51) and (16.53) is that, if we assume the noise
variance is constant over an entire image, they enable us to determine in advance
those places where we can expect high precision— that is, before we actually perform
the matching procedure. This is because the equations depend only on the content of
one window, and not on the actual observations, which would require two windows.
Even if both windows are distorted by noise, f(r,c) may be replaced by an adequate
estimate from only one of the two windows, also in this case allowing us to check
in advance the precision of the match.

Figure 16.7 shows 10 small windows from which the interior 16 x 16 pixels
are used to evaluate the expected precision of a match. The confidence ellipses
shown below the template assume a noise standard deviation of 0, = 5 gray values.
With 99% probability the true. shift will lie in the area depicted by the ellipse
around the estimated shift. The pixel size is Ax = 20um. The smallest confidence
ellipses have major axes of less than 1um and thus less than 1/20 of a pixel. The
largest confidence ellipse is obtained at the edge point, indicating that one cannot
expect good accuracy for the position along the edge. The other confidence ellipses
reflect reasonably well the image content with respect to the expected precision of
matching. Thus the covariance matrix, proportional to the inverse of the normal
equation matrix, is an ideal measure with which to evaluate the distinctness of
small windows. As it is a statistical measure, essentially derived by averaging the
quadratic gradient, no interpretation of the image content within the window is
performed; therefore corners, circles, and random texture are treated simply from
the standpoint of distinctness. The interest operator, discussed in Section 16.4, was
actually motivated by searching for windows that guarantee good matching accuracy.

16.3.3 Estimating Linear Transformations

In the most important case of matching two small windows, we assume the model
gi(ri,c;) = f(ri,ci) + ni(ri,ci)

g,(ri,¢i) = h[_f(Pi,(]i)} + ny(ri,ci)
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0-( 20 o
q/; as Qs c/; ag

h(f)=a; f +a; (16.55)

where the noise 7, and n, in both observed images g, and g, is white with standard
deviations o,, and 0,,, and the eight parameters a,, kK = 1,...,8, are unknown.
If we assume that the approximate values ap, kK = 1,...,8, are known, we obtain
the linearized model

Ag = fr,'ri'a‘\’l

—~

+f,‘ 'Ci ~dl12
+f’i aa3
+fc,- 'ri '3214
‘l‘fcl- < Ci '3?15
+f.,  das
+fi da,
+1 dag + 7;
with
azkzék"aok, k=1,...,8

Agi = ga(ri,ci) — &1(PaisGor)
Ay = ny(ri,¢;) —ny(Poi,qoi)

and estimates for f,,, f.,, and f;, for example,

_6g1(’i,ci)
In=""
_agl(rﬂ
Jo= dc
Si =28 (ri,c)

with
(P _[Gn au) (T +a03
q) Aos  Qos c/; os
where g,—that is, the smoothed version of g, (cf. Section 13.2.7)—is restored.

Again at least linear interpolation is required for g,, f,,, and f,, in order to avoid
unstable solutions.

tAn averaging of g and g and of dg /Op and Ag, /r, and the like, needs to take the geometric
and radiometric transformations into account.
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Figure 16.7 Precision of matching to be expected for 10 small windows. Al-
though 32 x 32 pixels are shown, only the interior 16 x 16 pixels are assumed
to be used. The noise standard deviation is assumed to be o, = 5[gr]. The
99% confidence ellipses given in um refer to a pixel size of 20um. Observe the
extremely high precision to be expected and the elongated ellipse at the edge.
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We then have the following normal equation matrix N:

XSt Sfire Tfir
Yf7e? Lfle
VE

Sf.fort Lfifere Ef.fer
Sf.feer Xfifec? Bf,fec
Sf fer Efifec Bffe

|

|

1

I — — —
| =f2r %flre  Xfir
I Yfict Nfie
| %S
|
I
I

Lfofr
Lf.fc
ff

Zf:f r
Yfefc
fS

oS

Xfr
>f.c
s,

Xfer
Yfec
fe

xf
D |
(16.56)

omitting the index i for convenience and solving the sums over all pixels (r;,¢;) in

the windows. The right-hand side 4 is given by

Zfr,-riAgi
i=l1
Zfr,—ciAgl
i=1

Z;friAgi

Z}fc,-riAgi
;fc,ciAgi

;f(‘iAgi

(16.57)

The normal equation system N = h for the eight unknown parameters y = (1/&5,‘)
yields the six corrections Au,, k = 1,...,6, to the approximate values of the
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geometric transformation and the correction A, and Aay for the radiometric pa-
rameter; thus o
ak :a(}k+Aak9 k'—‘l,...,8

which may be used as new approximate values in a further iteration.

The main effort consists in building the normal equation matrix. If g, is not
very noisy, simply a restored version &, or g, could be used for determining the
Sis fr»and f,, which then need not be updated during an iteration sequence. Only
the right-hand sides 4 of Eq. (16.57) have to be recomputed in each iteration. This
speeds up the computation and increases the radius of convergence (Burkhardt and
Moll, 1979).

The estimated noise variance

. 1 N LA .
Gp = g 2 N08(Pindi) + s — &)Y (16.58)

i=1

(@)= (0 ) () C)

qi a, as Ci 6

now is a reliable estimate in many cases, especially if windows that are not too
large or not too small are used (e.g., between 9 x 9 and 31 x 31), and if the
distortions between the two images are smooth enough to be modeled by a linear
transformation. The two parameters compensating for brightness and contrast are
sufficient but also necessary in most practical cases.

The inverse Q of the normal equation matrix may be used to yield the covariance
matrix and from there the standard deviation ¢;, of the estimate

65& =Gy - \/Q_kl:
thus also specifying the precision of the estimated scale, rotation, and shears.

The small windows, however, often do not contain enough detail to enable one
to determine all eight parameters. Especially the scales (a,,as, and a;) and the
shears (a, and a,) are frequently not estimable. Therefore a priori knowledge about
the transformation may be introduced in a Bayesian manner by using additional

observations (possibly fictitious ones)

2
—=, k=1,...,8
ol
with individual weights depending on the quality, specifically the standard deviations
04, Of the corrections to the a priori values da,. This leads to the modified and
stabilized normal equation system

[N + Diag (w,,)] -9 = h

day =day + n,,, W, =

The right-hand sides /, because of the corrections assumed to be da, = 0, remain
unchanged. The following standard deviations can be recommended:

Scales, shears a,, =01 -1 k=1,2,4,57
Geometric shifts g4, =1 — 10 [pixel] k =3,6
Radiometric shift  o,, = 10 — 100 [gray value] k=28
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The noise standard deviation g, has to be estimated or guessed. The result is
not too sensitive against errors of a factor 2 in these assumed standard deviations.

16.3.4 Invariant Points

Much as in Section 16.2.3 (Eq. 16.16), we now want to find points within the
window that, when transferred into the other window, are invariant with respect to
changes or errors in scale or rotation. To simplify the derivation, we restrict the
analysis to three parameters.

The first model, including two shifts and scale, yields the symmetric normal
equation matrix

Z r2, Zfr,-fc,- Zfr.'(fr,fi + fc,-z"i)

Nu Nuo Ni X o
N=|Ny Ny Nyp|-= XSG XS T AT | (16.59)
N]l N32 N33

Z:(ffi?i + fc,-"—‘i)2

using 7; =r; —ry and ¢; = ¢; — ¢, with the unknown reference point (r,c,). If we
require the estimates & and v of the two shifts # and v to be independent on the
estimated scale, then we have to determine r, and ¢, from

Ni3=0 :Zfr,-[fr,(ri —ro) + fe,(ci —Co)]

Ny =0= zfc,- [fr,("i —ro) + fo(ci — Co)]
leading to the 2 x 2 system of equations
Efrz, Zfr,-fc, Z(frz,»ri + fr,fc,-ci)
' ' "’) = (16.60)

Shfo SIL )\ A\ SUnfori+ 12

for (ro,cy). This point has several important properties:

o If only the shift parameters (7, ¢) would have been determined, but the con-
tents of the windows of concern are different in scale, then the shift should
be applied to (ry,c,) in g(r,c), as the transferred point (ry — 7,co — €) then
would not be biased owing to scale differences.

e The transferred point (ry — #,co — ¢) has the minimum variance (cf.
Eq. 16.17), provided the model with three parameters is adequate.

e The invariance of (ry,c,) with respect to scale differences especially holds
for corner points (cf. Fig. 16.8a, b), for example, points where several
(> 2) edges meet. This is because (in the noiseless case) all gradients Vf; =
(f+,»f.;) are orthogonal to (r; — ry,c; — ¢), leading to the condition f,,7; +
fe,€i = 0 and thus to N3 = N,; = 0. This indicates that the estimates
for the shifts and the scale are uncorrelated. But then also Ni; = 0 (cf.
Eq. 16.59), from which it is clear that the scale cannot be determined. The
condition mentioned above was also used by Negahdaripour and Horn (1989)
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Figure 16.8 Two pairs of images where a scale difference (a,b) and a rotation
(c,d) cannot be determined or can be only weakly determined. The points (r¢, co)
and (r(’),c(’,) can be determined directly from egs.(16.60) and (16.61). Estimating %y
the shifts (r,c) without additional geometric parameters for scale or rotation
(e.g., by two-dimensional cross-correlation) and applying the shifts to these points
leads to unbiased transferred points.

to estimate the focus of expansion, leading to the same normal equation
system, Eq. (16.60).

P /
o

The same reasoning can be followed to determine the point (r2,cg) in the
window that, when transferred to the other window, is invariant with respect to
differences in rotation. If we want to estimate an unknown rotation in addition to
unknown shifts (7, ¢), the nonlinear model

g(ri,c;) = f(cos¢p -r; +sing-¢; —u,—sing -r; +cos¢ -¢; —v) + n(r;,c;)
with ¢ =~ 0 in linearized form, reads as
g(ri,e) = f(ri+¢c; —u,~¢r; +c; —v) +n(r;,c;)

This leads to the 3 x 3 normal equation matrix

Ny Nip Ng
N =1 Ny Npn Ny
Ny Nz Ny

Z rz, "Zfr,»fc, _Zfr,(frifi -fc,-Fi)

i

— Z 3,- th,( riE_fciFi)

X(fr,-fi - fc,-Fi)z
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For the shifts (r,c) to be stochastically independent from ¢, the conditions for
(ry,cg) now are

Niy=0=Y"f[fnlci =) = fe(ri =)
Ny =0= ch,- [fr,(ci —¢5) = fe,(ri — "5)]
Therefore (ry,cg) in this case can be estimated from the 2 x 2 equation system:

Z 3,» _Zfr,.fc,- Z( cz,- T "fr,-fri 'Ci)
i i 0\ _ i
”‘Zfr,-fr, Zfrz, (Cﬁ) Z(“‘frifr,» i +f,2, ‘Ci)

i

(16.61)

Also, this point has the following important properties:

e The transferred point (r§ — 7,c§ — ¢) among all others has the highest pre-
cision, provided the three-parameter model holds.

e If one wishes to determine the shift parameters (r,c) from the two windows
without taking a rotation into account, the transferred point (ry — 7,cg — €)
is unbiased, that is, invariant to possible rotations between the two windows
around (r§,c$) and (ry — 7,c§ — €), respectively.

o The invariance of (r{,c3) with respect to rotation differences especially holds
for the centers of figures, which are circularly symmetric with respect to
(rg,cg) (cf. Fig. 16.8c, d). The gradients are expected to be parallel to
(ri,c;), leading to the condition f,,¢; — f.,7; = 0. Therefore not only does
N,; = Ny = 0, proving the independence of the shift estimates and the
rotation, but also N;; = 0, showing that the rotation is not determinable.

We will use these relations and the similarity of the normal equation matrices
(16.49), (16.60), and (16.61) as a basis for the interest operator discussed next.

(S ®® An Interest Operator

16.4.1 Introduction

Image matching as well as general image analysis may require one to find interest-
ing points in the image. Interesting here has several meanings, depending on the
context:

1. Distinctness. Points should be distinct, that is, distinguishable from imme-
diate neighbors. This definition especially excludes points sitting on the same
edge. Distinct points may be corners, blobs, highly textured places, and so on.
One way to measure distinctness is to compare the intensity function within a
window at a point with the intensity function of all surrounding windows. One
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could, for example, use the correlation coefficient. If the maximum of the cor-
relation coefficients of the point with its neighbors is small, then the point is
dissimilar to all neighbors and is thus a distinct point. This condition is identi-
cal to requiring the autocorrelation function at a point to be peaked or to show
a high curvature in all directions.

2. Invariance. The position as well as the selection of the interesting point should
be invariant with respect to the expected geometric and radiometric distortions,
which may include robustness with regard to gross or unexpected errors. Invari-
ance and distinctness obviously are the main properties that interesting points
should have, as they influence all subsequent steps in the analysis.

3. Stability. The position as well as the selection should be invariant with respect
to viewing excluding ‘‘virtual interestingness.”’ This is to ensure that interesting
points in the image correspond to interesting points in the object. For example,
corner points of polyhedra can be assumed stable, while T-junctions usually
are unstable, as they almost always result from occlusions. Stability thus is
decisive for image-matching three-dimensional reconstruction as well as for
general image analysis tasks.

4. Uniqueness. Whereas distinctness aims at local separability, uniqueness aims
at global, that is, imagewide, separability. This is to avoid locally distinct but
repetitive features or points that confuse or at least slow down many matching
procedures. Unique points thus may significantly increase the reliability of the
results of matching and analysis procedures. Uniqueness is probably the notion
closest to interestingness and the reason to use the term interest operator for
procedures extracting such points.

5. Interpretability. While the previous notions specifying interestingness can
be used for both matching and image analysis, we may in addition require the
extracted points to have a meaning with respect to image interpretation. Such
points then may be corners, junctions of lines, centers of circles, rings, and so
on.

Chapter 7 discussed several interest operators for detecting corners. Some, like
Moravec’s operator (Moravec, 1980; Thorpe, 1983) do not locate corners precisely
enough; others rely on a geometric description of the intensity surface and thus
are not able to handle corners with more than two edges meeting. All techniques
for finding corners of polyhedra with three or even more edges meeting require
extracting edges before grouping them in order to obtain corner points. Techniques
for finding the centers of circles follow the same type of procedure.

Here we discuss an interest operator that practically fulfills all the criteria men-
tioned above and contains the extraction procedures as a special case (Paderes,
Mikhail, and Forstner, 1984; Férstner, 1986a; Forstner and Giilch, 1987). It fol-
lows a three-step procedure:

1. Selection of optimal windows. The selection is based on the average gradi-
ent magnitude within a window of prespecified size. Searching for local max-
ima, while suppressing windows on edges, guarantees (local) distinctness. The
measure used is, also invariant with respect to rotation.
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. Classification of the image function within the selected windows. The

classification distinguishes between types of singular points such as corners,
rings, and spirals, on one hand, and isotropic texture, on the other. Excluding
spirals here, a classification of corners, rings, and general texture, based on a
statistical test, is available.

. Estimation of the optimal point within the window as the classification.

The estimation is precise for corners and for the centers of circular symmetric
features or spirals.

The interest operator has several salient features:

. The selection of the windows is optimal with respect to the following tasks:

e Find windows that guarantee optimal precision for matching (cf. Section
16.4.4),

e Find corners;
o Find centers of circular symmetric features;
» Find centers of logarithmic spirals (possibly).

. The selection of the windows is the same for all these tasks and needs no a

priori knowledge of the number of edges meeting at a corner or the number of
rings.

. The corner points are invariant with respect to rotations of a polyhedron in

three-dimensions around that corner. In addition, the operator is scale invariant
at corners. This is probably the most important property.

. The decision with respect to corner, circular symmetric features, and texture

can be based on an F-fest.

. The estimation of the optimal point within the window can be represented as a

least-squares fit that allows a rigorous evaluation of its precision. Specifically,
one can derive a covariance matrix for the located point, which may be used in
further steps of a geometric analysis.

The procedure for finding the optimal windows as well as for locating the
optimal points within the windows allows performance in parallel and thus
enables real-time feature extraction— in the extreme, down to a few lines’ delay
during the scanning of the image.

We will discuss the three steps in detail, omitting the operator’s property of

locating centers of spirals. As the window selection and the distinction are based on
the point location within the windows, we treat these estimation procedures first.

16.4.2 Estimating Corner Points

Let us first assume that an m, x m, window is known to contain a corner

point po = (ry,Cy)’. The aim is to obtain an estimate p, = (7, ¢,)’ for the corner
point. As we do not know how many edges intersect at p,, we treat the edge
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elements individually, each being representative of a straight line passing through
pi=(ri,c))'y i =1,...,m (cf. Fig. 16.9 a). We assume that the estimated point p,
is the point closest to all straight lines crossed by the edge elements in the window,
taking individual uncertainty into account.

Let p; = (r;,c;) be a pixel within the window, with

\\e,’ =e(r,c¢) + Vf,'/ = (fr,’fr,) = [fl,(ri9ci);fc;(riyci)]
e
its gradient, and 4

Vi
1Vl
its unit vector in the direction of the gradient. The straight line passing through
pi = (ri,c;) parallel to the edge direction is given by

= (cos ¢;,sin ¢;) = [cos d(r;, c;), sind(ri, ¢;)]

(p—pi)e, =0
with p = (r,c)’.

We now make two assumptions that allow a noniterative solution for determining
the unknown corner point p, = (ry,¢,)’ :

e The directions ¢; of the edge elements, that is, of the lines orthogonal to
Vf: passing through (r;,c,), are error free.

e All uncertainty is taken care of by the distances /; = p/e; which we assume
to be the original observations.

The weights of the edge elements are assumed to be w; = ||Vf;|, as if the
edge position across had been determined in an image-matching approach using

a| @ <A (79:6p)

(a) (b)

Figure 16.9 Models for estimating corners (a) and centers of circular symmetric
features (b). In (a) the edge element through (r;,c;) is represented by a straight
line (/;, ¢;). The optimal point (ro,c,), a corner, is the one that minimizes the
weighted sum of the squared distances #;. In (b) the slope element through (r;,¢;)
is represented by the straight line (/{,#/). The optimal point, the center of the
circular feature, minimizes the weighted sum of the distances ni’.
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a model of the edge (cf. Eq. 16.6). Moreover, the individual edge elements are
assumed to be independent. Then the linear model reads as
I(ri,c;) = cosd(r;,c;) - Fo +sind(ri,c;) - ¢y + n(r;,c;)
or, with l; =1(r;,¢;),¢; = @(r;,c;), and n; = n(r;,c;),
I =cos¢p -Fo+sing; -éo+n;, i=1,...,m (16.62)

which is assumed to hold for all m = m, x m, pixels (r;,c;). The weight of /; is
assumed to be
wi = ||VAillP = fHri,e) + firi, e

m
Minimizing €(ry,co) =3 n? - w; with respect to 7, and &, yields
i=1

10U 7y, €)

2_._370h— = E cos@; - (I; —cos@; - Fg —sing; - &) -w; =0
1 0€UFo, ¢o) Z’" . . . . .
2 9& i sing; - (/; —cos@; - Fo —sing; - &) - w; =0

which leads to the normal equation system

m m

E w,cos’$; E W;cos ¢; - sin ¢;

i=1 i=1 To
m ) m L, é()
E W; COS ¢; - Sin ¢; E w; sin” ¢
i=1 i=1

Substituting /; = r;cos¢; + ¢;sing; and using f,, = f.(r;,¢;) = | V.f:|| cos ¢;
and /., = fo(ri,¢;) = || Vfi| sing;, we arrive at

m m m
Z r2, Zfr;fr,- o Z(fyz,rl + fr,f(‘,-ci)
i=1 i=1 o\ _ | i=

u L 2 (é() ) N - 2

Zfrff[i Z c Z(fr,'f(‘,‘ri +fc,-cl')

i=1 i= i—1
which is identical to Eq. (16.60). This was to be expected, as the intensity function
at an ideal corner is invariant with respect to scale when taking the corner point as

center of the origin.
We can also write Eq. (16.63) in the form

(Z W,) Po=3_(W. p) (16.64)
i=1 i=1

(16.63)
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with the singuiar-weights matrices

cos? ¢; cos ¢;sing;
cos ¢; sin @; sin® ¢;

W, =195, = IV e = 91F - ) as6s)
This shows p, to be the weighted center of gravity of all points p; with the squared
gradient NV [,V f! as weight matrix, thus using the model

=P - . ri e . fo ”r;
pPi = Po-+n; or (c',) =1, (@n) + <nq) (16.66)

We will use this model in the following because of its simplicity.

We can arrive at a third interpretation of the normal equation system (16.63).
If we divide the model equation (16.62) by cos¢; and substitute s; = tan¢; and
R; = n;/cos ¢;, we obtain for the observation a; =/, / cos ¢;

ai=f‘0 +‘S,"éo+ﬁ,‘ (]667)

which is the intercept of the straight line through p; with the r-axis (see Fig. 16.9).
If we now take (a;,s;) as the representation of the edge element in Hough space with
intercept and slope as parameters, we can interpret the model equation (16.67) to be
a straight-line fit in Hough space (cf. Chapter 7) with unknown parameters (7, ¢,),
which in the image domain correspond to the intersection point of the edge elements.
If we take the proper weights for the observations a;, namely, ||V f;|]? cos ¢2, we
arrive at the same normal equation system as before Eq. (16.63).

We can easily transfer this reasoning to the case in which the window is supposed
to contain a circular symmetric feature, such as a circle or a set of rings. The idea
is to use the slope elements, that is, the straight lines going through the points
p; = (ri,c;) and having the direction of the gradient V£;. If the window contains
a circular symmetric feature, then these lines intersect at the center py =(rg,c).
With the unit vector e? being orthogonal to e, e’ = (—sing;,cos ¢;), the equation
for these straight lines reads as

(p—p)-&=0

With the same reasoning as above, thus fixing the orientations ¢; and taking the
distance /? = [7(r;,c;) = ple? = —r;sing; + ¢, - cos ¢; as the original observation,
we obtain the linear model

[} = —sing; -Fy +cosg; -é5 +n?y, i=1,....m (16.68)

which is valid for all pixels in the window and assumes the weight to be w; =
| V/ilI?. The resulting normal equation system for the center (P3,¢3) of the circular
symmetric feature reads as

m m m

Sowisin® @ — 3w, cos ¢ sing; Y — > wil?sin ¢,
m ! - (fﬂ) =1 = (16.69)
>~ w;cos ¢; sin ¢; Yo wicos? ¢; o Yowi?cos;
i=1 i=1 i=1
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which can also be written as
>SSt (1)- S(f2r = fofoc)
SSsde Bn )N\ S tan + e
This equation system is identical to Eq. (16.61) for the point that is invariant

with respect to rotation during intensity-based matching.
Equation (16.70) can be written as

(}: W,') Py = Z(W,-’ “Pi)

Now, however, with the singular-weight matrix

(16.70)

sin’? ¢; —COS ¢; Sin ¢;

* VSl et = ||IVSiIP
Wi = IV e = IVAIF (o, b

) (16.71)
the center of circular symmetric features can also be interpreted as the weighted
center of gravity. Thus the functional models equation (16.66) for estimating corners
and centers of circular symmetric features is the same, whereas the weights W; and
W? are different.

Here also the third interpretation of the estimation procedure using the Hough
space can be applied: The determination of the intersection of all slope elements
corresponds to the determination of the parameter (73, ¢¢) of a straight line in Hough
space. This may be achieved by dividing Eq. (16.68) by —sin¢;, as a® = —I?/sin ¢,
is the intercept of the line passing through p,(r;,¢;) and having the direction of the
gradient.

The estimation procedures provided in this discussion may be used indepen-
dently in selecting the windows and in determining the window content. But with
the least-squares models for estimating the distinct points, we obtain statistical means
for automatically classifying the window content and searching for those positions
of the window within the image that generate the best local estimate of the image
features.

16.4.3 Evaluation and Classification of Selected Windows
We first want to evaluate the estimates p, and [J()) for corners and centers of circular
symmetric features. In both cases we need an estimate G2 for the noise variance o2

and the inverse Q of the 2 x 2 normal equation matrix N.
We immediately obtain the weighted sums 2 and €’ of the squared residuals:

m m
Q= (ri —Fo,c; = E0) - Wi - (ri —Fo,¢; = &) = 3 miw,
i=1

i=1

Q0 =3 Py ci =€) WP (ri—Fe — &) =3 nttw;
i=t
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from which follows the estimate for the noise variance
0! = ——n and 6, = —— (16.72)
m - m

Thus we obtain the covariance matrices

Epp =D (2:) =5 ( S«Zf} ZE:f’f{“ ) 7 (16.73)

\ . ’A'(: — A2 Z c2,- "'Zfriffi B
chpo _D<65) = 0, <_ Zfr,fc,- Z ,2, )

for the two estimated points p and p°.

and

. EXAMPLE 16.7

Figure 16.10 shows 18 small windows between 5 x 5 and 9 x 9 pixels
in size. The edge and slope elements sit between the pixels as the Roberts
gradient is taken for determining the first derivatives. The hypothesis about
the image content is indicated by a small cross for corners and a circle for
circular symmetric features. The true points with 99% probability lie within
the shown confidence ellipses. The estimation procedure obviously can handle
corners with multiple edges coming together. Extrapolation is performed, and

Figure 16.10 Weighted centers of gravity for 18 windows with 99%-confidence
ellipses. The assumed model is indicated by the cross (corners) and the circle
(circular symmetric figures). Observe the high precision and the extrapolation
capacity of the estimation procedure.
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the intersection point of the edge lines can be estimated. The example of a
simple straight line passing through the window is solved by introducing the
center P. = (r,,c,) of the window as a priori information in a Bayesian manner,
thus adding the observations

() =)+ ()

with a very low weight (o] - 7,) to the other observed points p;.

The covariance matrices X,, and £,.,. can be represented by three values,
which we will use later for the window selection step:

1. The average precision of the point or the weight w of the point, assuming o2 = 1

1 1 __det N
ey lrN-' T Mr N

(16.74)

with N being the 2 x 2 matrix in Egs. (16.60) or (16.61). If the eigenvalues
of N are equal, then

w = %tr N (16.75)
2. The direction of the major axis of the confidence ellipse
1 _2N|2
¢ = - arctan —————
2 Ny —Np

3. The form of the confidence ellipse, which may be derived from the ratio \, /\,
of the two eigenvalues of NV or ¥ or (to avoid the calculation of the eigenvalues)
from the form factor

_ (MM _4detN  4dety
7" N4N) PN ey

which lies in the range between 0 and 1. This can be determined either from
¥ directly or from the normal equation matrix N. Here ¢ = 1 corresponds
to a circular error ellipse, whereas ¢ = 0 indicates that the smaller eigenvalue
is zero, the normal equation matrix is singular, and thus the window contains
a straight edge. We will use the form parameter g to exclude points lying on
edges when searching for optimal windows. The term g can be said to measure
the circularity of the ellipse or the degree of isotropy of the texture within the
window.

(16.76)

As the normal equation matrix for the corner is the same as for matching
two windows, assuming a shift only (cf. Eq. 16.47), the confidence ellipses of the
matching examples have the same form and orientation as those one would have
obtained for the estimated corner point in these windows (cf. Fig. 16.7).
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The classification of the window content aims at deciding whether

-

H,: the window contains an isotropic texture;
H,: the window contains a corner; (16.77)
H,. : the window contains a circularly symmetric feature.

We therefore assume g to be large enough to exclude windows containing straight
edges.
Owing to the orthogonality of the models, one can use the test statistic

Q
T = 'S? NFm~2,m—2 (1678)

which is F-distributed with m — 2 and m — 2 degrees of freedom, where m is the
number of edge or slope elements. With two critical values k, and k, = 1/k,, we
can classify the window content:

T >k, — circular symmetric feature
T < k, — corner

Else — isotropic texture.

Thus the test checks which of the models in (16.77) hold or not.
The parameterization of a spiral would permit estimation of the parameter,

including the corner and the circular symmetric windows as special cases (cf. Bigiin,
1990).

. EXAMPLE 16.8

For the binary window

- C
00000
11110

f=Ff 11100
1100 0
1000 0

(cf. Fig. 16.10 #1) we obtain the derivativés f,, f., and the product f, - f

ce

2 3 4 | 1 2 3 4
1 2 2 10 0 0 -1
Sr=210 0 -1 -1 Se= 210 0 -1 -1
310 -1 -1 0 310 -1 -1 0
41-1 -1 0 41-1 -1 0
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123 4
1[0 0 0 -1
frofe= 210 0 1 1
3]0 11 0
41110 0

Similarly, gradients f,(r,c) = f(r + j,¢ =)+ f(r +3,c+ 3 - f(r -
Lhe-H-—fr- 1,¢+ 1), and f.(r,c) are used. The coordinate system is

chosen such that the gradients refer to integer positions. The normal equation
system (16.60) thus reads as

19 S\/(FA\ _((13:142:2+2-342.4)+(1-1+2-2+2.3+40-4)
5 T)\6 ) \(-1'142:24+2-342-4)+(1-1+2-24+2-34+2-4)

(42

—\ 36
This leads to estimates 7y = 114/108 = 1.056,¢, = 474/108 = 4.389. The
weight sum of the squared residuals is

Q=5/12=04166

In case one would assume that the window represents a circular symmetric
feature,
Q°* =77/12 = 6.4166

Therefore the test statistic Eq. (16.78) is obtained as
T =Q/Q° =5/77 ~0.065

which is significantly smaller than 1, indicating that the window represents a

corner.

16.4.4 Selection of Optimal Windows

We can now describe the goal of the window selection scheme precisely: The inter-
est operator should find distinct points— points that are discernible from immediate
neighbors. We therefore search for local optima of the expected precision for es-
timating the location of points within a window or for matching the window with
one or another image.

Recall that the weight w of the estimated points depends on the noise variance
o? and the signal content of the window, specifically, the average squared gradient.
If one assumes constant o2, the search need be based only on the average squared
gradient N or its inverse. The decisive values— namely, the form factor ¢ and the
traces ¢rN and trN ~'—are identical for the three tasks:



16.4 An Interest Operator 343

e Area based matching,

e Corner estimation,

e Estimation of the center of a circular symmetric feature.

As for large g, and thus nearly isotropic window texture trN = 4trN~', we

base the selection of the optimal window on w; = %trN, and g; and require the
following:

1. The confidence ellipse should be round. This is to ensure that selected win-
dows do not contain a straight edge or strongly oriented texture, but rather that
the point determination is equally precise in all directions. This leads to the
condition

qi > qmn
2. The confidence ellipse should be smaller than those obtained from neighboring
windows and should not exceed a certain size. This ensures maximum local
separability or distinctness and good accuracy of the point determination and
Jeads to the conditions
W,' > W pin
and
w; > wy, forall/ € { neighborhood of i }

The procedure for finding the centers of optimal windows is therefore the fol-
lowing:

Input parameters:

e A noise-cleaned image f(r,c)

e A gradient operator

e The window size for the operator (m,,m.)

e A neighborhood size for finding local extrema

e A threshold ¢q,,, for g

e A threshold w,,;, for w

1. Determine two derivative images f,(r,c) and f.(r,c) by using the gradient
operator.

2. Determine the three images containing f}(r,c), f,(r,c) - f.(r,c) and f2(r,c).

3. Convolve the three images with a box filter of size m, x m, yielding the three

images N,,(r,c), N»(r,c) , and Ny (r,c), which represent the elements of the
normal equation matrix for all positions in the image.

4. Determine the images q(r,¢) and w(r,c) from Egs. (16.76) and (16.75).
5. Threshold w(r,c) leading to w*(r,c):

w(r,c) = { w(r,c) if w(r,c) > w,, and g(r,c) > qmin
’ 0 else

6. Suppress the nonmaxima of w*(r,c), setting all w* to zero where there is no
relative maximum of w* within the prespecified window.
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Remarks:
a.

d.

Any noise-cleaning procedure that preserves edges and corners may be
used. If noise is moderate, a linear filter, preferably Gaussian, is suffi-
cient. In this case the noise cleaning and the gradient determination may be
combined by using a larger window for the gradient operator. If the images
are already cleaned, even Roberts gradient works sufficiently well.

The window size has to be chosen according to the task and the image
content. If the selected points are used for matching highly textured images,
window sizes of 5 x 5 already give reliable results. If corners of polyhedra
or other interpretable features are to be detected, the window size should
be chosen as large as possible so that two neighboring points on an average
do not fall into the same window.

. The neighborhood for the nonmaximum suppression also has to be cho-

sen according to the task and the image content. A large neighborhood
suppresses more points but also may eliminate good points sitting near
stror{ger ones. Taking the window and neighborhood sizes to be equal has
been proved a reasonable choice in many applications, such as stereo, im-
age sequence analysis, and general image analysis.

The threshold g, for the form parameter ¢ due to Eq. (16.76) can be
based on a critical value for the ratio \; /A (N, > \,) of the eigenvalues of
N or 2. If the window contains a straight edge, the larger eigenvalue equals
m-a}, that is, is proportional to the variance of the gradient across the edge,
whereas the smaller eigenvalue equals m - 02, that is, is proportional to the
variance of the noise gradient. A requirement that the window significantly
contain no edge of N\, /\, = 4, say, using Eq. (16.76), leads to a threshold
of @in = 0.64. It corresponds to requiring the ratio of the two semiaxes of
the error ellipse to be smaller than 2, or the two sides of a corner to meet
at an acute angle larger than approximately 53° ~ 2 arctan(1/2).

. A similar reasoning leads to a choice for the threshold w,,,. The weight

should be significant with respect to noise in the input image (possibly
already restored). The expectation of w; is m - g2, where m is the number
of edge elements used for determining w. The noise gradient variance o?,
may be estimated from

ty M
o2, = J

TSRS <ty

where ¢/ is a threshold for the gradients ||Vf|> = f2; where #(f? < tyr)
is the number of gradients of the image that are smaller than the chosen
threshold; and where M is the total number of the edge elements of the im-
age used for this estimate. The threshold ¢,/ should be approximately three
to five times an initial estimate of the noise gradient variance ¢2,, which
could be obtained from a histogram of the 2. The estimate is based on the
assumption that the noise in the image is white and Gaussian, and therefore
the gradient squares f,” at flat areas are x:-distributed [exp(—x),x > 0]
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and that edges influence only the right-hand side of the (cumulative) his-
togram (theoretically: 1-exp(-x)), which — in contrast to Vorhees’ and
Poggio’s approach (1987) — does not necessarily have to be built up ex-
plicitly, except for an initial guess. The threshold W, then can be chosen
to be a critical value for the noise gradient, that is, kmo?, with k = 10,
say, guaranteeing that only significant windows are selected. Though be-
cause of the discreteness of the intensity values and possibly the additional
smoothing, the initial guess o2, may be 0, ¢, should be chosen > 0.

f. It may happen that different selected windows refer to the same distinct
point. One representative may be selected affer the class and the accurate
position of the points have been determined and their equivalence checked;
the one with the highest weight may then be chosen. The reference of
multiple windows to the same point partially results from using a box filter
for determining the elements of the normal equation system in step 3 and
may be reduced, not eliminated, by using a Gaussian, a triangular, or an
equivalent filter with a clear maximum at the center of the filter mask.

16.4.5 Uniqueness of Selected Points

The uniqueness of the selected points can be based on their similarity derived from
the describing attributes. In our case this would be the intensity function in a window
around the optimal position of the selected points, as the selected windows in
certain cases may sit arbitrarily. Those points that have no features or attributes in
common with other points should obtain the highest uniqueness measure.

We want to present a uniqueness measure that is based on the total correlation
of a point with all others. It is based on the assumption that the attributes, here the
intensity values, are Gaussian distributed (Forstner, 1988). We need the correlation
matrix

R = (pij)

between all selected points, with p; = 1 and p;;, for example, from Eq. (16.34),
replacing x; by (r;,¢;) and setting u = 0, that is, assuming no shift. Large correlation
coefficients indicate high similarity. Then the total correlation p; of point P; and all
others P, can be derived from
1
2 -1 -

P = ri(R,,») ri = 1 - (‘E“_‘S’: (1679)
where r; is the vector containing all correlation coeflicients between P; and the
P, R;; is the submatrix of R after canceling the ith column and the ith row, and
(R "), is the ith diagonal element of the inverse of R. The total correlation obviously
is a weighted mean over all correlations contained in r;. For only two points the total
correlation reduces to the normal correlation.

We now may define the uniqueness of point P; by
_ 1 =p

u ) (16.80)
Pi
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This is analogous to the signal-to-noise ratio in Eq. (16.40) but takes into account
the inverse reasoning here: High correlations lead to low total uniqueness, whereas
low total correlations lead to high uniqueness.{

The practical calculation has to take into account that R may be singular, espe-
cially if the number of points is larger than the number of attributes. Then one can
calculate the uniqueness by using the correlation coefficient from

1
SRS S 16.81
=@ Hesh
b
T n—1+6

with 6 a small number, for example, 0.001, and » the number of points involved. The
correction term k is motivated by assuming R to consist only of 1’s, thus assuming
the worst case, namely, that all points are completely similar. Then, owing to the
6 - I-term modifying R, the correlation shows its largest value, namely, 1 — k, not
1 as it should be.

Remarks:

1. The uniqueness measure based on the correlation coefficient of the surround-
ing intensity function derived from Eq. (16.34) is not invariant with respect
to rotation, scale, or other distortions. Using the correlation coefficient from
Eq. (16.37) derived from the least-squares fit between the intensity functions
may provide this invariance, however, since it is practical only for moderate
distortions.

2. This definition of uniqueness can be applied to all types of attributes as long as a
correlation matrix can be derived, for example, based on a metric d*(P;, P;) be-
tween the points and using a correlation function, for example, 1/[1 4 (d /d,)*],
guaranteeing R to be at least positive semidefinite. This opens the door to mea-
suring uniqueness based on attributes that are invariant with respect to a wide
class of transformations, especially also symbolic attributes.

3. Both distinctness and uniqueness are based on the same similarity measure, the
correlation coefficient. If we follow the reasoning that leads to Eq. (16.39),
high distinctness corresponds to high curvature of the autocorrelation function,
thus low correlation between a point and its immediate neighbors, whereas high
uniqueness goes along with low correlation with the other selected points.

4. For large numbers n of points, the calculation of the inverse, being of order
O(n?), may be prohibitive. This can be circumvented by using the maximum

TA different definition could apply an information-theoretic view and use the mutual information
Hi = —1/2log(1 — p?) (Papoulis, 1984, Eq. 75-98) of the P; and all Py, leading to the definition
ul = 1/H;. (Forstner, 1988). u; is a monotonic function of u/. We prefer u; here, as we want to use
it as a factor for modifying the weight 1/02 of correspondences derived from the expected precision,
where SNR? = p/(1 — p) is used (cf. below).
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square correlation p} = max;(p};) of P; with all other P; to determine the
uniqueness (cf. Egs. 16.80 and 16.81).

. EXAMPLE 16.9

Figure 16.11 shows two images with the selected windows classified ac-
cording to Section 16.4.3. The estimated points obviously sit at the right posi-
tions, when one takes the discreteness of the presentation into account. Observe
that in the upper right of Fig. 16.11(b) even an extrapolation of the edges was

*® . .
T ® ° e .
*e
) - @
® , *
. e L] ®
o . .o
(c) (d)

Figure 16.11 Two images (a) and (b) with selected windows and optimally esti-
mated points after classification. Parts (c) and (d) show the uniqueness measure

(p/1 — p) represented by the area of the circles. Observe that the repetitive fea-
tures show low uniqueness.
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achieved. Also the uniqueness measures, represented by the area of the cir-
cles in (c) and (d), correspond to intuition. The images were prefiltered with a
7 x 7 binomial filter. The window sizes were 17 x 17 and 21 x 21, respectively;
Roberts gradient and the threshold g,,;, = 0.75 were used.

Robust Estimation for Feature-Based Matching

16.5.1 The Principle of Feature-Based Matching

Recall the three steps of feature-based matching (cf. Section 16.1.2):

1. Selecting features by using some interest operator or some other feature extrac-
tion scheme;

2. Finding correspondences between the features by using some similarity and
consistency measure;

3. Interpolating between the parallaxes by using a spatial-mapping function.

After having discussed criteria for selecting appropriate features and one possi-
bility for extracting distinct points, we now develop criteria for finding correspon-
dences and for interpolating between the matched features in order to obtain a dense
parallax field. Steps 2 and 3 are often designed separately. Specifically, Step 2, find-
ing corresponding features, often does not utilize the same information that is later
used for Step 3, interpolating the parallax field. Consequently the strength of the
model, namely, the spatial-mapping function, is not exploited, thereby leading to
a suboptimal solution of the correspondence step, unless a refinement goes along
with the interpolation. Therefore integrating steps 2 and 3 may lead to optimal pro-
cedures. Intensity-based matching is an example, the features there being just the
pixels themselves. Optical flow using differential techniques— the scale space filter-
ing technique of Witkin, Terzopoulos, and Kass, (1987) or the maximum likelihood
technique proposed by Cernusch-Frias, et al. (1989)— falls into the same category.
Also, techniques using dynamic programming (Baker and Binford, 1982; Ohta and
Kanade, 1985) to obtain global optima while matching the features (line segments)
integrate correspondence and interpolation, though this is not made explicit.

For finding an optimal solution, the similarity of the features and the consistency
of the correspondence have to be weighted properly. In the following we will discuss
a measure for similarity that can be used directly in an estimation process for the
parameters of the mapping function serving as a model for consistency. The structure
of the setup is closely related to the one by Barnard and Thompson (1980). The
individual steps, however, are replaced in order to arrive at an algorithm that tracks
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the uncertainty from the basic observations, the intensities, to the final result, the

spatial-mapping function, and then allows one to evaluate the individual steps and
their effect on the result:

I.

The similarity between the extracted features leads to a preliminary list of
correspondences, including their weights. We restrict the discusssion to feature
points, as described in the previous section.

. A hypothesis for the mapping function is found by using a robust estimation

procedure, similar to relaxation techniques, and by enforcing the one-to-one
correspondence between the image features.

. The final parameters of the mapping function are achieved by using a maximum

likelihood estimate, allowing a rigorous evaluation of the match.

Though the spatial-mapping function may be quite general, for example, a

piecewise-smooth deformation field, we treat only the case of an affine transforma-
tion between the images for simplicity. The generalization is straightforward.

16.5.2 The Similarity Measure

We want to determine the weight

1
e

P12

Wp =

of the parallax p,, in row and column directions by using the average variance

6,271'2 = i (6312 +63l2)

of the points 1 and 2 in the left and the right image of concern. In order to arrive at a
simple expression, we assume that the selected points have isotropic texture (g = 1,
cf. Eq. 16.76), assuming derivatives f, and f,. to be uncorrelated (covariance = 0),
and that the points have equal variance. Then, using Eq. (16.73), we obtain
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and with 3" f7 = 5" f7 (because of ¢ = 1), we have
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With the weights w;, = 1trN; = 350 f2 + 3 f2),,i = 1,2 of the two extracted
points, and with w = \ /W, W, as an average, this yields
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Thus with some arbitrary variance factor o, the weight w, of the parallax can be

determined from
=V W (16.82)

If we now use Eq. (16.40) and replace o7 by o, - 0,,, we finally obtain

2
wo=m- L2 T A am %o few, (16.83)
l—pyn o -0y oy
This weight of the parallax can be determined by using:
o The correlation coefficient p,, of the two windows around the points based on
Eq. (16.34), with the shift being zero;
The empirical standard deviation o, of the intensities f,(r,c) and f,(r,c) in
the two windows;
The weights of the two windows, essentially being the variances of the gradients;
The variance factor ¢, usually taken to be 1.

Remarks

1. As the aim is to measure the similarity of the selected points that have been
determined to subpixel values, the windows used for measuring the similarity
have to refer to these estimated points. Thus they are usually placed on nonin-
teger positions, which requires resampling. Rounding to full integer positions
introduces errors of 1/+/12 ~ 0.3 pixel spacing.

2. The weights w; and the variances o} can be computed separately and possibly in
parallel for both images, the complexity being proportional to the total number
of points selected and the window size. The main effort is to compute the
correlation coefficients p,,, which in principle have to be determined over all
pairings of points for the left and the right images. Heuristics, discussed later,
may reduce this effort.

3. As the weight mainly depends on the correlation coefficient, it is only invariant
with respect to geometric shifts and to linear radiometric transformations. As
shown by Svedlow, McGillem, and Anuta (1976), geometric deviations below
20° or 30% do not have much influence on the correlation coefficient, thereby
making this value useful for a wide class of applications. Strong rotations or
occlusions, of course, cannot be handled with this similarity measure.

4. The three parts of the weight can be interpreted as similarity [p;,/(1 — p1,)],
strength (o, -0,), and distinctness (,/W, - W) and therefore can be replaced by
any other measure having these properties. This especially holds for the correla-
tion coefficient p,, or equivalently— including the strength— the empirical noise
variance o}. The noise variance could also be derived from an intensity-based
match of the two windows, then possibly leading to invariance with respect to
more complex geometric differences. Using a different measure p with the prop-
erties of a correlation coefficient— for example, one derived from a distance d
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and an appropriate correlation function, such as p(d) = 1/(1 +d?*)—allows one
to arrive at similarity measures that are invariant with respect to a much wider
class of transformations than simply a geometric shift and a linear radiomet-
ric tranformation; measures of symbolic attributes of the points might also be
included (cf. Exercise 16.19).

16.5.3 Heuristics for Selecting Candidate Pairs

The first step after selecting image features is to find candidate pairs of features.
This is to reduce the algorithmic complexity in the final match. Here all types of a
priori knowledge may be included and all types of strategies may be applied. The
only requirement is that these heuristics and strategies be conservative, that is, they
should eliminate only truly wrong correspondences. Some of these heuristics and
strategies follow (cf. Ballard and Brown, 1982):

1. The expected parallax may be used to exclude feature pairs that are unlikely.
This expectation may result from a scale space approach using an image pyra-
mid, where the result of one level serves as approximation for the level below.
The model of the object or, the movement of the object or the camera, may
lead to weak or even strong constraints on the parallax field. When one knows
the focus of expansion in an image sequence with constant velocity and no ro-
tation, or when one knows the relative orientation of the two cameras, then the
corresponding points have to sit on straight lines, the epipolar lines (cf. below).

2. These heuristics may be coupled with the requirement that the similarity of the
features be above a certain threshold. One possibility is to require a minimum
correlation coefficient, such as p,, > 0.5, which, according to Eq. (16.41),
corresponds to requiring SNR > 1, a reasonable threshold. Or one may require
that 0, = 0, /,/W, be better than some standard deviation, such as 2 pixels,

3. Finally, the uniqueness (cf. Section 16.4.5) of the selected points may also be
used, for example, to reduce the number of candidate pairs. This can be done
separately for both images by canceling all points that are too similar to one
or several points within the same image. A criterion could be that the total
correlation coeflicient (e.g. Eq. 16.79) must be larger than a threshold to keep
the point an interesting one. Or the weight w,, of the correspondence could be
modified by including the uniqueness leading to

2

0y _

Wy = ;%,/wI N TR (16.84)
(cf. Eq. 16.82) thus increasing the weight with the average uniqueness of the
two pbints in concern. (This is why we used the definition from Eq. 16.80 and

not the one based on the mutual information.)

Other heuristics may be used too. The problem with all of them is that up to now
no immediate evaluation of their effect on the result has been possible, specifically
with respect to the savings in the algorithmic complexity of the total procedure.
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The result of this selection step is a list {(r',c"),(r",c"), w} of candidate pairs
with their coordinates in the right and left images and the weight of the correspon-
dence as additional attribute.

16.5.4 Robust Estimation for Determining the Spatial-Mapping Function

The preliminary correspondences now have to be compared to see whether they are
consistent with some model. The most general model applied here could be a local
smoothness constraint that should hold almost everywhere (Barnard and Thompson,
1980; Terzopoulos, 1986b). The application of a finite-element description of the
spatial-mapping function would be particulary appropriate. In order to demonstrate
the principle, we restrict our discussion to the same model as the one we used with
intensity-based matching, namely, a linear geometric transformation between the
images. The model can be expressed as the parallaxes p =r” —r’ and ¢ = ¢” —c¢'
by Eq. 16.54.

The model is assumed to hold for the correct correspondences. Assuming that
the random errors are small, we can treat 7’ and ¢’ to be fixed, which is an accept-
able approximation and sufficient in most cases. The parallaxes p, and g, of the
corresponding point a are supposed to have the same weight.

The normal equations for the least-squares estimates have a special structure
that can be exploited to reduce the numerical effort, namely,

2w yreiwe Sriwe| [a, as DI AT AT
D TiCiWi o CEWy PNAD G ds| = | puciwy Yoquciwe | Q7'
Soriwi YWk Yowy Gy as Y PiWi 2 QWi

) . (16.85)
with the residuals

m=(m) = (& o) (2) +(3)-(5) k=1t cese
ng /, a, das (2 as q),

We may obtain an estimate for the variance factor
1
62 =Y nimw, (16.87)
76 2

which, together with the inverse Q = N~' of the normal equation matrix N, can
be used to determine the estimated standard deviation of the unknowns:

Gay = 65, = 6,V/Q1
Ga, = Gay = 6,7/ 0n (16.88)
Gag = Gag = 6,7/0n

With the contribution #, of each observation p, or qx to the determination of

the six unknowns
he =(ryc, D-Q7 - (rpcp 1) -wy (16.89)

we obtain (cf. Huber, 1981; Forstner, 1987) the standard deviation of the residuals

G4, = G, = Gor/(1 — hy) Wy

which are used for the evaluation of the correspondences.
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This estimation procedure leads to correct results only if the true correspon-
dences are known. Actually we have no information on which of the elements in
the list of preliminary correspondences is correct. But we can now define precisely
what we mean by consistency:

1. The true correspondences should fullfill the geometric model. The wrong cor-
respondences therefore can be treated as outliers with respect to the geometric
model.

2. The true correspondences should form a one-to-one mapping.

We will exploit the requirement on the geometric consistency first. One obvious
possibility is to assume either

A: ng~N(o,011,) with probability 1 — ¢
or
B: ng~Ul-L,+L)«U[-L,+L] with probability e

Case A states that the parallaxes follow a normal distribution with zero mean and
a small standard deviation; thus the two points concerned are corresponding ones.
Case B states that the parallaxes come from a broad distribution, namely, a uniform
distribution with a large L; thus the two points are not corresponding. The proba-
bility density function of the standardized true residuals ¢ = n, /o, or t =n,/o,,
can then be stated as

f(x) = —€) p(x)+e -H(x)

which is a narrow density function with heavy tails. This gives rise to a robust
estimation. The maximum-likelihood estimate can be approximated by the sum of

with p being a nonconvex function. (Here p should not be confused with the cor-
relation coefficient used above.) With the method of modified residuals (cf. Huber,
1981), the solution can be found by iteratively weighting down the residuals, with
the weight function w(x) = p’(x)/x being of the form

w(x) =e /2

The idea is that large residuals, indicating wrong correspondences, are weighted
down in the course of iterations.

Only for convex minimum functions p(x) is convergence guaranteed if the prob-
lem is linear (for a more precise statement of these conditions, cf. Huber, 1981).
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Therefore the first few iterations should be performed with a convex function p(x),
which leads to a weight function

w(x) = - :

VI+x?

Including the iterative adaptation of the variance factor, the total procedure is
as follows:

. Choose initial values for the parameters a;‘”,j =1,...,6,say (1,0,0, 1, 0,
0), and the weights w” (cf. the discussion above). Set the iteration number
v = 0.

2. Solve the weighted least-squares problem according to Egs. (16.85) to (16.89),
which specifically leads to new estimates a\"'", ny”, 62", and hy”.

3. Update the weights according to

n(l) \/;Vf-m
wi') = wl? w | Kk (16.90)

. A(V)/ / h;:)

Use the weight function w(x) = l/\/_er2 during the first few (3) iterations;
use the weight function w(x) = e~ ®/2 for the last two or three iterations; ¢
should be in the range between 1.5 and 2.5.

4. If the change of a; is less than a certain percentage, say 0.1, of their standard
deviation, then stop; otherwise, increase v by 1 and and go to 2.

The results of this robust estimation are parameters d;, which in general are
close to the true ones and thus are not influenced by the wrong correspondences. In
addition, we get weights that— owing to the fast falloff of the exponential function—
are practically zero for clearly wrong matches and are signiﬁcamly less than the
original weights. Therefore all correspondences with weights w; i that are signifi-
cantly less than the original weight wi”'— for example, < 0.1w}”—are rejected and
excluded from the following steps.

Though the remaining correspondences now are consistent with the geometric
model they need not be unique, as nearby points or image features that are similar
to the same points or image features in the other image might still remain. The
deviations from the geometric model now intuitively can serve as a criterion for
finding a one-to-one mapping: The list of correspondences keeps those which have
the smaller— possibly weighted— residual. With these a final least-squares fit for
determining the parameters of the geometric model is performed. In this estimation
process one must use the original weights, not taking into account the weighting
function or the possibly used uniqueness factors. This is necessary if we want to
evaluate the final result by using statistical techniques. The robust estimation thus
is used only for finding a good hypothesis for the match. An example is given in
Fig. 16.12.
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Figure 16.12 Result of the feature-based matching procedure. The points auto-
matically selected in the original images (a) and (b) are shown in (c) and (d). The
final correspondences are indicated by circles in (e) and (f). Correspondences
with residuals >> 2 pixels are indicated by crosses.
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16.5.5 Evaluating the Final Result

The result of the previous step, namely, finding the most likely parameters of the
mapping function or a one-to-one mapping of the extracted features, finally has to
be evaluated. This evaluation is necessary
e to be sure the solution is correct;
 to have quantitative measures for the quality of the parameters and the parallaxes
to be used in the following steps.

These requirements motivated the strict separation between hypothesis genera-
tion (robust estimation) and hypothesis testing after final parameter estimation using
least squares: As the least-squares principle is a special case of the maximum-
likelihood principle for Gaussian-distributed random errors, we can use the derived
density functions of the estimation processes and apply classical hypothesis tests to
evaluate the result:

1. A global check whether data and model are consistent uses ), the sum of the
squared residuals where the sum is taken over all accepted correspondences.
The ratio 2/0? distributed with x,,,_s degrees of freedom. The denominator
is the variance factor used for determining the weights. In case one were to use
unit weights in the last estimation step, the ratio

would be an estimate for the average parallax if a linear transformation really
held. It could be compared with an expected value o of 1/2 pixel, say, using

a Fisher test:
~2
Ty

) ~ Fom_6.00
99

If the global test is rejected, one may conclude that the model is oversimplified
or the data are much worse than expected. Without further testing, no hint is
given on the cause of the rejection. If one is not certain about the a priori
value ¢,, one may assume ¢, to be the result of a previous estimation step
and assume a limited number m’ < oo of degrees of freedom in the Fisher
distribution. This leads to larger critical values Fym 6m o > Fom—6.00q> and
thus to a more conservative test (cf. Spiegelhalter, 1985).

2. The precision of the estimated parameters can be determined in the usual way.
Also the precision of the parallaxes may be determined as 0, = 045, = 0 V.

3. The result can be termed reliable only if enough points are used to determine
the spatial-mapping function and if they are distributed well enough that the
result is not sensitive to errors in the correspondences. When leaving one cor-
respondence out of the estimation, the effect on the result should be small. This
maximum influence on one of the parameters a; is bounded by
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with &, from Eq. (16.89), n, from Eq. (16.86), and g;; again being the diagonal
element of the inverse Q = N ' (for the derivation, see Forstner, 1987), with
1 — h; being identical to the redundancy number r,.

4. The previous measures refer only to the extracted features, not to the origi-
nal image. A final check could measure the correlation coefficient (similar to
Eq. 16.35) after one has rectified the left image. This projection of one image
into the other is the decisive check on the correctness of the matching, as all
available information is exploited. Of course a wrong match due to repetitive
patterns cannot be detected this way, a limitation common to all tests relying
only on the image content. Such errors can be detected only if new information
that has not been used in the image-matching step becomes available.

We finally have arrived at describing the match of the two images both by a
set of corresponding image features, namely, distinct points, and by a mapping
function, enabling one to determine the deformation field at each position.

Structure from Stereo by Using Correspondence

Now we deal with a special application of image matching. We discuss procedures
for recovering the three-dimensional structure of objects from image pairs. This
forms a link to Chapter 14 on analytic photogrammetry, where the basic relations
were worked out. We assume that the interior orientation of the cameras is deter-
mined by some calibration procedure. It could be based on a set of targeted control
points given in object space. These targets in the image could be located by the
intensity-based matching procedure discussed in Section 16.3. We also assume that
at least the relative orientation of the two cameras is known. It could be deter-
mined from a set of (> 5) matched image points. For reasons of stability at least
five groups of points should be used (Forstner, 1987), which in general requires
no great additional effort. If only the relative orientation is known, we can derive
three-dimensional coordinates of the object in a local coordinate system that has
an arbitrary origin, orientation, and scale. If in addition some (> 3) given points
have been identified in the images, we can determine the exterior orientation of the
cameras.

16.6.1 Epipolar Geometry

Image matching can be tremendously simplified if the relative orientation is known,
as the two-dimensional search space is reduced to a one-dimensional one by the so-
called epipolar geometry inherent in the oriented image pair. Figure 16.13 shows
the general setup of two cameras. The projection centers O’ and O” form the
baseline of length h: the principal points H’ and H" are assumed to be the origin
of the two image coordinate systems (#’,v’) and (1”,v"), derived from the pixel
coordinates (r',c’) and (r”,c”) by using the interior orientation. The object point
P(x,y,z) then is mapped into P’'(u’,v’) and P"(u",v") in the image planes p’



358  Image Matching

Figure 16.13 Epipolar geometry of a general image pair: image planes f’ and
S, projection centers O’ and O"', principal points u’ and u"’, image coordinate
systems (u’,v’) and (u",v"’), baseline b, epipolar plane e(P), epipolar lines
e'(P) and e’'(P), and epipoles F’ and F"’.

and p”. Because of the geometric model of the perspective projection— specifically
the collinearity condition—the five points P,0’,0",P’, and P" lie in one plane,
the so-called epipolar plane ¢(P) associated with P. The intersection lines of e(P)
with ' and p” result in the two epipolar lines e'(P) and e’ (P) associated with
P. For points P, not sitting in the same epipolar plane, we obtain different pairs
of epipolar lines. All epipolar planes form a pencil of planes passing through the
baseline # = (O’O”). The epipolar lines intersect in the epipoles F' and F”, which
are the intersection of the baseline b intersects with the image planes p’ and p”,
respectively. Thus in general epipolar lines are not parallel.

The main advantage of these geometric relationships is that the epipolar plane
€(P) is defined by P’,0’, and O”. Thus when only one image point is given, the
epipolar line e”(P) is fixed and P” must sit on this line. Therefore search is nec-
essary in only one dimension. The epipolar line constraint is the strongest con-
straint in image matching and should be used as soon as available. Specifically
it is independent of the shape of the object.

Remark:

The epipolar line constraint holds as long as the lens distortions are not too
large to be negligible or, more generally, as long as the perspeetive projection can
be modeled by a projective projection, where straight lines in object space map
into straight lines in image space. This includes the affine distortion caused by dif-
ferent pixel distances in row and column directions. For high-precision applications
the lens distortion (part of the interior orientation) has to be determined and taken
into account to correct the observed image (pixel) coordinates in order to exploit
the epipolar constraint as a crisp geometric condition. If one does not perform a
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Figure 16.14 Epipolar geometry of a normal image pair: image plane; projection
centers O’ and O"’; principal points K’ and K'/; image coordinate system (x’, y")
and (x| y'"); baseline b; x' is parallel to x”’, which is parallel to b; focal lengths
[, f"(< 0); epipolar plane e(P); epipolar lines e’(P) and e’'(P) identical.

reduction of the observed pixel coordinates for lens distortion, the point P corre-
sponding to P’ still has to sit on a line that, however, is not straight anymore. In
the following we want to neglect possible deviations from the ideal geometry.

If the images are in ‘‘normal’’ position, the determination of epipolar lines
reduces to triviality (cf. Fig. 16.14): If the image planes p’ and " are identical and
parallel to b, the epipolar lines e’ and e” are parallel to b. Thus the search space
for P”, given P'(x’', y’), is the line y = y'.

16.6.2 Generation of Normal Images

It may be useful to rectify evaluation image pairs such that the geometry of a normal
image pair can be exploited both for correspondence and for determining the three-
dimensional coordinates of object points. Though this advantage cannot be exploited
when three or more images are used, it has great computational advantages in the
special case of two images, as this rectification has to be performed only once. The
method for rectifying the images given below is independent of the representation
used for the given pose of the two cameras. It uses the fact that any perspective
projection is a projective projection. The principal idea is to replace the images in
planes p’ and p" by images in plane », while keeping the geometry of the bundle
of rays spanned by the points in u’ and p” and the projection centers O’ and O".
Figure 16.15 shows the planes p’ and p”, the new plane v, and the images P’, P, P’,
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Figure 16.15 Relation between general image pair and normal image pair: com-
mon projection centers O’ and O’’, common baseline; common focal length f;
and collinear, normal images in positive position (focal length >0).

and P” of P. The procedure has to guarantee that P’ maps into E Four points in
each image are sufficient. The procedure follows:

1. Choose a plane » parallel to b. This fixes the focal length f of the normal
images. Choose the new image coordinate systems (x’, y) and (x", y") with
origins K" and K", where x’ is parallel to x”, which is parallel to b, and where
7(:, and K" are the principal points of the new images and K'O’ is parallel to

K O", which is parallel to ». Choose a common pixel spacing in the normal
images.

2. For each of the images:

a. Choose four points well distributed over the new image, for example, form-
ing a square. The coordinates are (x;,y;), i =1,...,4, measured in pixels
of the normal image.

b. Project the four points into the original image, using the known pose of
the cameras. This yields four coordinates (u;,v;), i = 1,...,4.

c. Solve the equation system

(gxi+hyi+1)-uy=ax;+by +c
(gxi+hyi+ 1) vi=dx,+ey,+f
which is linear in the parameters a to & of the projective transformation
(u,v) =T(x,¥ia,....h)

d. Rectify the original image. Each pixel (x,, y;) in the normal image deter-
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mines its position (#;,v;) in the original image and derives its intensity
value by resampling (linear or higher order).

For this discussion we now assume such normal images to be available.

16.6.3 Specializing the Image-Matching Procedures

In the preceding sections we assumed that no geometric relation between the two
images was known. Moreover, we approximated the nonlinear mapping between the
images by a linear transformation with six parameters (cf. Eqs. 16.54 and 16.55).
We now know that the y-coordinates y’ and y” of corresponding points are equal.
Thus the complete model reads as

X' =ax" +ay" +a,
ye=y"
g =hg" +h

We need only five parameters. In an intuitive manner they correspond to depth (@),
to slope along the epipolar line (a,), to slope along the epipolar line (a,), and to
brightness (h,) and contrast (h,) (cf. Fig. 16.15).

When using the intensity-based matching technique in Section 16.3, only the
rows and columns 4 to 6 in Egs. (16.56) and (16.57) have to be canceled. This
is because the parameters a,,as, and a, do not have to be determined, owing to
the epipolar constraint, and are thus eliminated from the estimation process. The
normal equations (16.56) and (16.57) therefore are reduced to a 5 x5 linear equation
system. The number of degrees of freedom reduces to m — 5, changing the ratio
1/(m — 8) in Eq. (16.58) to 1/(m — 5).

The feature-based matching algorithm also uses the geometric model from
above, but the selection of distinct points has to be modified: We are interested
only in the x-parallaxes, as the y-parallaxes are zero. Instead of searching for local
maxima of 3" f? + fZ, we now only need to search for local maxima of 5, 57, /2.

These local maxima yield the centers of optimal windows whose size should be
a minimum of three rows and five columns, which proves to be sufficient in good
imagery. If accuracy greater than 1/2 pixel is necessary, larger windows should be
used. The optimal point within the window is the weighted center of gravity from
Eq. (16.16), but now the sum is evaluated over the entire window, which leads to
more stable results.

Remark:

Maximizing f? is equivalent to searching for the zeros of 2 - f, - f,,, and if
S # 0, it is equivalent to determining the zero crossings of the second derivative.
But since /, # 0, the second derivative 2-f2 +2-f, [ of f2 reduces to 2-f, - f e
which is negative because the maxima of f? are searched for. Thus spurious zero
crossings of the second derivative are automatically excluded. Therefore the interest
operator, reduced to one dimension, is equivalent to searching edges across the
epipolar lines.
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16.6.4 Precision of Three-Dimensional Points from Image Points
If we know the coordinates (x', ') and (x”, ") of corresponding points in the nor-

mal images, the three-dimensional coordinates can easily be determined, as shown
in Chapter 14. With the object-space coordinate system defined there, we have

b'e b x' ~b/2
yl=———-1y1+ 0
2 x" —x f 0

with the base length b and the focal length f.

Following the line of thought of this chapter, we finally want to determine the
precision of the three-dimensional coordinates. Instead of going to the general case
with arbitrary orientation of the cameras, we want to restrict the discussion to the
coordinates of this ‘“‘normal model”’ of the object. If the right base b is chosen, the
model is in the same scale as the object.

We first want to give the precision of the z-coordinate. With the parallax p =
x" — x’, we have

b-
=07
p

orp-z=~b-f, which results inz dp +p dz = f db+b df, orif p,f, and b
are given, we have

z b  f p

Therefore we obtain the simple relation for the relative precision o, /z :

()= (3 () + ()

d_dv  df _dp

- EXAMPLE 16.10

Given
f=50mm, g;= 0.1lmm
b= 200mm, o,= 0.1lmm
=2 m = 2000mm
p=fb/z =5mm 0,=0.005mm
we have

1 2 1 2 1 2
(‘5‘@) " (m) N <1660)
164144 21
20000 2000°
thus a relative precision of \/21/2000 ~ 1/400, and so o, = v2Imm = 4.5

mm. Obviously the worst relative precision counts, which in this case is the
focal length with 1/500 relative precision.

(2) -
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7Y

Figure 16.16 Assumed relation between parallax p and parallactic angle «.

In the case of perfect calibration and orientation, the relative precision of z
reduces to
o, 0,

z p

an extremely simple relation to remember. Using z = fb/p, we also obtain

0. _ 2 0

z f b
which relates the relative precision ¢/z of z to the relative distance z /f, and the
relative precision o, /b of the parallax, measured in units of the baseline. The
relative precision thus decreases linearly with distance of p.

Finally, we can use the parallactic angle o ~ arctan(p/f) at point P (cf.

Fig. 16.16) to relate the relative distance precision to the angular error o, = a,/f

Y zZ 0
2 =22 =cota -0,
z b f
or for small angles «,
oz ~ atx
Z o

Thus for angles not much larger than o, the relative precision of z also is very low.
This situation may easily occur in navigation applications, when the time interval
between successive frames is short.

B exavrLe 16.11

The precision of z under the conditions mentioned above, but with f and
b error free, is
9p
0, =Z7-— =2mm
P
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which obviously would be more than a factor 2 too optimistic if the orientation
parameters (f and b) were uncertainJWe can also derive the precision of depth
differences h = z, — z, of two points of an object, which is given by

1 1
h=z-zi=fb-———
: =t (Pz P|>

We obtain for z, =~ z, ~z,thus h/z << 1:

GV =Y () (3)

. EXAMPLE 16.12

With the same assumptions as above, namely,

os/f =1/500,
ay/f = 1/2000,
0,/p = 1/1000

h = z/5 = 400mm

we obtain
o\ (1Y 1’ 1\’
5 = (%) *+ (Gow) +2 2 (o
_16+1+2:25-4 217
: 20002 20007
and thus

g, = V217/2000 - 400mm ~~ 3mm

This is /ess than o, = 4.5mm from above.

Observe that the effect of the errors in f and b are negligible here,
V17 /20007 against 1/200/2000°. The reason why the depth differences are
much more precise is that possible errors in f and b cancel when taking the
difference z, — z,.
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This result can be generalized for the case when all parameters of the pose are

uncertain. The precision of the absolute depth depends strongly on the precision
of the relative depth, or depth differences depend mainly on the parallax precision.
Thus

Ih _ . %
h va p

Nearly all other effects cancel. These results can easily be applied:

L.

If the form of an object has to be determined, only relative depth is required.
Thus most orientation errors cancel, and the precision of the form is determined
by the accuracy of the parallaxes.

. The same holds if one reference point in object space is given and the pose of

the object has to be determined with respect to this (close) reference point.

. However, if the pose of the camera has to be determined relative to some object,

as in navigation, al/ orientation errors influence the overall accuracy. Thus all
orientation parameters have to be determined with great care.

These are rules of thumb; a proper planning should apply a rigorous analysis.

Finally, we give the accuracy of the x- and y-coordinates of the point in object

space:

X 3 {_’ - q
i 2
A

YTy

Under the assumption o, = ¢, =0,

and

() (2 ()

EXAMPLE 16.13

Figure 16.17(a) shows a stereo image pair taken with a photogrammetric
stereo camera. The object is a model of an engine crank case. The task is to
determine the object’s surface along profiles in prespecified planes in order
to provide the input for a CAD system, where the model is then processed
further. The accuracy requirements are 0.4mm tolerance. In order to cover
the complete surface, six stereo image pairs were taken. The orientation of the
camera is determined on the basis of precisely measured targeted control points,
partly visible in Fig. 16.17.

The baseline of the stereo camera is b = 0.8m; the distance to the object
is approximately 1.5m; the focal length f is 0.1m. Figure 16.17(b) shows a
stereo image pair of the same object now illuminated with a texture projector
to permit measurements over the complete surface.
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measuring machine

AT

photogrammetric
system

-—

measuring machine
d

Figure 16.17 (a) stereo pair; (b) illustrated by texture projects (c) three-
dimensional (d) profile compression.
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The images are digitized with a pixel size of 20um. Interactively given an
initial match, the profiles are automatically measured by using the differential
approach discussed in Section 16.3 with the specific model of Section 16.6.3
(cf. Schewe and Forstner, 1986; Schewe, 1989). The result of the measured
profiles of four of the six stereo image pairs is shown in Fig. 16.17(c). Fig-
ure 16.17(d) shows two pairs of profiles, one measured with the photogrammet-
ric system including the automatic matching procedure, and the other measured
with a classical mechanical three-dimensional measuring machine. The devi-
ations mainly are below 0.24m. Only at the edges of the surface does the
photogrammetric system produce a certain amount of blending, which is due to
the limitation of the model.

16.1.

16.2.

16.3.

16.4.

16.5.

Exercises

Image matching, in contrast to object reconstruction, should be used only if a geo-
metric transformation between the images is an appropriate representation of the
model or if certain invariant low-level features can be found in the images of con-
cern. Give examples for stereo tasks in which image matching is appropriate: (1)
for the complete image content; (2) for 80% of the image content; and (3) for less
than 50% of the image content shown in both images.

You want to determine the distance between two holes of an object by using a digital
camera with an accuracy of 1:10000. Is this possible? Describe the mensuration
design, the size of the camera used (in pixels), and the technique used for locating
the hole (refer to Table 16.2).

Give practical examples for the different types of object surfaces discussed in
Fig. 16.2.

(Reading study.) Study the papers of Barnard and Thompson (1980), Stockman
(1987), Ohta and Kanade (1985), and Witkin, Terzopoulos, and Kass (1987): (1)
What type of surfaces do they refer to when applied to image matching? (2) How
do they achieve consistent results? (3) How far do the algorithms provide means
for gvaluating the final result?

(Computer study.) Use Example 16.1 and apply it to the models “shift and scale,”
“shift -+ brightness + contrast,” “shift 4 brightness,” and all four parameters.
Repeat the experiment with: (a) two ideal, noise-free ramp edges; (b) ramp edges
with artificial noise (0, = 2); and (c) a noisy box with a shift that is not an
integer. Generate the data using noninteger values for the geometric and radiometric
transformation parameters. First use real numbers for the gray values, then use
gray values rounded to integers. Compare the results with respect to the actual
differences in the transformation parameters, the theoretical standard deviations

of the estimates, assuming o, = 2, and the empirical standard deviation of the
estimated parameters.
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16.6. Name conditions such that the intensities g’ and g” at the corresponding points of
two images can be related reasonably well by

a. gl(rlycl) — g/l(rll,c’l)
or
b. g'tr',cy=ag"(r", "y +b

Name typical situations in which these simple models do not hold (refer to Chap-
ter 12 on illumination).

16.7. Name conditions such that extracted edges or edge points refer to the same object
point when: (a) the camera is moving; and (b) the lighting conditions change. Name
conditions such that extracted edges or edge points do not refer to the same object
point when: (a) the position of the camera is changing; (b) the position of the light
source is changing; and (c) the pose of the object is changing.

16.8. Under which conditions are two images enough for reconstructing the surface visible
in both images? Under which conditions may a third image be of advantage? In
which geometric relation should the three cameras be? Refer to Sections 16.3-16.6
and explain where the inability of matching possibly shows up. What objective
criteria could be used to detect situations in which no image matching is possible
with two and three cameras, respectively? (Hint: Analyze the matching ability in
dependency on the type of texture, on the orientation of edges, and on the complexity
of the object’s surface.)

16.9. The ratio T = Q/a” = (m — 1) - 6,> /o2 (cf. Eq. 16.14) is x*-distributed with m — 1
degrees of freedom. The expectation and variance of T is given by

ET)=m—1, V(T)=o0r2=2(m~1).

Prove Eq. (16.15). (Hint: If two stochastic variables are related by s = /f, then
their standard deviations are approximately related by o ~ %a, \/E(t). Apply this
approximation to f = ii‘,lz after having derived the variance of Qﬂz =iT-02/(m—1).
Stochastic variables are underscored.)

16.10. Estimate the weighted center of gravity of: (a) a smoothed step edge

ajfc-x 0<x<c
ga(x) < a x>c

0 x <0
(c #0)

(b) a smoothed box
gp(x) = ga(x +d) — ga(x —e)

tx+c —a<x<0
g(X)=1{a X >c

0 otherwise

(c) a skew triangle

(@ #0,b#0)

with the window w not sitting symmetric to the signal and using integrals instead of
sums s 1 xo = [ x-f'*(x)dx/ [, f'*(x)dx (see Fig. 16.18). Compare the center
of gravity to the center of the window. Vary the window size and its position,
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8, 8p L

> x pi x b *
(a) (b) (c)
Figure 16.18 Images for Exercise 16.10.

that is, the lower and upper bounds of the integrals. Repeat the comparison with
sampled data.

16.11. Prove the precision of the weighted center of gravity to be identical to Eq. (16.9).

16.12. (a) Apply a second iteration to Example 16.1 (cf. Exercise 16.2). Evaluate the im-
provement in position with respect to the standard deviation of the shifts. Repeat
the experiment for two profiles that differ by more than two pixels in position. Does
the second (or a third) iteration significantly improve the result? (b) Assume two
ramp edges of width d and arbitrary height being shifted by an amount > d with
respect to each other. Explain why no solution for the shift can be obtained when
using the differential approach. Where does this show up in the practical solution
(use simulated data)? Compare the difference of the position of the weighted centers
of gravity with the generated shift between the ramps. Comment on the results of
(a) and (b) with respect to the rate and the range of convergency of the differential
approach and its limitations and on the range of convergency of the feature-based
matching techniques.

16.13. Use robust estimation for the shift of two profiles, one having one or two outliers.
How does the robust procedure react (a) if the outliers are at a flat portion of the
signal? (b) if the outliers are at an edge?

16.14. Generalize the subpixel estimate using correlation and its precision to two dimensions.
(a) Show that the position can be obtained from

PPN —1
(7,6)" = (ro,co)’ - [Hplrgeol - Vp'(’afn)

where Hp and Vp are the Hessian and the gradient of p(r,c)

Hp:<0rr /M) vp:<p,>
Per Pec Pc

evaluated at the integer position (ro,co), being the shift where the correlation coef-
ficient is maximum. The gradient can be determined by using the Sobel operator,
and the elements of the Hessian by using a similar convolution kernel. (b) Show
that the covariance matrix of the estimated shift can be determined from

P 1 1-p -
1)( ) “m -———»13 ’ [?Hp'(’(lv(‘n)] : 'sz

(2%}

m o

16.15. How can the optical flow equation be generalized: (a) in the case of different bright-
ness? (b) in the case of different brightness and contrast? (Hint: Refer to model
Eq. 16.16 or use an appropriate function of the image densities.)
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|
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O

Figure 16.19 Windows for Exercise 16.17.

16.16. Specialize the estimate for a constant shift in two dimensions (Eq. 16.48) for binary
images. Use logical operations. (Hint: f:(r,c) and fe(r,c) can only have the
values —1,0, and +1. The positive part f,, of f, can be determined from f,; =
{Lf(r,c) xor f(r + 1,0)] and f(r + 1,c)}, while the negative part is fr- =
{Lf(r,c) xor f(r + 1,c)] and f(r,c)}, assuming O=false and I=true. Thus, for
example, the sum § = Z" f+(r,c) can be split into § = S, —S_, with S, =
Z:r(f’4 and S = Errf"")

16.17. Apply the interest operator to the images in Fig. 16.19. (a) Compare the center of
the optimal window with the estimated point. (b) Vary the window size used and
describe the effect on the optimal position of the window and on the estimated point
within the window. .

16.18. Show that the correlation matrix of the three windows in Fig. 16.20 is

1.000 0.033 0.199
R = (0.033 1.000 0.260)
0.199 0.260 1.000

and the uniqueness is

uy =4.077, u, =2.868, uy =2.122

16.19. Apply the uniqueness measure to the symbol sequences ““south,” ““north,” and “‘au-
gust.”” The Levenshtein distances are

025
D = (2 0 6)
560
Use the correlation function p;; = 1/[1+(di;/! max)’], Lmax being the maximal length

of either symbol sequence, to show that the uniqueness of the three sequences is

uy =0.136, u; =0.161, uy =0.697
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(a) (b) ()

Figure 16.20 Three windows for Exercise 16.18.

16.20. Refer to Chapter 14 (analytical photogrammetry) and assume two cameras in the
normal case. The focal length is /' = 35mm, the base length is b = 1m, the pixel
size is 20pm, and the distance to the object varies between 9 and 10m. The standard
deviation of the parallaxes is 0.1 pixels. (a) How accurately can you determine the
length / of the object parallel to the basis? (b) Determine the standard deviation of
the distance of a point relative to the cameras. (¢) How accurately can the depth
difference di — d> of two points be determined? Assume h = d, —d; = Im. What
relative accuracy o, /h can you achieve?

M Bibliography

Ackermann, F., and A. Pertl, “Zu’ordnung Leleiner Bildflichen durch digitale Korrelation
zur Verhniipfung verschiedener oder verschniedenartiger Bilder in Anwetdingsbere-
ich,>* Photogrammetrie und Fernerkindung, DFG-Abschlupbericht, 1983.

Akey, M. L., and R. Mitchell, “Detection and Subpixel Location of Objects in Digitized
Aerial Images,” Proceedings of the Seventh Conference on Pattern Recognition,
Montreal, 1984, pp. 411-414.

Alliney, S., and C. Morandi, “Digital Image Registration Using Projections,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, 1986,
pp. 222-233.

Altmann, J., and H. I. P. Reitbock, ‘A Fast Correlation Method for Scale-and Translation-
Invariant Pattern Recognition,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. PAMI-6, 1984, pp. 46-57.

Ayache, N., and B. Faverjon, ‘A Fast Stereovision Matcher Based on Prediction and Recur-
sive Verification of Hypothesis,” Proceedings of the Third Workshop on Com-
puter Vision, Bellaire, MI, 1985, pp. 27-37.

——, “Efficient Registration of Stereo Images by Matching Graph Descriptions of Edge
Segments,”” International Journal on Computer Vision, Vol. 1, 1987, pp. 107-
131.

Baker, H. H., and T. O. Binford, “Depth from Edges and Intensity Based Stereo,” Proceed-
ings of the International Joint Conference on Artificial Intelligence, Vancouver,
1982, pp. 631-636.

Ballard, D. H., and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ,
1982,



372 Image Matching

Barnard, S. T., ““A Stochastic Approach to Stereo Vision,” Proceedings of the Fifth Na-
tional Conference on Artificial Intelligence, Philadelphia, 1986, pp. 676-690.

———, “‘Stereo Matching by Hierarchical, Microcanonical Annealing,” Proceedings of the
Image Understanding Workshop, Los Angeles, 1987, pp. 792-797.

Barnard, S. T., and W. B. Thompson, ‘“‘Disparity Analysis of Images,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, 1980, pp. 333-340.

Barnea, D. I., and H. F. Silverman, ““A Class of Algorithm for Fast Digital Image Regis-
tration,” IEEE Transactions on Computers, Vol. C-21, 1972, pp. 179-186.

Benard, M., ““Automatic Stereophotogrammetry: A Method Based on Feature Detection and
Dynamic Programming,” Proceedings of the Specialist Workshop on Pattern
Recognition in Photogrammetry, Graz, Austria, 1983.

Berenstein, C. A., L. N. Kanal, D. Lavine and E. C. Olson, “A Geometric Approach to
Subpixel Registration Accuracy,” Computer Vision, Graphics, and Image Pro-
cessing, Vol. 40, 1987, pp. 334-360.

Berman, M., “Large Sample Bias in Least Squares Estimators of a Circular Arc and Its
Radius,” Computer Vision, Graphics, and Image Processing, Vol. 45, 1989,
pp. 126-128.

Bernstein, R., “Scene Correction (Precision Processing) of ERTS Sensor Data Using Digi-
tal Image Processing Techniques,” Proceedings of the Third ERTS Symposium,
Vol. 1-A, NASA SP-351, 1973.

-, “Image Geometry and Rectification,”” Manual of Remote Sensing, 2d ed., American
Society Photogrammetrics, Little Falls Church, Va, 1983, chap. 21.

Bigiin, J., “A Structure Feature for Some Image Processing Applications Based on Spiral
Punctions,” Computer Vision, Graphics, and Image Processing, Vol. 51, 1990,
pp. 166-194.

Bigiin, J., and G. H. Granlund, “Optimal Orientation Detection of Linear Symmetry,” Pro-
ceedings of the First International Conference on Computer Vision, London,
1987, pp. 433-438.

Blostein, S. T., and T. S. Huang, ‘‘Quantization Errors in Stereo Triangulation,” Proceed-
ings of the First International Conference on Computer Vision, London, 1987,
pp. 325-334.

Bolles, R.C., L.H. Quam, M.A. Fischler, and H.C. Wolf, ‘“‘Automatic Determination of
Image-to-Database Correspondences,” Proceedings of the Sixth International
Joint Conference on Artificial Intelligence, Tokyo, 1979, pp. 73-78.

Borgefors, G., ““Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10,
1988, pp. 849-865.

Bouthemy, P., and A. Benveniste, ‘“‘Modeling of Atmospheric Disturbances in Meteorological
Pictures,”” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-6, 1984, pp. 587-600.

Boyer, K. L., and A. C. Kak, “Symbolic Stereo from Structural Descriptions,” School
of Electrical Engineering, Purdue University, West Lafayette, IN, TR-EE 86-12,
1986.

————, “‘Structural Stereopsis for 3-D Vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-10, 1988, pp. 144-166.

Burkhardt, H., and H. Moll, “A Modified Newton-Raphson Search for the Model-Adaptive
Identification of Delays,” Proceedings of the IFAC Symposium on the Identi-
fication and System Parameter Estimation, Darmstadt, W. Germany, 1979, pp.
1279-86.



Bibliography 373

Burr, D. J., “A Dynamic Model for Image Registration,”” Computer Graphics and Image
Processing, Vol. 15, 1981, pp. 102-112.

Cafforio, C., and F. Rocca, “Methods for Measuring Small Displacements of Television
Images,” IEFE Transaction on Information Theory, Vol. 22, 1976, pp. 573~
579.

Castro, E. de, and C. Morandi, “Registration and Rotated Images Using Finite Fourier
Transforms,” IEEE Transactions on Pattern Matching and Machine Intelli.
gence, Vol. PAMI-9, 1987, pp. 700-703.

Cernuschi-Frias, B., et al., “Toward a Model-Based Bayesian Theory for Estimating and
Recognizing Parameterized 3-D Objects Using Two or More Images Taken from
Different Positions,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol. PAMI-11, 1989, pp. 1028-52.

Dreschler, L., “Ermittlung markanter Punkte auf den Bildern bewegter Objekte und Berech-
nung einer 3D-Beschreibung auf dieser Grundlage,” Dissertation Fachbereich In-
Sformatik, Universitdat Hamburg, 1981.

Ebner, H., “Beriicksichtigung der lokalen Geliandeform bei der Hoheninter polation mit
finiten Elementen,” Bildmessung und Luftbildwesen, Vol. 51, 1983, pp. 3-9.

Ebner, H., et al., “Integration von Bildzuordnung und Objektrekonstruktion innerhalb der
Digitalen Photogrammetrie,” Bildmessung und Lufbildwesen, Vol. 55, 1987,
pp. 194-203.

Forstner, W., ““On the Geometric Precision of Digital Correlation,” International Archives
of Photogrammeltry and Remote Sensing, Vol. 24-111, Helsinki, 1982, pp. 176-
189.

——, “Reliability and Discernability of Extended Gauss-Markov Models,”” Deutsche Geo -
ddtische Kommision, Miinchen A 98, Munich, 1983, pp. 79-103.

——, “Quality Assessment of Object Location and Point Transfer Using Digital Image Cor-
relation Techniques,” International Archives of Photogrammetry and Remote
Sensing, Vol. 25-A3a, Rio de Janeiro, 1984, pp. 197-219.

~——, “Determination of the Additive Noise Variance in Observed Autoregressive Pro-
cesses Using Variance Component Estimation Techniques,” Statistics and Deci-
sions, Suppl. Issue No. 2, 1985, pp. 263-274.

~———, “A Feature Based Correspondence Algorithm for Image Matching,” International
Archives of Photogrammetry and Remote Sensing, Vol. 26-3/3, Rovaniemi,
1986a, pp. 150-166.

———, “On Automatic Measurement of Digital Surface Models,” Schriftenreihe des Insti-
tuts fiir Photogrammetrie der Universitdt Stuttgart 11, Stuttgart, 1986b, pp. 69—
90.

——, “Reliability Analysis of Parameter Estimation in Linear Models with Applications to
Mensuration Problems in Computer Vision,” Computer Vision, Graphics, and
Image Processing, Vol. 40, 1987, pp. 273-310.

———, ““Statistische Verfahren fiir die automatische Bildanalyse und ihre Bewertung bei der
Objekterkennung und- vermessung,” Habilitationsschrift, Stuttgart, 1988.
Forstner, W, and E. Giilch, “A Fast Operator for Detection and Precise Location of Distinct
Points, Corners, and Centres of Circular Features,” Proceedings of the Intercoim -
mission Conference on Fast Processing of Photogrammetric Data, Interlaken,

Switzerland, 1987, pp. 281-305.

Gale, W.A., Artificial Intelligence and Statistics, Addison-Wesley, Reading, MA, 1985.

Giri, N.C., Multivariate Statistical Inference, Academic Press, New York, 1977.

Goshtasby, A., “Piecewise Cubic Mapping Functions for Image Registration,” Pattern
Recognition, Vol. 20, 1987, pp. 525-533.



374 Image Matching

-——, “Image Registration by Local Approximation Methods,” Image and Vision Com-

puting, Vol. 6, 1988, pp. 255-261.

Grimson, W. E. L., From Images to Surfaces: A Computational Study on the Human
Early Visual System, MIT Press, Cambridge, MA, 1981.

————, “Computational Experiments with a Feature Based Stereo Algorithm,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, 1985,
pp. 17-34.

Grin, A., and E. Baltsavias, ‘‘Adaptive Least Squares Correlation with Geometrical Con-
straints,”’ Proceedings of the SPIE, Vol. 595, Cannes, 1985.

Haggren, H., ‘“Photogrammetric Prototype System for Real-Time Engineering Applica-
tions,”” Optics in Engineering Measurement, SPIE Proceedings, Vol. 599, 1985,
pp. 330-335.

Hannah, M. J., “Computer Matching of Areas in Stereo Images,”” Ph.D. Diss., Stanford
University, Stanford, CA, Report STAN-CS-74-483, 1974.

-, “‘A System for Digital Stereo Matching,”” Phototgrammetric Engineering & Remote
Sensing, 1989.

Haralick, R. M., “Statistical and Structural Approach to Texture,” Proceedings of the IEEE,
Vol. 67, 1979, pp. 786-804.

Helava, U. V., “Digital Correlation in Photogrammetric Instruments,” International Archives
of Photogrammetry and Remote Sensing, Vol. 23-2, Helsinki, 1976.

———, "‘Object-Space Least-Squares Correlation,” Phototgrammetric Engineering & Re-
mote Sensing, Vol. 54, 1988, pp. 711-714.

Herbin, M., et al., “‘Automated Registration of Dissimilar Images: Application to Medical
Imagery,” Computer Vision, Graphics, and Image Processing, Vol. 47, 1989,
pp. 77-88.

Herman, M., and T. Kanade, “The 3D Mosaic Scene Understanding System,” in Pentland,
1986, pp. 322-358.

Hill, J. W., “Dimensional Measurement for Quantized Images,”” SRI Project 4391, Stanford
Research Institute, Menlo Park, 1980.

Ho, C. S., “Precision of Digital Vision Systems,”” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-5, 1983, pp. 593-601.

Horn, B. K. P., Robot Vision, McGraw-Hill, New York, 1987.

Horn, B. K. P., and B. L. Bachman, “Using Synthetic Images to Register Real Images with
Surface Models,” Communications of the ACM, Vol. 21, 1978, pp. 914-924.

Huang, T. S. (ed.), Image Sequence Analysis, Springer, New York, 1981.

Huber, P., Robust Statistics, Wiley, New York, 1981.

Kass, M., and A. Witkin, “Analysing Oriented Patterns,”” Computer Vision, Graphics,
and Image Processing, Vol. 37, 1987, pp. 362-385.

Klaasman, H., *“Some Aspects on the Accuracy of the Approximated Position of a Straight
Line on a quare Grid,” Computer Graphics and Image Processing, Vol. 4,
1975, pp. 225-235.

Koch, K. R., Parameterschdatzung und Hypothesentests, in linearen Modellen, Diimmler,
1987.

Kories, R. R., “Bildzuordnungsverfahren fiir die Auswertung von Bildfolgen,” Schriften-
reihe des Instituts fur Photogrammetrie der Universitdt Stuttgart, Vol. 11,
1986, pp. 157-168.

Lam, K. P., “Position Determination Using Generalized Multidirectional Gradient Codes, "’
Computer Vision, Graphics, and Image Processing, Vol. 28, 1984, pp. 228-239.



Bibliography 375

Lavine, D., B. A. Lambird, and L. N. Kanae, “Recognition of Spatial Point Patterns,”
Pattern Recognition, Vol. 16, 1983, pp. 289-295.

Li, X., and R. C. Dubes, “The First Stage in Two-Stage Template Matching,” IEEE Trans
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, 1985,
pp. 700-707.

Lindenberger, J., ““Consideration of Observation Errors when Modelling Digital Terrain Pro-
files,” Proceedings of the Workshop on Progress in Digital Terrain Modelling
of WG 111/3 of the International Society of Photogrammetry and Remote
Sensing, Lyngby, Denmark, 1987, pp. 227-238.

Longuet-Higgins, M. S., “The Statistical Analysis of a Random Moving Surface,” Philo-
sophical Transactions of the Royal Society of London, Ser. A 249, 1957,
pp- 321-387.

Maitre, H., and Y. Wu, “Improving Dynamic Programming to Solve Image Registration,”
Pattern Recognition, Vol. 20, 1987, pp. 443-462.

Markarian, H., et al., “Digital Correction for High-Resolution Images,” Photogrammetric
Engineering, Vol. 39, 1973, pp. 1311-20.

———  Implementation of Digital Techniques for Correcting High Resolution Images,
American Institute of Aeronautics and Astronautics, Report No. A72-10454, 1972.

McClure, D. E., “Image Models in Pattern Theory,” Image Modeling, Rosenfeld (ed.),
Academic Press, New York, 1981, pp. 259-276.

McGillem, C. D., and M. Svedlov, “Image Restoration Error Variance as a Measure of
Qverlay Quality,” IEEE Transactions on Geoscience Electronics, Vol. 14, 1976,
pp. 44-49.

——, “Optimum Filter for Minimizing of Image Registration Error Variance,” IEEFE
Transactions on Geoscience Electronics, Vol. 15, 1977, pp. 257-259.

Medioni, G., and R. Nevatia, “‘Matching Images Using Linear Features,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, 1984, pp. 675-68S5.

Merickel, M., and M. McCarthy, ““‘Registration of Contours for 3-D Reconstruction,” in
Proceedings of the Seventh Annual Conference of the IEEE Engineering in
Medicine and Biology Society, M. Merickel and M. McCarthy (eds.), Vol. 1,
1985, pp. 616-620.

Mikhail, E. M., and F. Ackermann, Observations and Least Squares, Dun-Donelly, New
York, 1976.

Milgram, D. L., “Computer Methods for Creating Photomosaics,”” IEEE Transactions on
Computers, Correspondence, 1975, pp. 1113-19.

Moravec, H., Obstacle Avoidance and Navigation in the Real World by a Seeing Robot
Rover, Technical Report CMU-Ri-TR3, Carnegie-Mellon University, Pittsburgh,
1980. ‘

Munteau, C., *“Evaluation of the Sequential Similarity Detection Algorithm Applied to Binary
Images,” Pattern Recognition, Vol. 13, 1981, pp. 167-175.

Nagel, H.-H., “Displacement Vectors Derived from Second Order Intensity Variations in
Image Sequences,” Computer Vision, Graphics, and Image Processing, Vol. 21,
1981, pp. 85-117.

Nagel, H.-H., and W. Enkelmann, “Iterative Estimation of Displacement Vector Fields from
TV-Frame Sequences,” Proceedings of the Second European Signal Processing
Conference, Erlangen, Germany, 1983, pp. 299-302.

———, “An Investigation of Smoothness Constraints for the Estimation of Displacement
Vector Fields from Image Sequences,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-8, 1986, pp. 565-593.



376  Image Matching

Negahdaripour, S., and B. K. P. Horn, “A Direct Method for Locating the Focus of Ex-
pansion,” Computer Vision, Graphics, and Image Processing, Vol. 46, 1989,
pp. 303-326.

Ogawa, H., “Labeled Point Pattern Matching by Delaunay Triangulation and Maximal
Cliques,” Pattern Recognition, Vol. 19, 1986, pp. 35-40.

Ohta, Y., and T. Kanade, ‘Stereo by Intra- and Inter-Scanline Search Using Dynamic Pro-
gramming,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-7, 1985, pp. 139-154.

Ohta, Y., K. Takano, and K. Ikeda, “A Highspeed Matching System Based on Dynamic
Programming,” Proceedings of the First International Conference on Computer
Vision, London, 1987, pp. 335-342.

Paderes, F. C., E. M. Mikhail, and W. Forstner, ‘“‘Rectification of Single and Multiple
Frames of Satellite Scanner Imagery Using Points and Edges as Control,” Pro-
ceedings of the NASA Symposium on Mathematical Pattern Recognition and
Image Analysis, Houston, 1984.

Pagano, M., “Estimation of Models of Autoregressive Signal Plus White Noise,” Annals
of Statistics, Vol. 2. 1984, pp. 99-108.

Panton, D. J., “A Flexible Approach to Digital Stereo Mapping,”’ Proceedings of the DTM
Symposium, American Society of Photogrammetry, St. Louis, 1978, pp. 32-60.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, 1965; 2d ed., 1984.

Park, S. K., and R. A. Schowengerdt, “Image Reconstruction by Parametric Cubic Con-
volution,” Computer Vision, Graphics, and Image Processing, Vol. 23, 1983,
pp. 258-272.

Pentland, A. P. (ed.), From Pixels to Predicates, Ablex, Norwood, NJ, 1986.

Pereira, J. A. G., and N. D. A. Mascarenhar, “Digital Image Registration by Sequential
Analysis,”” Computers and Graphics, Vol. 8, 1984, pp. 247-253.

Pertl, A., “Digital Image Correlation with the Analytical Plotter Planicomp C100,” Inter-
national Archives of Photogrammetry and Remote Sensing, Vol. 25-A3a, Rio
de Janeiro, 1984.

Price, K. E., “Relaxation Matching Techniques— A Comparison,”” JEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-7, 1985, pp. 617-623.

Rice, T. A., and L. H. Jamieson, ““Scaling and Rotational Registration,”” in Computing
Structures and Image Processing, M. J. B Duff et al. (eds.), Academic Press,
San Diego, 1985.

Rosenfeld, A., (ed.), Image Modeling, Academic Press, New York, 1981.

Ryan, T. W., R. T. Gray, and B. R. Hunt, “Prediction of Correlation Errors in Stereo Pair
Images,” Optical Engineering, Vol. 19, 1980.

Sadjadi, F. A., “‘Performance Evaluation of Correlations of Digital Images Using Different
Separability Measures,”” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-4, 1982, pp. 436-441.

Schachter, B., “Long Crested Wave Models,” Image Modeling, Rosenfeld (ed.), Academic
Press, New York, 1981, pp. 327-342.

Schalroff, R. J., and E.S. McVey, ““Algorithms Development for Real Time Automatic Video
Tracking Systems,” Proceedings of the Third International Computers and Ap-
plications Conference, Chicago, 1979, pp. 504-511.

Schewe, H., ‘““Automatische photogrammetrische Erfassung von Industrie oberflichen,”
IDENT /Vision, Eindelfingen, 1989,



Bibliography 377

Schewe, H., and W. Forstner, ““The Program PALM for the Automatic Line and Surface Mea-
surement Using Image Matching Techniques,” International Archives of Pho-
togrammetry and Remote Sensing, Vol. 26-3/2, Rovaniemi, 1986, pp. 608-622.

Schulte, S., “Modellierung von Beobachtungsreihen durch ein erweitertes Autoregressives
Modell,” Deutsche Geoddtische Kommision, Minchen C 327, Munich, 1987.

Shapiro, L. G., and R. M. Haralick, “A Metric for Comparing Relational Descriptions,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-
7, 1985, pp. 90-94.

Sharp, J. V., R. L. Christensen, and W. L. Gilman, ‘“Automatic Map Compilation Using
Digital Techniques,” Photogrammetric Engineering, Vol. 31, 1965, pp. 223-239.

Smith, G. B., and H. C. Wolf, “Image-to-Image Correspondence: Linear-Structure Match-
ing,” Proceedings of the NASA Symposium on Mathematical Pattern Recog-
nition and Image Analysis, Houston, 1984.

Spiegelhalter, D. J., “A Statistical View of Uncertainty in Expert Systems,” in Artificial
Intelligence and Statistics, W. A. Gale (ed.), Addison-Wesley, Reading, MA,
1985.

Steiner, D., “Digital Geometric Picture Correction Using a Piecewise Zero-Order Transfor-
mation,”” Remote Sensing of Environment, Vol. 3, 1974, pp. 261-283.
Stockman, G. C., “Object Recognition and Localization via Pose Clustering,” Computer
Vision, Graphics, and Image Processing, Vol. 40, 1987, pp. 361-387.
Stockman, G. C., §. Kopstein, and S. Bennett, ‘“Matching Images to Models for Image
Registration and Object Location via Clustering,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PAMI-4, 1982, pp. 229-241.

Svedlov, M., C. McGillem, and P. Anuta, ‘‘Analytical and Experimental Design and Analysis
of an Optimal Processor for Image Registration,” LARS Inf. Note 090776, Purdue
University, West Lafayette, IN, 1976.

Terzopoulos, D., “Image Analysis Using Multigrid Relaxation Methods,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, 1986a,
pp. 129-139.

——— “‘Regularization of Inverse Visual Problems Involving Discontinuities,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 2,
1986, pp. 129-139.

———— “The Computation of Visible-Surface Representations,’” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. PAMI-10, 1988, pp. 417-438.

Thorpe, C. E., An Analysis of Interest Operators for FiDO, Technical Report CMU-Ri-
TR-83-19, Carnegie-Mellon University, Pittsburgh, 1983.

Thurgood, I. D., and E. M. Mikhail, *““Subpixel Mensuration of Photogrammetric Targets in
Digital Images,”” School of Civil Engineering, Purdue, University, West Lafayette,
IN, CH-PH-82-2, 1982.

Tian, Q., and M. N. Huhns, “Algorithms for Subpixel Registration,” Computer Vision,
Graphics, and Image Processing, Vol. 35, 1986, pp. 220-233.

Venot, A., J. F. Lebruchec, and I. C. Roucayrol, “A New Class of Similarity Measures for
Robust Image Registration,”” Computer Vision, Graphics, and Image Processing,
Vol. 28, 1984, pp. 176-184.

Voorhees, H., and T. Poggio, ““Detecting Blobs as Textons in Natural Images,” Proceedings
of the Image Understanding Workshop, Los Angeles, 1987, pp. 892-899.

Vosselman, G., “An Investigation into the Precision of a Digital Camera,”” Engineering
Thesis, TH Delft, Department of Geodesy, Delft, 1986.



378 « Image Matchiﬁg

Vosselman, G., and W. Forstner, “The Precision of a Digital Camera,” International
Archives of Photogrammetry and Remote Sensing, 27-B1, Kyoto, 1988, pp. 148-
157.

Wang, C. Y., et al., “Some Experiments in Relaxation Image Matching Using Corner Fea-
tures,”” Pattern Recognition, Vol. 16, 1983, pp. 167-182.

Witkin, A., D. Terzopoulos, and M. Kass, “Signal Matching through Scale Space,” Inter-
national Journal on Computer Vision, Vol.1, 1987, pp. 133-144.

Wrobel, B., ““A New Approach to Computer Stereo Vision and to Digital Photogramme-
try,”” Proceedings of the Intercommunication Conference on Fast Processing of
Photographs, Interlaken, Switzerland, 1987, pp. 231-258.

Zimmermann, G., and R. Kories, “Eine Familie von Bildmerkmalen fiir die Bewegungs-
bestimmung in Bildfolgen,” Informatik-Fachberichte, Vol. 87, Springer, 1984,
pp. 147-153.



