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Abstract

The paper describes a concept for object location, when not only image features but also the model
description is uncertain. It contains a method for probabilistic clustering, robust estimation and a measure
for evaluating both, inaccurate and missing image features. The location of topographic control points in
digitized aerial images demonstrates the feasibility of the procedure and the usefulness of the evaluation
criteria.

1 Introduction

Object location is a central issue in Computer Vision. The task is to determine the pose, i.e. the position
and the orientation of an object with respect to a reference frame, for which a model is known either derived
from a CAD-system, (cf. GrRiMsoN/LozaNo-PEREZ 1984,1987, FAucErRAS/HEBERT 1987, HorAUD 1987),
sensed from a prototype (FAN 1988), or, more challenging, described by a set of rules, which form a generic
model of the object. In this case not only the pose i. e. few parameters-are unknown, but also the individual
structure of the object (Fua/HansoN 1987).

Main research issues are the computational complexity of the matching problem, which requires strong
constraints or heuristics to lead to practially acceptable solutions and the problem of representing 3-
dimensional shapes which are suitable for being derived from both CAD-systems and digital images au-
tomatically under broad conditions.

This paper deals with the problem of uncerfainty encountered during object location from digital images.
Uncertainty of the raw data, of the feature extraction, about the used thresholds, about the assumed model,
due to wrong or missing correspondencies between model and image features altogether result in uncertain
values for the pose parameters. It is the aim of the paper to show, that for this special task of object
location the tools provided by mathematical statistics and probability theory are sufficient to describe the
uncertainty of the pose parameters in a compact form. The quality of the pose estimation can be used as a
means for selfdiagnosis, a prerequisite for any automated system to be used in practice.

In contrast to most other approaches, also the uncertainty of the model is taken into account. Moreover,
the theory enables to test the validity of the model and to evaluate the effect of both imprecise and missing
image features onto the result.

The motivation for this study resulted from a task at the photogrammetric department of the Landesver-
messungsamt Nordrhein-Westfalen. For their orthophotoproduction they have built up a data base of more
than 20000 topographic control points, mainly gable points of house roofs. They use their location in the
image for determining the orientation of the aerial photos (scale appr. 1:12000). The X,Y and Z world
coordinates of the gable points and a sketch of the roof in orthogonal projection are given. A first prototype
program to locate the control points automatically reveiled the difficulty to transparently set thresholds in
the image analysis and the matching procedure which required a theoretically more founded setup described
in this paper.

The whole identification procedure consists of 4 steps (cf. Fig. 1).

1. Interpretation of the 2-D-sketches, resulting in a 3-D-description. It not only contains the coordinates
in the world coordinate system, but also their uncertainty as the sketches are not fully in scale (cf.
Fig. la — 1b).

2. Projection of the 3-D-model into the aerial image using the appropriate values for position and orienta-
tion of the camera from a flight plan leading to a 2-D-wire frame model in the image, again containing
the uncertainty, now of bath the sketch and the appropriate orientation parameters (cf. Fig. 1b —
lc).
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Figure 1: Example for matching roof model to image edges

3. Exitraction of straight line segments from a digitized subsection of the areal image, leading to a list
of line segments, also here containing information about the geometric uncertainty due to the image
analysis (cf. Fig. 1d — 1e).

4. Matching the image features to the model features taking the geometric relations and the uncertainty
into account (cf. Fig. lc & le).

Section 2 outlines the theoretical background of the approach. Sections 3 and 4 describe the chosen rep-
resentation of model and image features. Section 5 contains the used matching procedure. An example
of the procedure in section 6 demonstrates the feasibility of the approach and the usefulness of the chosen
evaluation criteria.

2 Conceptual Background

The ultimate goal of our task is to determine the position of the control points, i. €. the gable points. A
reasonable requirement is the location to be reliable in the sense that inaccuracies of model or image features
on one hand and false matches on the other hand do not deteriorate the coordinates of the controlpoints too
much. This notion of reliability has been developed by BAARDA 1967,1968 for the use in geodetic networks
and seems to be appropriate here too, a review of the theory is given by FGRSTNER 1987,

2.1 The Functional and the Stochastical Model

Assume a certain list of matched features a, = {ax} is hypothesized to be acceptable then we can determine
the optimal transformation T with parameters p using the nonlinear model (stochastical variables are
underlined)

E{a,) = T(p)=T(p:,ps.p1) (1)
E(Ef) = Ps (2)
E(p) = i , (3)
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or after linearisation

%, A; Ay A ¥,
x+r=Ay or X |+ gp | = o I 0 I (4)
X; 0 0 I L .
with
x, = (x5)T the vector of observations

Xk = 8y — T(plo)) the differences between image features and the predicted model features
p® = (pgo}:r’p;u}r’ pse}T)T approximate values for the transformation parameters for the translation

(p¢), the form (py) and the location parameters (p)

¥= (&T, X?: &T)T the estimated corrections to the approximations

ay the parameters describing the image feature &

r the corrections to the observations x

A, = (A, Aj A the partial derivations of T with respect to the unknown parameters

FEqgs.1 to 4 contain the geometric relationship between the image features and the unknown parameters, in
nonlinear and linearized form. They represent the projection of the object into the image. The unknown
parameters describe the form of the object and the orientation of the image with respect to the object; the
task is equivalent to locating the object with respect to the image coordinate system. The additional egs. 2
and 3 contain the a priori knowledge about the form and the orientation parameters. The functional model
thus is a statement about the expectation about the observed values, or more technically about the first
moments of the stochastical variables associated with the uncertain input values.

The stochastical model describes the uncertainty of the observed image features a; and of the approximate
5,0) and pso). The uncertainty of the stochastical variables is represented by their second moments
or their variances:

values p

D(x) = D(a,p,.p) = diag (D(a,), D(p,): D(p))) = diag (Coos Cs7,Cit) = Cry (5)

In case the covariance matrices Cyy and Cyp are diagonal the standard deviations o, and oy, fully describe
the uncertainty of the model and the approximate values. The matix C,, in general will not be diagonal,
describing the interdependencies between the geometric feature values derived from the image.

The model eq. 4 is general enough to represent a large class of object location tasks. We will specify the
individual parts later.

2.2 Precision and Sensitivity of Estimated Parameters
The parameters can now be estimated from a best linear unbiased estimation procedure:
¥ =(ATCZA) " ATC I x (6)

The influence of random errors onto the result, i.e. the precision can easily be derived by error propagation.
The covariance matrix

Cu Ciy Cy
C, = (ATClA) ' = | Cx Cy Cp (7
Ci Ciy Cy

contains the variances of all unknown parameters. This specially holds for the translation parameters p,
and the form parameters py. i

A test on the residuals r, reveals outliers in the image features, which may result from a wrong corre-
spondence. A test on the residuals r; may reveal errors in the assumed form of the object. For these tests an
assumption about the distribution of the stochastical variables is required. A Gaussian distribution seems
to be sufficient in all cases.

Even if the derived standard deviations are acceptable the result may be uncertain due to two reasons:

1. The ommittance of one of the image features say xx may lead to a large change of the pose parameters

459



¥ = (¥ ¥1). An upper bound for the influence (indicated by V) of image feature x). onto an arbitrary
function f(y,) of ¥, is given by

Vif(F0) S Os(y,) Bk th = () Ok ' (8)

where

L ]

Tg(y,) is the standard deviation of f(¥;)

gk describes the geometric sensitivity of the result with respect to the k-th feature and - for simplicity
at the moment assuming no form parameters to be estimated - can be derived from

M = f\maz[ci’:k:ﬁk (I - Cigig)_lj (9)

with Czz, = AxCyy AT, where Ay is the k-th submatrix of A, = (Ay, Ay, Ap) = (AL,.. . AL, .. )T
(cf. FORSTNER 1983)

e 1) is the statistic for testing the significance of the residual ri with respect to wrong correspondencies
(namely the squareroot of a Fisher-teststatistic)

e &) is an factor depending on px and tx, thus on the k-th feature only

Hence, even if oy and t; are acceptable due to a weak geometry the k-th feature may heavily influence the
result if g is large. On the other hand even if oy and # are not acceptable the influence of a) onto the result
may be small, indicating that the feature may be superfluous. The upper bound oy p i thus measures the
empirical sensitivity of the result. The normalized and dimensionless empirical sensitivity factor & = pui 14
therefore should be in the range up to 1 - 2.

2. The theoretical sensitivity does not depend on the data and measures the ability of the result to absorb
wrong matches which are undetectable by a test on the residuals ry. The ability to detect (gross) errors
depends not only on the geometry, thus on g, but also on the used test, its degrees of freedom dof, the
significance level § = 1 — a and the required minimum power (3 for the test. We obtain the upper bound
for the influence of an undetectable error to be

Vorf(¥p) € 0(yy) Bk b0 = T1(y,) bok (10)

with 8y = (o, Bo,dof), e. g. being & = 4.13 for dof = 1,a = 0.001 and B = 0.80 (c¢f. BaAARDA 1967,
1968, FORSTNER 1987).

The relevance of this measure is its ability to indicate missing image features, which are necessary for
the determination of the pose parameters, as then the theoretical sensitivity factors &g, of the other features
may easily reach values greater than 4 — 5. The relevance of the standard deviation of the pose estimates,
measuring the influence of the random errors only, is reduced in this case. A similar reasoning can be applied
to the approximate values specifying form and orientation. This leads to statements about the sensitivity
of the result with respect to gross errors in the model or in the assumed orientation of the camera.

The upper bounds egs. 8 and 10 contain information on the effect of random and gross errors, as well as
missing data. As they are in the dimension of the resultant parameters, they are easily interpretable.

3 Representation of Uncertain Models

The basic idea of representing uncertain models is to describe the object in a parametric form and to specify
the uncertainty of the parameters by their standard deviation. Though we only discuss the models used in
a specific application the potential of the method will become clear (c¢f. SMITH ET AL. 1987).

In our case the model shows up in three different versions, which can be derived by geometric transfor-
mations each involving a well defined set of parameters:

a: The planar coordinates of the nodes in the sketch can be expressed by a few parameters, e.g. the width
of the roof (cf. Fig. 2). The scale can directly be taken into account due to the given, and fixed coordinates
of the two gable points, which therefore serve as an intuitive coordinate system. The imprecision of the
sketches leads to reasonable standard deviations of appr. 10-15% of the lengths. The Z-values of the house
depend on the slope of the roof which is unknown. Due to this lack of knowledge we allow each roof-plane
to be of type horizontal, positive slope or negative slope unless geometric conditions form constraints on
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the choice. The interpretation of the sketches, which is necessary here, will not be discussed. We assume

that one choice, among several has been made. Then the slopes are additional free parameters specifying

the form. Their expected value is assumed to be approx. £45° or 0°, the standard deviation to be o = 15°.
The 3D-coordinates (X, Y;, Z;) of the model in full scale then depend on the parameters py:

X B
Y | =Bi(ps)=| By | Ps (11)
Z Bzi

i

For the simple roof in Fig. 2 we obtain with X = (X;),Y = (¥;) and Z = (Z;) and the two parameters

I y i| Brio Beit  Beia | Byio  Byin  Byia | Baio By Biin
6 2 3 1 0 0 0 0 0 0 0 0 0
1 2 0 0 U] 1 0 0 0 0 0

3 0 -1 0 0 0 1] 0 —5 —w

| sl o a1 o1 o o0ol|lo - -w

| w . 5 0 +1 0 0 0 0 0 -  —w

5 1 4 6 0 +1 0 1 4] 0 0 -5 -w

Figure 2: Example for a parametric description of a sketch; w = width of the roof, I = length of the roof

pfy = width = w and py, = slope and using ps, = I the elements in the table of Fig. 2. B and Cjy
symbolically represent the 3D-model.

b: The transformation T} of this 3-D-model into the world coordinate system requires no new uncertain
parameters.

¢t The projection T3 of the 3-D-world model into the image depends on 6 parameters from which the
translation p; = (Xo, Yp) is assumed to be free (or with very large standard deviations, measured in pixels).
The four other parameters pj, namely scale and orientation, are assumed to have a precision of 5-10 % and
2% — 40 resp. Thus the image coordinates of the projected model can be derived for each point ¢ by

b; = (;) =T (pe,pi) T} Bi(py) (12)

For a point pair ax = (b;,b;), forming an edge in the projected model this after linearization yields the
right hand side of the first line in eq. 4.

Without additional knowledge the parameters then would be free. The a priori knowledge of the form
and the orientation therefore is expressed by egs. 2, 3 or the 2nd and 3rd line in eq. 4.

4 Representation of Straight Edges Extracted from Images

Any extraction scheme can be used for deriving straight edge elements (cf. e. g. BURNS ET AL. 1986,
NEvATIA/BABU 1980). The uncertainty of the straight edges can usually be derived from the extraction
process itself. We use a weighted least squares fit through the extracted edge elements, determined to
subpixel position. The weights w; are proportional to the squared value of the gradient. In alocal coordinate
system (u,v) (cf. Fig. 3), which lies near the principle axes of the edge elements the covariance matrix for

y
I u
mﬁ E
X
s .
Figure 3: Representation of edge and local coordinate system (u,v)

the parameters @ and m for the straight line v = @ + mu is diagonal and given by: )
a 2 1/ E w; 0 ’
o(2) =15 1yt "

461



where the sums are taken over all edge elements. The uncertainty of the u-coordinates in this calculation
can be neglected. The v-coordinates of the end points will be correlated due to the common factor . The
u-coordinates of the edges have an accuracy which can be explained merely by rounding errors, thus can be
treated as uncorrelated with standard deviation o, = 1/4/12 pixels.

The extracted edge segment now is represented by three groups of observations:
1. The pair of v-coordinates with:

2 2
Cp=D[%) = o0 Tus or Wy, =W|[% )= " Y )_co (14)
e [SETIC TR Ye Wywe Wy,
2./3. The u-coordinate system of starting point and end point resp.:

D(u,) =02, or w,, =1/d2 and  D(m)=02 or w, =1/c? (15)

The weights will be modified in the robust estimation, allowing partial matches of image and model segments
(4 cases). The complete weight matrix W) of (u,, n,, %., v,)7 is transformed into the zy-coordinate system

using the individual rotation matrix R = It‘)‘ﬁ R[; ) with Ry = ‘C(s)fn(ﬁqb Eg;‘:;
wed) = RWEYIRT (16)

5 The Matching Procedure

The matching of the image edge segments to the model edges is performed in a two step procedure:

o The approximate position of the projected model in the image is determined via a probabilistic clus-
tering technique, leading to a small set of candidate matches.

e The final correspondence is established via a rebust estimation, which corresponds to the well known
relaxation techniques.

5.1 Probabilistic Clustering for finding Candidates for Correspondencies

The approximate position of a reference point of the projected model is determined via clustering. In
contrast to the usnal procedure for clustering the varying uncertainty of the hypothesized position is taken
into account when filling the accumulator. The final cluster is a discretized version of the probability density
function (p.d.f) pzy(z,y) of the reference point.

For each match of image feature ¢ with model feature j we get a range of expected positions for the
reference point, as the image segments in general are shorter than the model segments. For a fixed position
t, t € [0,1] the p.d.f. is given by

_ 2 _ 2
pzy(mayliijt):zﬂ_ldg_t e {_%(a x(t));;(y y(t))} an

where the variance oy = (1/2+ (sije/ i) )az+a,l , depends on the distance s;j; of the midpoint of the image
segment from the reference point, its variance o2 , the length I; of the image segment and the uncertainty
of its endpoints o?, neglecting the correlations in thxs step.

Fo = (2(0),y(0)) and Py(z(1),y(1)) are the extreme positions the reference point may occupy (cf. Fig.
4a). The p.d.f. p:(t|4,j) is assumed to be an equal distribution e(|%, 7) on the straight line segment between
Py and P;. The probability Pi;(4, j), that ¢ and j correspond is assumed to be 1/|M| where M is the set of
all matches. Then the cluster is determined by

1 1
Py, 9)= 3 [ /pxy(:c,ylt,;r,t)pz(tlw) dt| Py(i,5)= ] > /pzy(m,yit,a,t}e(thd) dt (18)
ijeM |20 €M =g
Py, y|t, 7,1) is approximated by a separable binomial distribution and the integrals by sums over all
positions on the grid points of the accumulator between the extrems P, and P;. Examples for the integral
in eq. 18 are shown in Fig. 4b (s, is approximated by s;;05 here).
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Figure 4: Principle of edge matching (a), example for distribution in accumulator for a few edges (d),
selected edges (b), model (c)

With the approximate position of a reference point one easily can derive a set of candidate matches
between image and model features. Specifically we obtain a set of straight image segments with a label
indicating to which model segment they may correspond. The threshold for this conservative decision has
to take the uncertainty of the model into account.

5.2 Robust Estimation and Final Evaluation

The list of preliminary correspondencies now is cleaned using the model eq. 4. As wrong correspondencies
may be interpreted as outliers or with large deviations from the mean value, a robust estimation is performed
(cf. HuBER, 1981). The principle is simply weighting down those observations which have large residuals
or a large test statistic, In detail we use the following iteration scheme

Wi =W sty wlit) = o fe0) f08)) wlt = ol £(@) £() (19)

For the first 3-6 iterations and the following 1 or 2 iterations the weight functions

A@) =1/\1+ (/) and fo(t) = exp {-0.5(t/c)*} (20)

resp. are used. ¢,t,, and t,, are the square-rooted Fisher-test statistics for the complete segments and the
u-coordinates of the starting and the end point resp. c is a critical value, e. g. ¢ = 3. The first weighting
function leads to a mixture between ;- and L;-norm minimization and guarantees global convergency for
linear problems, the second cancels the effect of large outliers onto the result. :

As starting and end point are treated separately all possible 4 cases of an image segment matching a
model segment can be realized. All correspondencies fitting to the final result, i. e. passing the test are
assumed to be correct. The final result is then analyzed with respect to precision and sensitivity according
to section 2.2. It is accepted if the image features, non detectable errors in the correspondencies and the
assumptions contained in the model do have an effect onto the resultant position which does not exceed a
prespecified threshold, e. g. a few pixels.

6 Example

From all the image segments in Fig. le the clustering process (cf. Fig. 5a) selected 17 segments as
candidates (cf. Fig. 5b). The robust estimation selected the 8 segments shown in Fig. 5c. The precision
of the reference point was o, = 25.9 um. The check on the theoretical sensitivity reveals edge segment 7
to have the strongest possible effect onto the result with 8oy = 4.9 (cf. Table 1),i. e. with a maximum
influence of Vgrp = 0p+8g7 = 126 pum, which is at the border of being acceptable. In case only the 4 segments
in Fig. 5d would have been selected by the robust estimation, the precision of the reference point would
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Figure 5: Cluster for approximate position (a), preliminary matches (b}, matches selected by robust esti-
mation (c), ficticiously reduced sample (d)

case precision sensitivity | #; ®2 23 T4 %5 T a7 g | width slope
(c) o, =25.9um | empirical | 0.5 1.1 1.0 1.1 16 1.3 1.3 1.0| 0.01 0.05
theoretical | 3.1 2.9 2.7 14 34 36 49 32| 0.11 0.79
(d) | op = 81.5um | empirical S = - 70 06 03 4.0 0.8 0.09
theoretical | — - - 145 29 3.1 143 - 1.4 5.0

Table 1: Final evaluation of design for solutions (c) and (d) from Fig. 5. Sensitivity factors & and éox

have been a, = 81.5 um. Also, due to the lack of stability errors in the matching may have influenced the
result up to dpq = 14.5 or up to 1.2 mm, which is appr. 60 pixels. Especially the high value of 804 indicates
missing support for the model from the image. It is interesting to note, that also the apriori assumption
about the slope of the roof has a significant influence onto the position of the reference point, namely up to
0.4 mm. As the test statistics all were accepted these values at the same time represent upper bounds on
the empirical sensitivity of the result.
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