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The analysis of a mensuration problem aims at an evaluation of the suitability of the design
of the measuring process for a specific task and at an assessment of the actually obtained
measurements and of their influence onto the result. The concept of quality control, as it has
been developed by the Netherlands geodesist W. Baarda is outlined. This theory provides
objective quality measures, which take the geometry of the design and the used estimation and
testing procedure into account: The evaluation of the design is based on measures for the
precision, the controllability, and the robustness, which themselves can be used for planning
purposes. The evaluation of the data is based on a statistical test, the estimated size of possible
blunders and on the influence of the observed values onto the result. Three examples, namely
template matching and absolute and relative orientation of cameras, demonstrate that the
measures make intuitive evaluation precise and that they seem to besuitable for automatic
quality control of mensuration problems encountered in computer vision. ©1987 Academic Press,

Inc.

0. INTRODUCTION

0.1. General

Many mensuration problems in computer vision lead to or can be reduced to
linear regression. Examples are template matching, the determination of the param-
eters of the camera orientation based on a number of given points in object space
which have been identified in an image, the estimation of motion parameters of a
solid object observed in an image sequence, the approximation of a surface based on
irregularly distributed points using a polynomial or a finite element description of a
surface or just determining a best fitting straight line through a set of given points.
Least squares techniques are standard for solving such tasks. They are simple to
apply as they lead to a system of linear equations, use all information contained in
the data simultaneously and under quite general assumptions lead to optimal
estimates. Moreover, least squares techniques in conjunction with the statistical
testing theory provide means for a thorough evaluation of the data and the design.

During the last two decades, however, this technique had to suffer from continu-
ous attacks. In all cases the reason can be brought to one single point: least squares
estimates are not robust enough to be practical, 1.e., the basic assumptions of least
squares techniques are said to be not realistic enough to yield acceptable results.
There are in principle two ways out of this situation, namely the use of robust
estimation procedures or the use of diagnostic methods based on a geometric and
statistical analysis of data and design.

Robust estimators (cf. [14], [17]) have been developed in order to eliminate the
effect of blunders or gross errors, systematic errors, neglected correlations, simplified
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models, weak and uncertain assumptions, etc. These effects actually can prevent
least squares estimates from being acceptable and—what is even more impor-
tant—can hide behind small residuals or excellent fits of data and model. Such
deficiencies also need not necessarily produce large variances of the estimates. So
the analyst is lulled into security. Robust estimators really can help and be efficient
if the number of unknown parameters is small compared with the number of
observed values and if a second condition holds which is not so easy to prove: none
of the observations has to be decisive for a single parameter as it would be not
controllable within the system. Such situations may easily occur and more likely do
hide in large systems.

Data analysts early became aware of this situation and required robustness of
design ([1-5,7]). Robustness of design, a notion which precisely characterizes the
problem, has to do with “leverage points,” “spurious observations,” “nondetectable
gross errors,” “nonseparable effects,” etc. The message of this school is: Exploit the
full information least squares techniques offer together with statistical analysis and
try to plan the experiments properly to avoid nonrobust design. The aim here is to
document the quality of the least squares estimates by demonstrating that

—statistical tests have picked out blunders, model errors, etc. and

-——nondetectable gross errors or systematic errors only have limited effect on
the result.

The approach of robust estimation obviously has to be supported by such an
analysis of the design of the experiment in order to check the assumptions of the
estimation process. Though robust estimators are effective for data cleaning they
prevent a proper analysis of the results because the modelling of expected errors,
especially outliers, are integrated into the basic assumptions. On the other hand, the
approach of the statistical testing theory provides a clear framework for quality
control in design, estimation, evaluation, and improvement of experiments.

Now quality control is an inherent problem in all applications of computer vision
for mensuration. The geometrical relations between the images and the objects,
especially in stereopsy and image sequence analysis are too heterogeneous to allow a
simplified analysis, especially if additional information, such as geometrical or
dynamic constraints have to be taken into account. Automation needs self-diagnosis
(cf. [12, 19]) which in this context can be based on well-established techniques for
describing the uncertainty of measurements, their effect onto the result, and for
analyzing the suitability of the design for specified tasks.

0.2 Concept of Statistical Models for Mensuration

The aim of measurements is to get information about reality. Based on a
mathematical model one develops a certain measurement procedure including the
specification of instruments, the design of the network, etc. This measurement
process can be interpreted to pose questions to reality. Answers from reality are the
observed values, say x. They only have a meaning with respect to the questlons
posed in the context of the assumed model.

The mathematical model usually contains several unknown parameters, denoted
by a vector y, which generally are not directly observable. It is the task of the design
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to achieve a measuring process which allows the derivation of these unknown
parameters from the observed quantities with a required quality.

The actual measurement process is too complicated to be described in detail.
[Calibration of instruments tries to guarantee that the observed values are related to
the values in the model up to a certain precision. Usually also other parameters,
which characterize the conditions during the measuring process are recorded (e.g.,
temperature) even if they are not directly included in the basic mathematical model.
But they are expected to be used in the evaluation phase.

The mathematical model comprises the assumed geometrical and physical rela-
tions between the observations and the unknown parameters. Thus the observations,
appearing 1n the model are abstractions of the observed values, It is common to
treat the observed values x as realizations of stochastic variables x, which appear in
the model. The model is not set up for the observed values x but for (functions of)
the observations x, e.g., the expectations E(x) or the variances V(x) = 2 . For
practical reasons the assumed relations between the unknown parameters y and the
observations x are kept as simple as possible and as complex as necessary for the
specific task.

In order to be able to check the model we have to describe alternative models,
making the expected errors in the model explicit. The checks and tests based on
these alternatives thus can also be interpreted as questions posed to reality where
the answers of reality, e.g., in the form of test statistics, again have a meaning only
within the context of the model and its alternatives.

Altogether the amount of information we obtain from the observed values and
their assessment essentially depends on the experience and creativity of the designer
and on the ability to translate his ideas into mathematically formulated models for
the measuring and evaluation process.

0.3. Outline of Paper

In the following sections we want to show how one can get answers to questions
concerning the actual observed values and concerning the quality of the design of
the measurement process with respect to these questions. The outlined concept of
quality control has been developed by the Netherlands geodist W. Baarda in the
60’th and early 70’th ([1, 2, 4]). We will concentrate on the error detection problem.
The concept, however, can also be used for systematic errors, thus for more general
deficiencies in the mathematical model.

In detail we will treat the following questions:

1. (a) How can one decide whether a mathematical model has to be rejected in
favor of an alternative model? This leads to a statistical test (with a test statistic w,),
which may be used, e.g., for blunder detection.

(b) How large must the difference between the mathematical model and an
alternative model be in order to reject the mathematical model? It is shown that this
minimum difference (the noncentrality parameter 8, of the distribution of w, under
the alternative hypothesis), in general, is much larger than the critical value of the
test statistic, if the decision has to be correct with a high probability.

2. (a) How large 1s the suspected model error? How large is a gross error in a
suspicious observation? In general only a certain percentage of a gross error is
shown in the residuals of a least squares fit. With this percentage, namely the
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redundancy number r;, which can be derived from the design of the measuring
process the size of a gross error can be estimated from the residuals.

(b) What is the minimum size of a gross error to be detectable? This lower
bound (V,x;) for gross errors, which are detectable with a certain minimum
probability, in general, is much larger than three times the standard deviation of the
observations and describes the controllability of the measuring design or the
internal reliability according to Baarda.

3. (a) What influence does an observed value have on the result? The effect
(v,f) of an observation (x;) on the result ( /) may be decisive for the elimination of
an observation and for the acceptance of the result.

(b) What maximum influence do nondetectable gross or systematic errors
have on the result? This maximum influence (V,;f) of undetectable errors on the
result (/) describes the sensitivity or the robustness of the design of the measuring
process with respect to gross errors or the external reliability according to Baarda. It
may be decisive for the optimization or acceptance of the design.

Section 1 discusses the geometry of a design, as answers to questions 2(a) and 3(a)
(estimated size of errors, effect of observations) can be given without referring to
statistical tests. The statistical test and its power are discussed in Section 2 leading
to answers of questions 1 (a,b) (test and noncentrality parameter). The link of
geometric and statistical notions in Section 3 then forms the basis for evaluation of
the reliability of the design giving answers to questions 2(b) and 3(b) (controllability
and sensitivity). Three examples from computer vision, namely template matching,
absolute and relative orientation of cameras, provide a demonstration of the
usefullness of these concepts.

1. GEOMETRY OF DESIGN

1.1. Precision of Parameter Estimation

Let the linear model
E(x)=A4dy V(x)=2Z =050 (1.1)

be given. It relates the n expected values E(x) of the observations x and the u
unknown parameters y in a linear manner. The coefficients (a, ;) of the design
matrix A4 are assumed to be known.They could be derived from a linearization of a
nonlinear model E(x) = f(y), 4 then being the matrix of partial derivatives df,/dy,.
The matrix A4 is assumed to have full rank, with n > u, thus rk(A4) = u. The
variance covariance matrix 2 of the observations is assumed to be known except for
an unknown variance factor o4. The weight-coefficient matrix Q is assumed to be
regular. For a detailed treatment of this topic, cf. [23, 24].

Starting from observed values x” = (x;, x,,..., x,)’ the overconstrained equation
system (1.1) can be solved leading to estimates y for the unknown parameters (the
hat ~ stands for estimate):

P=(A24) A % (1.2a)
= (404)"' 40 'x. (1.2b)
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[f the x are assumed to be realizations of normally distributed stochastic variables
x, Eqs. (1.2a) and (1.2b) are the maximum likelihood estimates for y. The estimate is
independent of the variance factor of. J also is the best linear unbiased estimate
(BLUE) for y, where, except for the expectation and the variances, no assumption
on the distribution of x has to be made. Equation (1.1) can also be solved by leas?
squares techniques using a weight matrix W of the observations:

P = (AWA) A Wx. (1.2¢)

Obviously the estimates coincide if W = Q! is chosen.
With § we can derive the firted values

X = Ay (1.3)
which “fit” the model and are estimates for the expectation E(x). The differences
é=A) —x=%—x (1.4)

are corrections to the observed values or the residuals. With them we can obtain an
estimate

&Q e
62 = (1.5)
‘ r
for the wvariance factor, where
r=n-—u (1.6)

1s the redundancy of the system. If r = 0 the observations uniquely determine the
parameters y independently of the assumed stochastic properties of the observed
values and the residuals are zero.

Now, the precision of the estimates y, X, and € can be dernved by error
propagation

=

(¥) = 2_{»’9 = (A’E*IA)_l = UélQ;;;
V(%) = 24 = ASp4' = 0505 (1.7a)
V(é =2,;=2 - 2= UOZQée“-
The standard deviations of the estimates are
0, = Uo\/qﬁ,j:, = \V(§)
o, = 0o\fds,s, = V(%)) (1.7b)

05, = 00\/‘1@,@, = )/V(éf) .

These measures can be used to evaluate the influence of the inevitable random
errors in the observations onto the result. One must keep in mind that the
covariance matrices and the standard deviations are properties of the stochastical
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variables §, X, and € in the mathematical model, rot of the actual estimates y, X,
and é. This distinction is made clear in the formulas, not always in the correspond-
g text.

REMARKS. The linearization of a nonlinear model leads to small errors in the
estimates, which in general can be neglected (cf. [25]), especially if the relative
accuracy is better than 10%.

ExAMPLES. El. Template Matching. Template matching can be formulated as a
least squares estimation problem, also termed the differential approach (cf. [15]). If
the one-dimensional and continuous template g(¢) and theé n observed pixel gray
levels (g,(¢,), i = 1,..., n) are given, the nonlinear model reads as E(g,(t,)) = g(¢,
— t) with the single unknown shift parameter y = 7. Linearization at ¢, = 0 with
the first derivative g'(¢) = dg/dt leads to the linear model E(g,(¢,)) = g(¢,) —
g'(t;) -t or gy(t,) + é(t;) = g(¢t;) — g'(¢,) - f. The design matrix A, here a vector,
contains the first derivatives: A" = (g'(t,),..., g'(¢,)). Assuming white noise, i.e.,
uncorrelated, equally distributed random errors in the measured grey values g, thus
= = o5 I, one obtains the well-known estimate 7 = [Sg"2(¢,)] ! - [2(g,(2,) — 2(1,))
- g’(1,)], which in practical application can be used as an updated approximate
value in an iterative solution of the nonlinear problem.

With Eq. (1.7b) and the variance o2 = £g'?(¢,)/n and the signal to noise ratio

g . . ~
SNR = 0,/0, we can determine the theoretical precision of the estimated shift #:

o2 % _°% 1 _1 1 o
] " " n 62 n SNR? g2’
> g%(1,) § 8

The precision of matching depends on

—the noise level g, of the grey values
—the number #n of pixels or the window size
—the roughness of the texture of the template

which makes an ad hoc evaluation objective. In two-dimensional template matching
one obtains a 2 X 2 covariance matrix for the two unknown shifts or parallaxes
which can be visualized by a confidence ellipse (cf. Fig. 1).

One can show that the texture parameter o/0; is proportional to both the
effective bandwidth of the signal and the curvature of the autocorrelation function
(cf. [20, 11]). The theoretical studies (e.g., [13, 9]), the computer simulations (cf. [16,
21]), and the empirical results (e.g., [6, 22]) consistently prove that subpixel accuracy
in object location and parallax determination is reachable.

E2. Absolute orientation of a single camera. The orientation of a single camera
can be determined from an image of an object if the spatial coordinates of at least 3
object points and the calibration of the camera (focal length, etc.) are given. Figure
2 shows a square shaped block with side length 30 cm and thickness 18 cm which is
tilted by 30° with respect to the coordinate system. Assume, an image is taken by a
digital camera with a focal length of 15 mm and a pixel size of Ax = 20 pm from a
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(c)

F1G. 1. Three templates and expected precision of matching precision of gray value measurements.
o, = gray levels: (1) only the gray values within the 16 X 16 window are assumed to be used, pixel size 20
pm; (2) confidence ellipse. The true value of the estimated shifts will lie within the ellipse with a
probability of 99%, unit: pm. a. target: small and round error ellipse; b. unsharp natural feature: large
ellipse; c. edge: elongated ellipse.

distance of approximately 90 cm. Let us assume that the image coordinates x” and
y’ of the 7 visible corner points are measured with an accuracy of o, =0, =
3 um = & Ax and the object coordinates (X, Y, Z) of these points are precisely
known. The least squares fit of the 2 X 14 observations for the 6 orientation
parameters (shifts X,, Y,, Z, and rotations w, @, k) then leads to a covariance

matrix

X[] )
{)

En' = D %” = OI;Q =

W,

@

[ 43204,

0 37301. symmetric
(3’!““)2 . —39574 0 8718.0
0 -—-624.24 0 10.582
—728.68 0 61.882 (r/m) 0 12429

| 0 —72.548 0 1.1497 0 2.6433

((r = rad))

from which one can derive the standard deviations

oz = 0.62 mm,oy = 0.58 mm,o; = 0.28 mm
Ga, = 0.0370, 0@ = 0.0400, O; = O.OISO

for the estimated orientation parameters. There are high correlations r;; = o;,/ (o;
- ;) between & and Y;, namely —0.993, and between ¢ and X, namely —0.994,
which indicate that the effects of errors onto the correlated estimates are not
separable. This causes high standard deviations for the estimates except for k and
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Iy

Z PC = projection centre

FiG. 2. Absolute orientation of camera in space. Given: object coordinates (X, Y, Z) of 7 points;
measured: image coordinates (x’, y’). unknown: orientation parameters: (1) shifts X§, ¥y, Z3; (2)
rotation angles o', ¢, «’.

Z,. The high correlations also indicate that the numerical solution may be unstable
if not performed with a sufficient word length. However, if the determined standard
deviations are sufficient for a specified task and the calculations do not introduce
disturbing rounding errors, the high correlations do not contaminate the result.

E3. Relative orientation of two cameras. If the object is unknown we need at
least two images taken from two different positions to be able to reconstruct the
form of the object, except for an unknown scale factor. At the same time we are able
to determine the relative orientation of the two cameras in space, again except for
an unknown scale. Let us assume the position and orientation of the left camera to
be known and to be 30 cm left of the origin (cf. Fig. 3). The right is assumed to be
30 cm right to the origin approximately on the x-axis while the orientation may
slightly change. The distance between the two camera positions is assumed to be
known in order to fix the scale; then we can derive the position Y,” and Z,” and the
orientation angles ", @”, and k" of the second camera and the form of the object
simultaneously, if the image coordinates (x’, y") and (x”, y”) of at least 5 points are
measured by a matching procedure. Let us now assume the image coordinates of the
7 front points are measurable with a standard deviation of 3 pm again, then the
least squares fit of the 2 X 2 X 7 = 28 image coordinates for the 5 + 7 X 3 = 36
unknown orientation parameters and object coordinates lead to a precision of the
orientation parameters of

o5 = 2.9 mm, 05, = 12. mm,
0 Q

o, = 0.058°, o, = 0.68°, o, = 0.042°.

£

The precision of the positions ¥, and 26’ and the rotation angle ¢ around the
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F1G. 3. Relative orientation of two cameras and reconstruction of object. Given: (1) position and
orientation of left camera and (2) distance between cameras; measured: image coordinates (x’ y’) and
(x”, y"y of 7 corresponding points; unknown: (1) orientation of right camera (shifts ¥,”, Z,"”, rotation
angles w”, @, k"); (2) object coordinates (X, Y, Z).

4

y-axis obviously is much poorer than in the previous example due to the lack of
object information. The weakness of this design already is revealed in the low
redundancy of 2 = 28 — 26 for the 26 unknowns, compared to 8 = 14 — 6 1n the
previous example. On the other hand, the angles »” and k" can very well be
determined. The reason is, that only the vertical or y-parallaxes determine the
orientation parameters, whereas the x-coordinate directly determines the object
coordinates, especially the depth. We will make this statement precise later. Again
we can observe the same high correlations between the orientation parameters w”
and Y, and between ¢” and Z;'.

The analysis of the precision only yields realistic statements if no model errors,
especially no gross errors are present. We therefore investigate the influence of
blunders on the estimation and on the evaluation procedure.

1.2. Gross Errors and Their Effects

Let us now assume that observational value x; is erroneous by vx, (With the
sign v all errors in the mathematical model are designated, in contrast to differences
A. The notation goes back to Baarda and is not to be confused with the operator in
physics). In order to use the matrix formulas we introduce the vector v,x" =
0,0,...,vx,,0,...,0), containing zeros except for Vx; at the ith position. Thus the
observational vector x is changed by v x.

We are now ready to state our basic model and the assumed alternatives precisely.
According to-statistical terminology we call Eq. (1.1) the null hypothesis H,:

H,: E(x|H,) = Ay (1.1b)



282 W. FORSTNER
with, in general, several alternative hypotheses H ,;:
| H,: E(x|H,) = E(x|H,)) + v,;x, Vx#0 (1.8a)
or
H,: E(x|H,))=Ay + h,vx;,, vx,#0 (1.8b)

with the vector h; describing the effect of the error source onto the observation.
Thus 4, is a unit vector A/ = (...,0,1,0,...).

This model for describing gross errors is the most simple case because only the
expectation or mean value of the observations is assumed to be influenced by an
error. But important practical situations may be described by this type of alternative
model, e.g.:

—a wrong correspondence in a matching algorithm for automatic stereo
—a wrongly measured distance between two points
—a single systematic effect (in this case h, is full).

In all cases one assumes that the measuring accuracy is not influenced by the
error and only one parameter is sufficient for describing the effect of the error
source onto the observations.

There are, however, important counterexamples which do not fit into this type of
alternative:

—Errors during identification of targets or of control points influence 2 or 3
observed values, i.e., coordinates, in the image or in object space

—A movement of the camera during the exposure may lead to systematic
errors where both the position and—due to image blur—the precision of the
measurement of the points is changed.

—Finally only the variance of an observation may be influenced by an error
while leaving the mean unchanged, e.g., if two types of measuring or matching
procedures are used where the difference in precision is not known and one has to
-assume equal standard deviation of both procedures. We will concentrate here on
the alternative of the type of Egs. (1.8) in order to keep the derivations simple. (For
generalizations cf. Section 5.)

Let us now investigate the effect of errors in the observations, as described by the
alternative hypothesis, onto the different estimates within our procedure. The
influence of the error v,x onto the estimates is

V= 0,40 vx (1.9a)
V=00 vx (1.9b)
V,-é = _QééQ“l Vt-x. (1.9C)

Figure 4 shows the effect of a 25 pixel or 50 pm error in the y-coordinate of point
5 of the example in Fig. 3 onto the form of the reconstructed object. All points are
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FI1G. 4. Effect of a 2] pixel- or 50 pm-error in the y-coordinate of point 5 onto the form of the
reconstructed object. Solid lines: form of object if no gross error is present; dashed lines: form of object
if gross error is present. Assuming a precision of the measurements of 3 pm or ; pixel the 50 pm-error is
not detectable.

influenced. As ¥x, in practical cases is unknown, its influence generally can only be
realized if the true coordinates of the new points are known. The same holds for the
influence of the gross error onto the fitted values because they are just a linear

function of the unknown parameters.
At least, however, the effect v,é of the error Vx; onto the residuals é is visible, as
—presuming the validity of the mathematical model—the expectation

E(§) =0 (1.10)

of € is known, in contrast to £(¥) or E(X). We therefore study the effect of an error
onto the residuals. It will be shown that we are able to obtain an estimate for the
size of a gross error which then can be used to estimate its influence onto the fitted
values and the unknown parameters.

1.3. Effect of Observational Errors onto the Residuals

In order to simplify the notation we introduce the matrix
R=3,51=0,0 '=1—A(A4="4) 42! (1.11)
Then Eq. (1.9¢) reads as

Vé=—-RVx or Ve ,=—-r, Vx,. (1.12)

The index i could be omitted here, as Eq. (1.12) holds for general vx also for
random errors. R, in general, is a full matrix. Therefore, in general,

(a) an error in one observation influences all residuals (columns)

(b) one residual is influenced by all observational errors (rows).

(c) the effect v,é; of an error vx, in observation x; onto the corresponding
residual é; is determined by the ith diagonal element of R.

Thus the matrix R contains the full information on the geometry of the design with
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respect to the influence of observational errors onto the residuals. It only depends
on the design matrix A and the covariance matrix = of the observations, not on the
individual observational values. R therefore can be used for planning the design of
the measuring process.

The matrix R has a number of useful properties which we can use to advantage
for the interpretation in our context. They all result from the fact that R is
idempotent, i.e., R* = R:

(a) The matrix
U=1-R=0,0"'=3,,5" = A(4Z"4) " 4= (1.13)

which is used in Eq. (1.11) for the influence the errors Vx onto the fitted values £ is
also idempotent. Because of £ = Ux in statistical literature U is often called the hat
matrix.

(b) The eigenvalues of R and U are 0 or 1, which can be shown using the
eigenvalue decomposition.

(c) Therefore the trace and the rank of R and U are identical

trR=r1k R trU =1k U.
(d) From
trU =rkU = rk(A(AZ724) ) A=) =1k 4 = u (1.14)

follows
tR=Yr,=tr(I-(I-R))=trlI-tuU=n—u=r.

Thus the diagonal elements r,;, of R sum up to the redundancy r of the system
showing how r is distributed over the n observations. Analogously the diagonal
elements u;; of U sum up to the total number u of the unknown parameters
showing in how far each observation contributes to the determination of the
unknown parameters. In Section 1.5 we will investigate the effect onto a subvector
of y.
(e) The diagonal elements r,; and u,; lie between 0 and 1:
0<r,<1 O0<u,<l. (1.16)

If the diagonal elements are equal to 0 or 1 then all off-diagonal elements in the
corresponding row and column of R and U are 0. R and U are symmetric only if

0=1

The diagonal elements of R obviously are decisive for our analysis. As they sum up
to the redundancy we call them “redundancy numbers” and define

DEFINITION (7).

The redundancy number 7, of an observation x; is defined by

ry= (I - A(A’E'IA)_lA'E—I) 1= (Eéézil)ii = (QééQMI)

ii i

(1.17)
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and is the contribution of the observation to the redundancy r of the
system with 2r, = r.

Analogously we define

DEFINITION (u,)

The contribution u; of the observation x; to the number « of unknown
parameters of the system is defined by

= (A7) A = (24:370) = (26071, (118)

with Zu, = u.
Thus we obtain the symmetric relations

—for the number of all observations, unknowns, and redundant observations

n=u+r (1.6b)
—for the individual contributions

1=u,+r, (1.19)
—for the idempotent matrices

I=U+R. (1.20)

Thus the average value r for the redundancy numbers 7, is equal to the relative
redundancy r/u.

Coming back to the relation between observational errors and the residuals we
now obtain the influence v,é; of an error Vx,; in x; onto the corresponding residual
e.

i

V6, = —r,- VX,. (1.21a)

As r; always is between 0 and 1 only a— possibly small—part of an error shows in
the residual.

ExampLes. El. Template matching (continued). Let us assume a one-dimen-
sional edge with a known characteristic is located. Let the n = 13 first derivatives be

= (0,0, 0, 0,10, 30, 60, 30,10,0,0,0,0). The redundancy numbers can be derived
from r,=1 - g'%(¢,)/[2¢'*(¢;)]}, which in our case yields {r)}={1,1,1,1,
0.98,0.84,0.36,0.84,0.98,1,1,1,1). The average redundancy r/n = 12/13 = 0.92 is
misleading, pretending a high controllability. The smallest redundancy number at
the steepest point of the edge indicates the weakness of this design. Only a third of
an error in the grey level of this pixel is revealed in the residual; the other part,
namely 66%, directly influences the determination of the shift parameter. The
example also shows that only pixels with a first derivative greater than 0 contrlbute
to the shift determination which of course is to be expected. '
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E2. Absolute orientation of a single camera (continued). The redundancy
numbers of the 14 image coordinates for the absolute orientation of a single camera
(cf. Fig. 2) are given in the following table:

Pt. ¢ 1 2 3 4 5 6 7

r. 0569 0345 0569 0590  0.628 0652  0.628

r, 0617 0246 0617 0680 0566 0726  0.566
Sr. = 8.000.

The average redundancy r/n = % = 0.57 is high, the smallest redundancy number
in y-coordinate of point 2 being approximately § is acceptable. A quarter of an
error in this coordinate shows in the corresponding residual.

E3. Relative orientation of two cameras (continued). The redundancy numbers
for the 14 coordinates of the points in the left one of the two images for relative
orientation are given in the following table (the values for the coordinates of the
right image are identical):

Pl 1 2 3 4 5 6 7
. 0 0 0 0 0 0 0
- 0.150 0160 0150 0.185 0.048 0259  0.048

As already pointed out the relative redundancy of r/n = % = 0.07 is not accept-
able, which is confirmed by the individual redundancy numbers. The residual é;
caused by the 50 pm-error in x5 would be approximately 3 pm; without knowing
the geometry one would not suspect an error. The situation is even worse, as errors
in the direction of the base line (x-axis) do not show in the residuals at all,
independently on their size. They fully determine the object coordinates, namely the
depth (z-coordinate). But also the errors in the direction of the y-axis, thus errors in
the vertical parallaxes, hardly show in the residuals. One can expect that gross errors
in the image coordinates must be quite large to be detectable, independently on the
used test or search strategy.

We will now look at some applications of the geometrical relations established
above.

If we have an indication that observation x; is erroneous then from the residual é,
we can obtain an estimate Vx for the size of the error:

VX, = —8,/r,. (1.22)

The same estimate would be obtained in the extended model, Eq. (1.8b) of the,
alternative hypothesis, where we have one additional unknown parameter Vx; for
the size of the error source, i.e., the gross error. Moreover, this estimate is 1dent1ca1
to the difference between the observed value x; and the predicted value £
obtained from an estimation leaving out x; or obtained from an estimation where
the weight of x, is set to zero. This is of utmost practical importance as Eq. (1.22)
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can be used for all observations simultaneously based on one single solution which
is not possible in the other cases. Thus a repetition of estimations leaving individual
observations out to estimate their size is not necessary any more.

In order to evaluate the residuals €, and possibly the size of the estimated errors
v x, we determine their standard deviations

(1.23)

:"Q

I
-.kq
=

' (1.24)

Q
4
~3=-<

I
=

Thus the standard deviations of the residuals are always—possibly much—smaller
than the standard deviation of the observations, whereas the precision of the
estimated size of the errors always is—possibly much—lower than the precision of
the observations.

We also can standardize the estimated size Vx, of the error relating it to the
precision of the observations. The ratio

8/ = vx,/a,. (1.25a)

is a dimensionless quantity and measures the estimated size of an error in x; in units
of the standard deviation of the observation. Its precision is

o5, = 1/{r,. (1.26)

Thus a gross error must be at least 25 to 100 times (8’ > 25 or 100) larger than the
standard deviation of the observation to be estimable with a reasonable precision,
e.g., a relative error < 25% to 10%.

The estimated size of the error can now also be written in the form

vx, =8/ -o,. (1.25b)

i

Equation (1.21a) also can be used to determine the redundancy numbers r, by
computer simulation with a standard software package. By only changing the
observation x; by vx, the redundancy number r, can be computed from

r= —Ve/Vx, (1.21b)

where Ve, is the resulting change in the corresponding residual.

ExaMpLEs E4. é,= —15cm, r,= 025, 0, = 0.8 cm
— o0, = 0.8 cm y0.25 = 04 cm
vx; = — 15¢em/025 = —6 cm, 6g, = 1.6 cm, 8", = 7.5, o5, = 2 or:
Vx;= —6+16cm, 8 = —7.5 + 2.

The small residual—compared to the precision of the observation—has a standard
deviation only 50% of o, and may result from an error of 6 cm. The precision of
this estimate, however, is not very high, the relative precision is 1.6/6 = 2/7.5 =
27%.
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P

F1G. 5. Intersection of three rays. Given: position and orientation of three cameras projection centres
aligned; measured: coordinates of image points P, P,, and P, (here only x-coordinates are of concern);
unknown: coordinates of object point P. Errors in the x-coordinates are not locatable.

E5. é,= —163cm, r,=1/6,0, = 0.8 cm
— 0, = 0.33 cm .
vx, = 97.8 cm, 04, = 0.8 cm V6 = 2 cm, thus Vx, = 97.8 + 2 cm
; =97.8 cm/0.8 cm = 122, 0, = 2.4, thus 8/ = 122 + 2.4.
The large residual may be caused by an error of approximately 1 m. As the error is
quite large, namely 8/ = 122 times larger than o, this estimate is comparably

precise and may be a reason to suspect a copying error.
E6. Figure 5 shows the intersection point P of three rays from P,, P,, and P,

as they may occur if a point in space is observed from 3 points lying in a plane. The
R-Matrix in this case is

=
Il
|
= u\[n—ﬂ =
L W W=
|
= Y e N

The redundancy numbers are ¢, 3, and ;. They sum up to the total redundancy

r =3 — 2 =1 of this system with n = 3 observations and # = 2 unknown coordi-
nates. R is singular with rk R = r = 1. All rows and columns are proportional to
each other. Therefore any combination of errors of any size leads to a vector
Vvé = R vx of residuals with the same ratio 1: —2:1 between the residuals. An
error localization is not possible. The largest residual always belongs to the center
ray. The maximum residual can rot be used for error localization.

Let the residual vector be é’ = (—12 pm, 24 pm, —12 pm)’ and the precision of
the image coordinates be 10 pm, then the individual estimates for the causing error
and their precision would be

VA'xI = —12 pm/(%) =72 pm + 24 pm
or
Vx,=24pm/(2) = —36 pm + 12 pm

or

Vx;=—12pm/(L) =72 pm + 24 pm
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Thus this residual pattern may be caused by either a single error in the border rays
of 72 pm, by an error of 36 pum in the center ray or other more complicated error
sources. The estimates ¥x, assume the random errors to cancel out. The accuracy of
the estimate with a smaller redundancy number is less than that of the estimate with
a larger redundancy number.

We will come back to this example in Section 2.

1.4. Effect of Observational Errors onto the Unknown Parameters

The effect of observational errors comprized in the vector ¥,x can be calculated
from Eq. (1.9a). There we were not able to use this equation as we had no
information on the actual size of the error in the observation. In the previous section
we have developed an estimate for just this size and can now use it to derive the
influence of an observation onto the estimate y of the unknown parameters

V)= 05407 V,x. (1.27)

Figure 4 would show such an influence if the 50 pm-error in the coordinate had
been estimated from the residual via Eq. (1.22). Thus y would change by Vﬂr’t- J if the
observation were eliminated from the estimation process or if its weight were set to
0. Therefore, Eq. (1.27) not only is the influence of the estimated size of an error in
x, onto the estimate $, but ¥, can also.be termed the influence of the observation
onto j.

In large systems the calculation of the n X u influence numbers (Q ﬁ}n,A’Q‘I) i 18
prohibitive. Therefore we want to study this influence in three ways regarding

—the fitted values x,
—all unknown parameters j, and
—an arbitrary function f(y) of the unknown parameters.

(a) Let us first ask for the influence of observation x, onto its fitted value %,.
From Eq. (1.11a) one obtains

A

VX = u, \:7x,- = vx, + &, (1.28a)

in full analogy to Eq. (1.21). Equation (1.28) clearly shows that from the estimated
error one part (€;) shows in the residual while the other part (V,%£,) goes intoAthe
fitted value. The standard deviations of the fitted value x; and of the influence VX,
are

o, = o, \fu; (1.29)
0o, =0,/ — (1.30)
respectively again in analogy to Eq. (1.24). We also want to standardize the

influence v,X; referring it to the precision of the fitted value. The standardized
influence onto the fitted value is
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_ 7.k, u, VX,
4 = = (1.31&)

! oy, oxf\/;t:
8, =8/ \u;. (1.31b)

Thus the influence of an observation x; onto its fitted value is equal to 8, times the
standard deviation of the fitted value. As u; < 1 the influence factor 8, is always
smaller than the standardized size §; of the estimated error.

(b) We now want to investigate the total influence of the error vA'xi onto the
estimated parameters §. In order to arrive at a scalar measure we determine the
length of the vector v,J, weighted with the normal equation matrix (3 5) . We
obtain

A ] -1 A A
v, 2l = iy (Eﬁﬁ) vy (1.32)
If we now assume
> = Diag(s?) ~ (1.33)

the observations to be uncorrelated, which is common practice, then one can show
that

8 = V.- (1.31c)

Thus the normalized length of the influence vector v, can be derived from Eq.
(1.31b) using (1.25) and (1.22) if the observations are uncorrelated. This is a

numerical advantage, as only the residual é,, the redundancy number 7, and the
standard deviation o, are necessary:

5= ———/1—-r. (1.31d)

(c) As §, still seems to be an abstract measure we will now analyse the
influence of the observation x; onto an arbitrary function f = g’ of the unknown
parameters, e.g., onto a distance, a direction, or an area derived from estimated
coordinates. Thus we want to determine

V=g vi=¢ 25 Afzilva'ix- (1.34)

As we assume uncorrelated observations and only one error Vx, in x, we can
simplify Eq. (1.34) to ‘

v.f= g'2a;- \%xi/oj:, (1.35)

where a! is the ith row in the design matrix A.
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Using Schwarz’s inequality

u'fw < vyu'Vuvyw'Vw

we obtain

Vi < 8258 \[aiZ55a,9x,/0]
which, using {;’xf/"x, =9/, Ja/Zya, =0 = ox[_,/;;, and /g2 ;g = 0/, reduces to
6,fs Si " Uf. (1.36)

This is the main formula for evaluating the effect of errors onto the result of an
estimation procedure. It can be termed the empirical sensitivity of the result.
Equation (1.36) states that the effect of errors v x in the observations onto an
arbitrary function f is smaller than 8, times the standard deviation of that function.
Thus if the values &, are small for all observations we need not expect large
deteriorations of the result due to observational errors. If one eliminates the
observation x, from the data then a value f(y) derived from the estimates y does
change f not more than §, - o,. As these statements refer to the standard deviation
of f, the design of the measurement _process has to guarantee acceptable precision
for all functions of the estimates which are of interest.

The inequality sign in Eq. (1.36) reflects the fact that a function may not be
influenced at all by an observation. The equal sign holds for the fitted values X,

a! y as has been shown above (cf. Eq. (1.31)), here v £, =8, oz, 1s valid.

The next section discusses the case where one is mterested only in the influence
onto a subset k = 7, of the unknown parameters, e.g., the coordinates. The formulas
essentially remain the same except that the influence value u; has to be replaced by

. A first reading could omit this subsection and dlrectly skip to the example
before Section 1.6.

1.5. Effect of Observational Errors onto a Subset of the Parameters

Sometimes one wants to determine the influence of observations only onto a
subset of the unknown parameters, e.g., the coordinates. This influence should, in
general, be smaller as a part of the errors is absorbed by other—
nuisance— parameters, e.g., orientation parameters or parameters compensating for
systematic errors. In order to achieve a simple relation for this influence we reduce
the original model with all parameters onto a model with only the subset of
parameters in concern.

Let the unknown parameters consist of two parts y’ = (¢’ k’) representing u,
transformation parameters and u, coordinates with u = u, + u,, e.g., in a image
sequence, where one wants to simultaneously estimate the orientation parameters of
the camera positions and the object coordinates of common points. Let us assume
that we are only interested in the determination of the coordinates. Thus we treat
the orientation parameters as nuisance parameters (Of course, the situation may be
vice versa, e.g., in navigation problems. Then the role of ¢t and k are to be
interchanged.). The design matrix A correspondingly is split into 4 = (B C). The
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model Eq. (1.1) then reads as
E(x)=Ay=Bt+ Ck  V(x) =2 = 0. (1.37)
The normal equations are
(N, N1+ h
o= M[E] [
Y A Nk: N Lk hy
_|B=1B Bz 1CH f”B’E”x}
k 31y

Fehty: Bl els t'e
—(AS U)p—AS =0 (1.38)

If we reduce this system onto the parameters k& by eliminating ¢ we obtain the
reduced system

Nk‘ié —h, = ( New = N (N, z)—lNzk)]:T - (hk - Nk:(Nn)ilhz) =0 (1.39)
By matrix multiplication one can show that with the reduced design matrix
C=C-B(N,) 'N,=(I-B(B="'B) 'B=")C (1.40)
this reduced system is equal to
(C'=- 1C)k— C’E7x = 0. (1.41)

This system is totally analogous to the original system Eq. (1.38) if we substitute the
matrix 4 by C and the dimension u by i,.

The line of thought for deriving the influence of an observation onto all unknown
parameters can thus directly be applied to the reduced system. Then instead of u, in
Eq. (1.18) one has to use #, :

DEFINITION (u, ).

The contribution u, of x; to the determination of the subset k of the
unknown parameters is defined by

=(0,), = (C(C=-10) 'a=Y). (1.42)

with Xju, = uy.

We finally obtain the relation §, = &/ ﬁ: for the influence of observation x,
onto the subset k of the parameters p, which replaces Eq. (1.31b).

In order to visualize that u, < u,, i.e., that the influence onto a subset of the
unknown parameters is smaller than onto all parameters, we determine the dif-
ference u, — u k- Using Eq. (1.40) we obtain the remaining contribution u, = u, —
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u, of the observations to the determination of the rest, z, of the parameters with

DEFINITION (u, ).

The remaining contribution u, of x, to the determination of the
subvector ¢ of the parameters is defined by

u, =(U), = (B(B'Z'B) 'B'S ) (1.43)

il

with Zju, = u,.

If no transformation parameters ¢ are to be determined then u, = 0. If no
coordinates k are to be determined then u, = u,. Altogether this leads to the
following analogous equations:

—for the number of observations, transformation parameters, coordinates, and
redundant observations

n=u,+u,+r (1-44)

—for the individual contributions of the »n observations

l=u, +u, +r (1.45a)

o

—and for the idempotent matrices
I=U+U+U (1.46)

(cf. the discussion in Section 1.3).

The components u,, u,, and r, completely show how the information of each
observation is distributed on the two groups of unknown parameters and the
residuals.

By reordering Eq. (1.45) we can arrive at a different interpretation of the
contribution number u, . If we would assume the coordinates k to be fixed, i.e., to
be known, we would obtain different redundancy numbers, namely r/ = 1 — U,
which always are larger than the redundancy numbers r,. This is because the
controllability of the observations is increased by fixing the coordinates. The loss in
local redundancy

r!—r=1u, (1.45b)

in the complete model equation (1.37) is just the contribution of the observation
which is needed for determining the coordinates.
The final formula for the empirical sensitivity factor can now be given

é

=8/ - 1—r—u, =8 [a, =8-r/—7r. (1.47)
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Together with Eq. (1.37) the effect of each observation onto the result can be

calculated and be used for the evaluation of the result with respect to observational
erTors.

EXAMPLES. F4 (continued). é, = 1.5 cm, r, = 0.25, 0, = 0.8 cm
(vx, = —6.cm, 8 = 17.5)

assuming u, = 0 follows:
- u = 0.75, vx = —-6cm-075= —45cm

]/_m
J_

I!

=6.5.

The contr1but10n u, of x, to the determination of the unknown parameters is 0.75,
ie., 3 (4.5 cm) of thc error (6 cm) in x, go into the fitted value. This 1s 3 = 6.5 times
its standard deviation, thus quite a bit larger than random errors only would
influence it and what would not be expected from the small residual of 1.5 cm.

ES (continued). é, = —16.3 cm, r, = ¢, o, = 0.8 cm
(Vx, =97.8cm, §/ = 122)

—u, =3 v,% =978 cm— 163 cm = 81.5 cm

i 6

oz, =08cm-/5/6 =0.73cm
8, = 81.5cm/0.73 cm = 112.

Here ? of the gross error goes into the fitted value. If x; would be a distance with a
1 me-error, the corresponding points would be shifted in a way that their distance
calculated from the estimated coordinates would be wrong by approximately 83 cm,
which is more than 112 times the standard deviation of this distance. Of course
there is no difficulty in finding this error and then to eliminate or—even better—
remeasuring the observation.

1.6. Summary of Section 1

The result of this section is twofold:

(1) We have developed objective measures to evaluate the design of a measur-
~ ing procedure based on least squares estimates. The redundancy numbers r;, (Eq.
(1.17)) and the contribution numbers u, (Eq. (1.42)) give conspicuous insight In
how far errors in an observation show up in the corresponding residual and in how
far it may deteriorate the result. These values only depend on the design matrix A4
and on the covariance matrix X or the weight coefficient matrix Q alone, not on the
actual observations. The design therefore can be planned to maximize the visible
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part of errors and to minimize their effect or—combining both criteria—to optimize

Uy )
— — min.

ki

We will come back to this ratio in Section 3. It is the decisive factor for the external
reliability according to Baarda, measuring the sensitivity or the robustness of the
design.

(2) The evaluation of an actually observed value can be based on the estimated
size of a possible gross error in this observation and on its effect onto the result. The
estimated size Vx, (Eq. (1.22)) of a gross error is a valuable help for the diagnosis of
the error source. The precision of this estimate is high enough to yield a reasonable
relative accuracy for not too small gross errors (> 20 the measuring precision). In
case one is not certain that x; is erroneous its effect onto the result may be decisive.
The empirical sensitivity of the result is comprised in the values 8; (Eq. (1.47)). They
give the maximum distortion of any function of a predefined subset k of the
unknown parameters j in units of the standard deviation of that function (Eq.
(1.37)). Values 3,. < 1 or 2 guarantee the estimated coordinates to be not more
distorted than 1 or 2 times their standard deviation.

Though these measures are useful for assessing the observations we up to now
have no procedure for locating gross errors or even means for deciding whether an
observed value is wrong or not. This can be achieved with statistical tests which are
provided in the next section. '

2. HYPOTHESIS TESTING FOR BLUNDER DETECTION

This section provides means for deciding whether an observation can be regarded
as being erroneous. The statistical test takes into account the local geometry and is
optimal. The power of the test, i.e.,, the ability to separate the null and the
alternative hypothesis can be used to evaluate the decision which is based on the
statistical test and can also be used to tell how large the difference between the
hypotheses at least must be that erroneous decisions are made only with a small
probability. We will apply these measures for evaluating the controllability of the
observations and the sensitivity of the result with respect to undetectable errors in
Sections 3.

2.1. Statistical Test

Statistical tests want to answer the question whether a given null-hypothesis has
to be rejected in favor of a given alternative hypothesis. In our context a statistical
test must tell whether the residuals give an indication that a certain prespecified
observation is erroneous or not.

Thus statistical tests are not developed for blunder localization though they are,
however, used for that purpose by taking the maximum test statistic of several
alternatives as an indicator for the erroneous observation, i.e., the most likely
alternative. This theoretically can be justified. We will concentrate on the more
simple problem of assessing a single observation with a statistical test.

The test is based on a test statistic w;, which is a function of the observed values x.
The probability density function, specifically the expectation and the variance of the
test statistic, has to be known for the case where the null hypothesis H; is true.



296 W. FORSTNER

Good test statistics use all information, i.e., are sufficient and lead to the best
distinction between the null and alternative hypothesis, i.e., are efficient. The best
test statistic for blunder detection is
—h!zle
JhiSIS,, S,

(2.1)

W.

!

which for uncorrelated observations reduces to the standardized residual

—¢& VX, —é
_ L - N(0,1) (2.2)

W, = = =
Ué,- Uv"’x, Gx,—\/r_i

With w, we also test the estimated size Wx, of the observation and via r; take the
geometry into account. Provided the observations are normally distributed w,
follows a standard normal distribution N(0, 1) if H, holds. Even if the observations
are not exactly normally distributed, the residuals, because of the central limit
theorem, are nearly normally distributed.

The test now consists in comparing the (absolute value of the) test statistic with a
critical value k which in principle can be freely chosen, e.g., k = 3. The situation is
shown in Figure 6 for the case that no error is present. The region (—k, + k) is the
acceptance region A, which is symmetric with respect to 0 because we do assume
positive and negative blunders to occur equally likely. If w, € A then we have no
reason for rejecting H, and we accept H,, i.e., assume the observation to be
error-free. The region outside A is the rejection region R. If w. € R then we reject
H, in favor of the alternative hypothesis H,, i.e., we assume the observation x; to
be erroneous. ,

ExamprLes. E7. é,=1cm, r, = 0.3, o,=1lcm— |w| =183 <3=kor

6, <3-0, =3-0./r, = 1.64cm.

il e X

The observation is accepted.

ES. ¢,=5Spum, r,= 009, 0, =5pm - |w| =333>3=kor

KOE(w; [He) K Wi

=3

F16. 6. Acceptance and rejection region for statistical test with normally distributed test statistic w;
for blunder detection; positive and negative blunders are assumed to be equally likely.
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The observation will be rejected. The critical value of 4.5 um for the residual é; is
smaller than the standard deviation o, of the observation!

E6 (continued). é, = é; = —12 pm, é, = 24 um

_ 1 —
FpL=FH =% =

2
3
-S> w o =w,=w, =293 <3 =%k,

The statistical test suggests accepting the observations. The decision, however, is
doubtful, as the standardized residual is only slightly smaller than the critical value.
If we would choose k =25 then all three observations are suggested to be
erroneous. But because the test statistics are identical a localization is not possible,
which truely reflects reality. If we are not certain whether to accept or reject the
observations we can look at the influence factors 8,, which are 6.6, 2.1, and 6.6. If
one of the observations x, or x; are erroneous the coordinates may be distorted up
to 6.6 times their standard deviation, which seems to be too large. Thus one should
reject this point!

2.2. Evaluation of the Test
The evaluation of the decision which is based on the statistical test depends on

(1) whether the test statistic belongs to the acceptance region or to the rejection
region;
(2) whether the observation is errorieous or not.

In order to investigate the decision we determine the influence of an error vx; in x,
onto the test statistic w;. This influence is

-Vé, —Vé  Vx
8, = = — = : 23
i ij ﬂé-r_ GXJJF'—!- le ﬁ: ( )
and leads to a shift of the probability density function of w; by 8,. Thus we have
wi|Hy ~ N(0,1)
w,|H,, ~ N(8,,1). (2.4)

From Eq. (2.3) we can conclude that the weaker the geometry or the smaller the
accuracy the smaller is the influence of a blunder onto the test statistic w;,, thus the
more difficult it will be to discern between H, and H,. N(8,1) is the noncentral
normal distribution with noncentrality parameter §,.

Figure 7 shows the density function of the test statistic w; for three hypotheses:

H, (null hypothesis). The observation x; is error-free. The expectation of the
test statistic is

E(w,|H,) = 0.

H, (st alternative hypothesis). The observation x, is erroneous by V,x;
which leads to a shift of the density function of w; by

E(w|H, ) =8,.
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H w;

F1G. 7. Probability density function of the test statistic w; for three hypotheses, significance number
a,. Left: null hypothesis, no gross error; middle: 1st alternative, small gross error, noncentrality
parameter &, power B; probability for type II error 1 — B,; right: 2nd alternative, larger gross error,
noncentrality parameter 8, > §,, power 8, > B, probability for type Il error 1 — 8, <1 — ;.

H, (2nd alternative hypothesis). The observation x; has a larger blunder of
size V,x; which leads to a shift of the density function of w; by

E(WJIHaZ) = 82'

The probability of correctly accepting the observation, i.e., the probability that w,
lies in the range between —k and +k and H, is true, is the area below the leftmost
curve between —k and +k. It is the significance level S, of the test

Sy = P(w, € A|Hy) =1 — a. (2.5)

From k one can derive S, and vice versa using the distribution function ¢(z) of w,,
that is, the integral of the density function of w,,

$(z)'= P(w, < z) (2.6)

which can be found in statistical tables. ¢(z) is monotonously increasing between 0
and 1 with the point ¢(0) = 0.5 as center of symmetry.

The complement to 1 of the significance level is the significance humber a,. We
obtain

0=2¢0(k) -1 and  a,=2{1-¢(k)} (2.7a)
or
k=¢ {(1+S,)/2} and k=¢"11 - a)2). (2.7b)
The probability of correctly rejecting the observation, i.e., the probability that w, lies
in the rejection region when H, (p=1, 2,...) 1s true, is the power B, of the test
with respect to the alternative Hap

B,=P(w €R|H, ). (2.8)

Thus the significance level is the probability of correctly accepting the observation
while the power of the test is the probability of correctly rejecting the observation.
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TABLE 1
Decisions during Testing
Iwil <k |w,| > k
H, true Accept H, Reject Hy
Significance level S, Significance number a,
Correct decision Type I error
H, true Accept H, Reject H,
1-8, Power B,
Type II error Correct decision

As the size of the residuals and therefore also the test statistic are influenced not
only by the assumed gross but also by random errors there are four possible
decisions. They are shown in Table 1 together with their probabilities.

Besides the two correct decisions mentioned above we have two types of erro-
neous decisions:

Type I Error. Though H, is true, i.e,, the observation is error-free, one may
conclude from |w;| > k that the observation contains an error. The probability for
this Type I error is the significance number «,. As with the rejection of H, the
superfluous search for the error sources starts, the value «, also is called the
producer’s risk and is usually chosen small, e.g., 0.01 or 0.001, which corresponds to
critical values & = 2.58 or 3.29, respectively. '

Type II Error. Though H, is true, ie., the observation is erroneous one may
conclude from |w;| < k that the observation is correct. The probability 1 — B, of
this Type II error depends not only on the critical value k& but also on the size of the
gross error, or, generally speaking, on the distance of the alternative hypothesis from
the null hypothesis. This can clearly be seen from the two right curves in Fig. 7. The
complement of the power B,, the value 1 — B, also 1s called the consumer’s risk. As
a, it should be small.

The probability 8, of detecting an error which leads to §, can be calculated from

B, = P(w, > k|H, ) + P(w, < —k|H, )

= (8, — k) + [1 - (8, + k)] (2.9a)

The first term corresponds to the area below the second or third curve in Fig, 7 for
values w; > k. The second term is usually very small if §, > 0 and corresponds to
the area below the second or third curve for values w;, < —k.

If &, is larger than k then the term in brackets can be neglected and we obtain

B,=o(8,— k). (2.9b)

If we replace 8, by |w,]| in this formula we can derive the probability with which we
are able to detect an error of the estimated size in the actually tested observation.
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TABLE 2
Significance Number a and Critical Value &
k o (%)
1.96 5
2.58 1
3.0 0.27
3.29 0.1
TABLE 3

Significance Level 1 — « and
Power 8 for Given § = 4

1 —a(%) k B (%)
99.9 3.29 76
99.7 3.0 84
99.0 258 93

95.0 1.96 98

The following three examples show the relative dependency of the values k, a, 8,
and 6 and demonstrate that they reflect common sense.

(a) The probability « of making a Type I error, i.e., of erroneously rejecting a
good observation becomes smaller with increasing critical value k (see Table 2).

(b) The ability to find an error is larger if the critical value is chosen smaller
(see Table 3). ’

(c) The power B, of the test, ie, the probability of finding a gross error
increases with its size represented by 8,. On the other hand the probability 1 — B, of
not finding the error decreases for larger errors. The power function B(8) is shown in
Fig. 8 (also see Table 4).

Specifically, errors which have the size of the critical value k& can only be detected
with a probability of 50%.

B(&)

85(Bg) 8 6

FiG. 8. Power function B(8): (1) power of test 8(8) in dependency of the size of the error, i.c., the
distance & (noncentrality parameter) between null and alternative hypothesis; (2) lower bound8,(8,) for
noncentrality parameter derived from required minimum probability B, for the separation of the
hypothesis, i.e., for the detection of gross errors (according to Baarda [1, 2]).
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TABLE 4

Noncentrality Parameter §, and
Power B, for k = 3

B B® 1B ®
3 50 50

4 24 16

5 97.7 2.3

6

99.9 0.1

ExampLEs. E7 (continued). Using Eq. (2.9a) and replacing §, by |w,;| we obtain

lw,| =1.83 > 8, = ¢(1.83 — 3) + [1 — ¢(1.83 + 3)]
= 0.121 + 1 —0.99999 = 0.121.

The small error can only be found with a very low probability.

E8 (continued). |w,| = 3.33 = B, = ¢(3.33 — 3) = 0.629. The error can be
found with a not too high probability. If we have 100 cases with an error of this size
only in 63% of these cases could we expect to find the blunder.

2.3. Lower Bound for the Distance of H, and H,

If we are given a test, a significance level and the two hypotheses we can derive
the power B = B(8, a,) of the test using Eq. (2.9a). The value § can be termed the
distance between the null hypothesis and the alternative hypothesis. As the size of
the errors in general are not known, we cannot determine this parameter & and thus
are not able to use this equation.

The basic idea of W. Baarda was to invert the relation between the power of the
test and the noncentrality parameter and use

8 =8(B, ). (2.10)

For a preset power of the test equation (2.10) gives the distance between H,, and
H,, ie., the size of the error which can be detected with that power. If we now
require that an alternative, i.e., an error has to be detected with a probability 8
which is larger than a prespecified bound B, then the distance § between H, and
H, has to be larger than a bound §,. This lower bound §, for the noncentrality

parameter 8 can be derived from (cf. Fig. &)

B> B,—8>34,
8o = 8,( By, o). (2.11)

It depends on

—the used test, specifically the distribution of the test statistic

—the significance level S, = 1 — a, or the preset probability &, of making a
Type | error

—the required minimum power of the test, i.e., the required minimum prob-
ability of correctly detecting an error.
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TABLE 5

Lower Bounds 8, for Noncentrality Parameter &
in Dependency of the Significance Number a,
and the Required Minimum Power 8, of the Test

ap 0.01% 0.1% 1% 5%
By k 372 3.29 2.58 1.96
50 372 3.29 2.58 1.96
70 441 3.82 3.10 2.48
80 473 4.13 3.42 2.80
90 517 4.57 3.86 324
95 5.54 4.94 422 3.61
99 6.22 5.62 4.90 429

99.9 6.98 6.38 5.67 5.05

If we now use the approximation equation (2.9b) for the power of the test this
lower bound §, can be computed from

8o(Bys ag) = ¢ 7M1 — @p/2) + 6 H(By) =k + o By)- (2.12)

Because for values B, > 0.5 the function ¢ ~'(8,) is positive, the minimum bound §,
for the noncentrality parameter § is always larger than the critical value k if one
requires a power of at least 50%. But this also means that the distance § between H,
and H, must be—possibly much—Ilarger than the critical value & if one with a high
probability wants to correctly reject H, when H, actually is true. Some values for §,
are listed in Table 5.

It is the merit of W. Baarda to make the power of the testing procedure
applicable. He proposed to keep ;

8, = const. for all mensuration designs

in order to be able to compare different designs. A constant value 8, means that the
testing procedures have to be able to separate the hypothesis of a minimum distance
which is common for all applications. This leaves freedom in balancing the pro-
ducer’s and the consumer’s risks a, and 1 — 8, respectively.

The next section applies this line of thought to the error detection problem.

3. RELIABILITY ANALYSIS WITH RESPECT TO GROSS ERRORS

In the first section we have discussed the evaluation of observational values using
the geometry of the design. The second section provided the means for error
detection and their assessment. We now want to combine both concepts to accom-
plish our final aim: the reliability analysis of a design with respect to gross errors.
According to Baarda one distinguishes between internal and external reliability. For
measuring the degree of internal reliability we will derive lower bounds for just
detectable errors which can also be seen as a measure for the controllability of the
observations. From the lower bounds for detectable errors we directly arrive at the
sensitivity or the robustness of the result, which measures the external reliability and
essentially is the influence of nondetectable gross errors onto the estimated parame-
ters.
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3.1. Internal Reliability According to Baarda

In the last section we have derived the lower bound &, for the distance between
H, and H_, which guarantees a required separability of the two hypotheses. The
distance 8 depends on the size of the gross error in the observation and can be
derived using Eq. (2.3). We now want to derive a lower bound for just detectable
gross errors. If we substitute the actual influence §, = vw; of the gross error vx,
onto the test statistic w; by the lower bound §, we can solve for the lower bound
VX, for the gross error Vx; in the observation x; and obtain the boundary value

8y
VoX; = UX'T. (3.1)
Fi

Gross errors Vx, larger than the boundary value ¥,x; can be detected with a higher
probability than B, if a significance level 1 — « for the test with the test statistic w,
1s used. Or in short: Gross errors larger than the boundary value can be detected; if
they are smaller than the boundary value they are not detectable.

The boundary value v, x; takes into account:

—the precision of the observation, described by the standard deviation o

—the geometry of the design of the measuring procedure, described by the
redundancy number 7,

—the significance level and the required minimum power, comprised in the
lower bound &, for the noncentrality parameter.

The smaller the redundancy number r, of the observation, the larger a gross error
has to be in order to be detectable. This is reasonable, because the residuals are
smaller in this case. The boundary values draw a clear picture of the internal
reliability of the design.

The case r, = 1 only occurs if the true value of the observation is known, e.g., a
distance between two given (and fixed) points in case one does not simultaneously
estimate an unknown scale parameter. In this optimal case gross errors vx, larger
than §,- o0, can be found already with a probability greater than B, If the
51gmﬁcance level is So =1 — ay, = 99.9% then (cf. Table 5) gross errors smaller than
413 - o, are not detectable with a probability larger than 80%. The redundancy
number usually is much smaller than 1. Therefore gross errors have to be much
larger than 4 times the standard deviation of the observation to be detectable. On
the other hand, if an observation cannot be controlled by the other observations,
then r, = &, = 0 and a test of the observation is not possible. The boundary value is
infinite.

EXAMPLES. Assuming 8, = 4 we, e.g., obtain

E 9: distance o, = 1.0 cm, r; = 0.25, VoxX; = 8.0 cm
E10: distance o, = 1.5 cm, r;= 0.7, VoX; = 7.2cm
E11: image coordinate o, =5pm, ro= ¢ VoX; = 49 um

E12: image coordinate o, = 3 pum, i VoX; = 42 pm.

X,
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A comparison of the boundary values for heterogeneous observations is not
directly possible. But even if one evaluates the distances and image coordinates in
the examples separately it is, e.g., questionable whether a boundary value of 42 pm
is better than a boundary value of 49 pm. For, if one relates the boundary values to
the measuring accuracy, the second image coordinate is less reliable, as their
redundancy number is smaller than that of the first image coordinate.

We therefore, analogously to the normalizations in Section 1, split the boundary
value into two parts, one referring to the precision and one referring to the
reliability. Thus we arrive at the measure for the controllability of the observation
(cf. Eq. (1.25a))

VoX; 8
i = = —
o,  r

Thus 8/, is a factor for the standard deviation o, of the observation to obtain the
boundary value v,x,. With the controllability factor 84; we finally get (cf. Eq.
(1.25b))

8 (3.2)

Vox; =840, 8 =38/ (3.3)

The controllability value 8;; thus is the factor by which a gross error at least has to
be larger than the standard deviation of the observation to be detectable with a
minimum probability of B,.

The controllability factors in Example 5 are (a) 8.0, (b) 4.8, (c) 9.8, and (d) 14.0.
The distance (b) is best controllable with vyx; = 4.8 o, while the image coordinate
(d) is worst controllable with v,x;, = 14 g,

After fixing the significance level S, and the minimum power of the test the
controllability in a simple manner depends on the redundancy number r,. Evaluat-
ing the controllability thus is the same as evaluating the geometry. This is the reason
why Baarda required &, to be chosen constant for all mensuration designs.

The boundary values also contain information on the test used and thus can be
used to compare different tests. E.g., if one uses the common test statistic

wF=—¢é/0,, (3.4)

which is not optimal and does not take the geometry into account, one obtains the
boundary value
8y

Vo = 0" (3.5)

1

It is larger than v x, by a factor 1/ yr, f Especially if the geometry is weak (r;, < 1)
the difference is significant. For r, = § we obtain V*x, = 3 V,x,. In Example E12
errors must be larger than 144 pm if one uses the usual test statistic Eq. (3.4),
compared to 42 um if one uses the standardized residual. These values have to be
compared with the assumed measuring accuracy of 3 um!

3.2. External Reliability According to Baarda

The last section discussed how large gross errors have to be in order to be
detectable. Gross errors smaller than the boundary values v, x; may stay undetected
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and contaminate the result. We now determine the maximum influence of undetect-
able gross errors onto the estimates. We can use the relations derived in Section 1,
where we analysed the effect of the observations onto the result.

If we substitute 6/ in Eq. (1.47) by &/, we obtain the sensitivity or robustness factor

= | Uy,
dy; = 66;‘@ =9, o =8,

We can follow the same line of thought which led to Eq. (1.37). This now gives us
the maximum influence of an undetectable error Vx, < V,x; in observation x, onto
an arbitrary function f of the estimated coordmates k or any other subset of the
unknowns comprised in k. If we substitute v,/ by v,/ and &, by §,, we finally
obtain

8().'

(3.6)

VoS < B 0= 0y By [T /7 (37)

Equation (3.7) shows the decisive role of the ratio u, /r; for the sensitivity or
robustness of the result with respect to undetectable gross errors (cf. Section 1.6).
The sensitivity or robustness factors §;, measure the external reliability according to
Baarda.

EXAMPLES (continued).
E 9: §;, = 8.0, §,,= 6.9
E10: &), = 4.8, §,; = 2.6
El1: 8, = 9.8, 8, = 8.9
E12: §;, = 14.0, §,, = 13.2.

I

The sensitivity factors are calculated assuming u, = 0 or u, =1 — r,. The values
show that only the second observation (E10) can be accepted.

Let us now investigate the reliability, i.e., the controllability of the observations and
the robustness of the estimated parameters in the first three examples. In all cases
we have assumed &, = 4.

El. Template matching (continued). The only unknown parameter in the
matching example is the shift. We therefore can calculate the controllability factors,
the boundary values for detectable gross errors, and the sensitivity factors from Egs.
(3.5) and (3.7) with u, =1 — r,. For the center pixels of the edge they are collected
in the following table, assuming a standard deviation of o, = 5 gray Ievels for the
measured gray values:

Slope " 0 10 30 60 30 10 0

5, 400 404 436 667 436 404 400
Vox,lgrdv] 20 20 2 33 2 20 20

8o 0,057 175 533 175 0.57 0
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The controllability of the gray value of the center pixel is just acceptable. Under
these assumptions errors in the gray value less than 33 gray levels, which, e.g., may
be caused by an irregularity at the object cannot be detected. The effect onto the
estimated shift is less than 5 times its standard deviation. Obviously the gray values
with low slope have a negligible effect onto the shift and thus may be ommitted
from the estimation procedure. In general very small sensitivity values §,; suggest
checking whether the observation is really necessary, or whether it is superfluous.

E2. Absolute Orientation of a Single Camera (continued). Also in this case we
only deal with one group of unknown parameters, namely the 6 orientation
parameters of the camera. With the assumed standard deviation o, = 3 pm we
obtain the values of the following table:

Pt. ¢ 1 2 3 4 5 6 7

x &, 530 6.81 530 521 505 495 5.05
Vox,[um] 16 20 16 16 15 15 15
8, 348 551 348 365 3.08 292 308

y 8 509 8.06 5.09 485 532 469 5.32
Vox;[pm] 15 24 15 15 16 14 16
8, 315 7.00 315 274 350 246 3.50

The design obviously is very homogenous, as could be expected. The y-coordinate
of point 2 is least controllable. Gross errors less than 8 times the measuring
precision are not detectable, approximately one pixel. The maximum effect (§,; = 7)
of an undetectable gross error in this observation onto the result 1s just acceptable.

E3. Relative Orientation of Two Cameras (continued). Up to now we have
always analyzed the quality of the orientation parameters. We will now investigate
the robustness of the reconstruction of an unknown object from two images with the
only additional information being the scale factor, e.g., based on the distance
between the two camera positions. Errors in the observation influence both, the
orientation parameters and the object coordinates. We already know the re-
dundancy numbers for the case of fixed object coordinates from the previous
example (b). The loss in local redundancy for each image coordinate yields the
contribution number u, (cf. the Eq. (1.45b)). E.g., the redundancy number of the y
coordinate of point 5 changes from 0.566 to 0.048 (cf. E3 above), resulting in
u, = 0.518 and thus in a sensitivity factor of 8y; = 4 - 1/0.518,/0.048 = 13.1. Al-
together we thus obtain the reliability values for the y-coordinates:

Pt. # 1 2 3 4 5 6 7

8. 103 100 103 930 183 786 183
VoX, [pm] 31 30 31 28 55 24 55
3, 706 293 706 654 131 537 131

The design is very weak due to low controllability of the 5th point. Blunders up to
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55 wm or approximately 3 pixels are not detectable with a statistically founded test.
With a conventional test errors up to 250 pm or 12 may stay undetected (cf. Fig. 4).
The maximum influence onto the resultant coordinates is up to 13 times their
standard deviation, which thus has no legitimacy as a quality measure if gross errors
are likely to happen. As already observed earlier the x-coordinates are not controlla-
ble at all, as their redundancy numbers are zero. This is reflected in the controllabil-
ity and sensitivity factors being infinite. On the other hand, the sensitivity factor of
y-coordinate 2 is much smaller (2.93) than the controllability factor (10.0); this
means that though relatively large gross errors may stay undetected their influence
onto the result is acceptable. This is because a large part of the error is absorbed by
the orientation parameters (cf. E3 above).

Nevertheless, at least three images or a sufficiently reliable object model are
necessary to be able to reconstruct an object from images with a reasonable quality.

4. RELIABILITY ANALYSIS OF DATA AND DESIGN

The evaluation of data and design of a measuring process can be based on quite a
number of measures which have been provided in and motivated by the previous
sections. They are collected in Table 6. There is full analogy between the empirical
and the theoretical evaluation measures. The empirical measures refer to the actual
data, the theoretical values to the lower bounds of detectable errors. The test
statistic w, and the lower bound &, for the standardized distance between H, and

TABLE 6
Measures for Evaluating the Reliability
Empirical Theoretical
Test statistic Standardized distance

between Hy and H,

w, =8 =— Vow; = 8§
a;,
Estimated size Lower bound for detectable error
VA’ —é; a,, o N o,
X, =— =W 0X; = 0g
oy Vi
Standardized size of Controllability factor
error
VX VoX;
81’ = 8(;: =
Ux'_ Xi
Empirical sensitivity Theoretical sensitivity
factor factor
_ u, _ .
8 =w, — =6//u 8y, =61 — =6’-]fﬁ
i i r, i k; 0 0 r, 01 "k,
Actual influence Maximum influence of
of observation undetectable error

vif <89 Voif < i 0
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H, are the only difference in corresponding formulas. The index 0 indicates the
theoretical values.

We now want to discuss the relevance of the measures in different situations. We
already have pointed out the interaction between the statistical test and the effect of
nonsignificant errors and the problem of choosing the right criterium for eliminating
observations.

There seems to be a clear distinction between two types of problems:

A. The evaluation process may aim at an explanation or an understanding of
the error sources. Alternatives in this case represent models which loosely speaking
have a meaning. Examples are well-defined errors, such as, a 1 m-error in a
coordinate.

B. The evaluation process may aim at a check of the quality of the resultant
coordinates or other geometrical or physical entities. In this case the alternatives are
set up in order to detect and compensate for gross errors and to reach a result of
high reliability. The nature of the errors is of secondary interest. The set of
alternatives just has to be large enough not to leave any effects unconsidered.

A and B correspond to problems in natural and engineering science, respectively.

Table 7 contains the empirical and theoretical measures indicating which of them
are decisive for the evaluation of data and design in the context of these two types
of problems:

A. We detect and localize gross errors using the test statistic w; and possibly
base our correction of the observation onto the estimated size vx of the gross error.
(A correction, however, should only be performed, if the type of the error is
explainable, otherwise one should remeasure.) A reliable detection requires small
boundary values v x,.

As a safe localization of gross errors only is possible using the test statistic w;, this
type of evaluation of the data always is necessary during the editing process.

B. The reliability of the resultant coordinates k or any other subset of the
unknown parameters y can be fully described by the empirical and the theoretical
sensitivity factors. Small empirical values 8, (say < 2 or 3) indicate that the actual

TABLE 7
Empmcal and Theoretical Measures for Two Types of Evaluation Processes
Type of _ Name of evaluation et problem
measure measure Value Eq. A B
Empirical Test statistic W, (2.1)/(2.2) X
Estimated size éxj (1.22) x
Empirical sensitivity 8,vif  (L47)/(Q.37) x
Theoretical ~ Boundary values VoX; (3.3) x
(controllability, internal reliability) -
Theoretical sensitivity B0 Voif (3.7 X

(robustness, external reliability)

Note. Aim A: explanation/understanding of errors; aim B: quality control of result.
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model errors hardly have an effect on the result, even if they are large. Small

theoretical values 8, indicate that the design is robust with respect to undetectable
model errors. The test statistics w; do not seem to be of great value in this context, if
“the empirical sensitivity factors are satisfyingly small. In case the precision of the
unknown parameters is not very homogeneous, the analysis should be based on the
influence of v,f and/or A, f of the observations and/or the nondetectable errors,
respectively, onto a specified function of the parameters.

5. SUMMARY AND CONCLUSIONS

The analysis of a mensuration process with respect to the quality of the result can
be based on objective measures which take the geometry of the design and the used
estimation and testing procedures into account. This is the central message of this
paper. The evaluation of the design, based on measures for precision, controllability,
and robustness can be used for planning purposes. The evaluation of the data can
be based on a statistical test, estimates for the size of possible blunders and the
influence of the observed values onto the result and simplifies the data editing
phase. The examples demonstrate that the quality measures coincide with intuition.
These quality measures may reveal weak points in design and data which otherwise
would not have been detected. They thus seem to be suitable for automatic quality
control in mensuration problems encountered in computer vision, at least for a
better self-diagnosis of the estimation procedures.

One, however, has to keep the simplified assumptions in mind, which have been
made 1n this presentation:

—The analysis assumed only one error to be present. The theory for tackling
more than one error is available, also the more difficult problem of evaluating the
separability or locatability of different errors. In a similar line of thought, one then
arrives at requirements for the correlation between the residuals, in order to
correctly locate a blunder with a prespecified probability [10]. The practical problem
of data cleaning, however, can use the techniques of robust estimation to advantage
which provide a suggestion for the hypotheses and thus a starting point for a further
quality analysis: -

—The analysis is based on the validity of the model. The concept, however, is
also suitable to evaluate systematic errors, and already is formulated that way: in
this case the 4 -vector in Eq. (1.8b) is a full vector, or a matrix describing the effect
of the error source onto the observations. One then arrives at statements on the
determinability and the sensitivity with respect to systematic errors [10].

—The analysis assumes the precision of the observed values to be known. The
analysis can simply be adapted to the case where a F-test, based on the estimated
variance factor, is used; the geometrical analysis stays unaltered. Individual errors
in the standard deviations anyway cannot be separated from blunders. The estima-
tion of the precision of groups of heterogeneous observations is possible, but not yet
integrated into the concept [&, 10]. '

The analysis of the precision, as indicated in Section 1.1, has to take the influence of
the chosen coordinate system into account. This problem has not been tackled here,
but can rely on the theory of so-called S-systems (cf. [3, 18]).
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In spite of these restrictions the application of these concepts would lead to

conspicious insight into the geometry of the design of experiments. Theoretical and
experimental studies will be necessary to come to strategies which lead to highly
reliable results in mensuration problems in computer vision.
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