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Abstract: A new feature based correspondence algorithm for image mat-
ching is presented. The interest operator is optimal for selecting
points which promise high matching accuracy, for selecting corners
with arbitrary number and orientation of edges or centres of discs,
circles or rings. The similarily measure can take the seldomness of
the selected points into account. The consistency of the solution is
achieved by maximum likelihood type (robust) estimation for the para-
meters of an object model. Approximate values have to be better than
1/Blof the size of the image in shift, 20 ® in rotation and 30 % in
scale.

0. Intreoduction

The paper describes a new feature based procedure for image
matching. It was motivied by the algorithm developped by BARNARD and
THOMPSON (1981). Their concept basicly resulted in a three step-pro-
cedure. Keeping their motivation for the individual steps, specifi-
cally distinctness, similarity and consistency, +the steps were re-
placed by slightly different ones in order to arrive at a procedure
with a common theoretical framework, namely a maximum likelihood type
estimation for the parallax field (cf. PADERES et. al. 1984). Though
the actual implementation uses a comparably simple object model, the
concept 1s general enough to handle piecewise smooth surfaces. The
procedure contains a new interest operator, which turned out to have
attactive features, as it not only aims at finding points which pro-
mise precise parallax determination, but at the same time is an opera-
tor to find corners with edges of arbitrary number and orientation as
well as the centre of circles, discs or rings. In addition a simple
measure of seldomness has been developped in order to increase the re-
liability of the procedure in presence of repetetive patterns.

Feature based matching (FBM) procedures contrast to gray level or
area based methods, like classical image correlation or least sguares
matching (LSM). FBM 1s superior to image correlation with respect to
speed and versatility and is superior to LSM with respect to range of
convergence, speed and versatility. ZEspecially the high requirements
for approximate values of LSM, (< 1-2 pixels for shifts, < 20 ° for
rotation, < 30 % for scale difference and shear) are reasomn enough to
use different concepts. FBM procedures are widely used in pattern re-

"cognition and computer vision (cf. FORSTNER 1986) and find increasing
interest also in photogrammetry.

We will first outline the basic strategy and the requirements to be
met in +the individual steps, and give an example. Section 2 then
describes the maximum likelihcod type estimation of the parameters of
the mapping function between the images. The determination of prelimi-
nary weights for this robust estimation are discussed in section 3. It
is based on the polnts selected by the new interest operator whose
properties are described in detail in section 4.

FBM procedures consist of three steps:

1. selecting distinct points in the images separately using a socalled
interest operator.

2. building up a preliminary list of candidate pairs of corresponding
points assuming a similaritv measure, and
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3. deriving the final 1list of point pairs consistent with an object
model.

1.1 Selecting Distinct Points with an Interest Operator

In FBM instead of matching all pixels in an image, only selected
points with certain features are to be matched. The selection prin-
ciple should fulfill the following requirements:

- Distinctness: The points should be distinct, i.e. be different from
neighbouring points. E. g. points on edges should not be selected
if +the epipoclar geometry constraint 1is not used; also points in
flat areas should not be selected. MORAVEC’s and HANNAH's opera-
tors follow this aim: MORAVEC’s operator (1977) searches for
points with the largest minimum variance of gray level differences
in 4 directions, while HANNAH’s operator (1974) searches for points
where the autocorrelation function of +the gray level function is
steep in all directions.

- Ipnvariance: The selection as well as the selected position should
be invariant with respect to the expected geometric and radiomatric
distortions. This, besides the distinctness, probably is the most
important requirement. The degree of invariance directly influences
the precision and the reliability of the matching

- Stabilitv: The selected points should be expected to appear in the
other images. Thus the selection should be robust with respect to
noise. In image sequence analysis the selected points should appear
in long sequences of consecutive frames. ‘

- Seldomness: Whereas distinctness guarantees local separability of
points ssldomness aims at global separability. This is essential in
images with partially repetetive patterns. In order to avoid confu-
sion elements of repetetive patterns should not be selected or at
least should get a low weight. Thus the selection of seldom or
interesting points leads to reliable results, explaining the notion
"interst operator”. A similar line of +thought leads +to the notion
of salient features (cf. TURNEY et. al.).

- Interpretability: The selection principle should be interpretable
in some sense, e. g. looking for edges, - corners, blobs or other
simple but labeled features. This requirement is not essential from
an engineering point of view, but may be essential if the interest
operator is used for image analysis. !

The result of this first step are two 1lists with the n’ and n"
points selected in the two images I’ and I", their pixel coordinates
and their description, e. g. in the form of +the local gray level
function in the selected window. The advantage of the selection is
obvious: it leads to a great information reduction, as we only have do
deal with the two 1lists not with all pixels. It explains the require-
ments for the selection principle as the selected points reliably have
to represent the total image content with respect to +the matching
problem.

Fig. 1 shows an artificial image pair. The black dots are the
centres of the 7 by 7 windows selected by the new interest operator.
The two lists of selected points with their weights are given in table
1. A closer look at fig. 1 reveils that the selected windows are not
totally invariant as they appear at different places whithin the same
corner. The reason for this seemingly deficiency and a remedy are dis-
cussed in section 4.

1.2 Preliminary Correspondence based on Similarity
From the n’ x n" possible pairs of points only a few are pairs of

corresponding points. In this step a preliminary list of candidate
pairs is built, which is based on the similarity of the points. Points
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are said to be similar if their description is similar. The similarity
measure should fulfill the following requirements:

- Invariance: The similarity measure should be invariant with respect

to the expected geometric and radiomatric distortions between the
images. E. g. the correlation coefficient is invariant with respect
to linear transformations of the gray values, but not with respect
to geometric distortions.
The problem with similarity measures is the form of the window
which usually is chosen to be square or circular and which in
general is not invariant with respect to scale differences or even
shears. E.g. affine invariant moments (HU 1962) of the gray level
function are invariant, only 1if the background is zero. Otherwise
the noninvariance of the window form with respect to affine distor-
tions, because of border effects, prevents the computed moments
from being invariant (cf. GEISELMANN 1884). If at least scale
differences between the images are to be expected the window size,
possibly alsc its form, has +to be adapted. The approach of BURNS
et. al (1988) for extracting edges reflects +this requirement as
they first determine the edge region, i. e. +the window, dependent
on the lcoccal steepness of the edge, +thus taking the - with respect
to an ideal edge - local scale into account.

- Seldomness: The similarity measure should be able +to include the
seldomness of the individual points. Thus the degree of seldomness
of both points in concern should alsc decide whether they remain in
the preliminary list of the corresponding point pairs or at least
should influence the weight of the correspondence.

- Heuristics: A priory knowledge may be incorporated in this step. E.
g. the maximum parallax to be expected may be used to further re-
duce the number of candidate pairs. A special case would be the
condition resulting from the known epipolar geometry reducing the
search space by one dimension.

~ Metric: For a thorough analysis it is convenient if the similarity
measure has metric properties, i. e. besides being a distance
measure it fulfills the triangle eguation dij < dik + dxj. This e.
g. holds for the sum of squares of the gray level differences
between the selected windows. A large distance d may correspond to
a small similarity s = 1/d or s = 1-d.

The preliminary list of candidate pairs, resulting from this step,
is a further information reduction: Whereas in the previous step we
still kept the full description of the individual points we now only
need their position and the weight of the correspondence, unless it is
needed for achieving consistency.

Table 2 shows the selected candidate pairs derived from table 1.
The selection was based on the correlation coefficient of the gray
level functions whithin the windows of the point pairs, which had to
be > 0.5 and the maximum parallax, which was assumed to be 15 pixels
in both directions.

1.3 Achieving Consistency

The local one-to-one comparison using the similarity measure and
the heuristics in general is mnot able to yield a globally consistent
matching result. Consistency here is understood as the fit of the data
with respect +to an object model or at least to a global model for
the mapping function between +the two images. In order to arrive at a
final solution we therefore have to

1. provide a 3D-model of our object. The strength of the model direct-
ly influences the quality of the solution. The model may also be
setup for the mapping function between the images, which - using
the invers perspetive relations - can be then interpreted as a
3D-model. BARNARD and THOMPSON (1981) e. g. require the parallax
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dif?erencas to be less or equal 1 pixel for points within a certain
radius of a point in concern, say 15 pixels, also allowing
exceptions. For the normal case of a stereo pailr this is egivalent
to assuming the object surface to be pPiecewise horizontal or hardly
sloped. Often the object model is not stated explicitely but is
hidden in the algorithmic solution.

2. choose a consistency measure which is able to determine the close-
ness of fit of the data with the model. The choice of the target
function is difficult in cases where different types of deviations
between data and model have to be balanced. A classical problem is
the proper relative weighting of the measuring errors, the smooth-
ness of the surface and the frequency of discontinuities. A common
theoretical framework, which e. g. allows maximum likelihood esti-
mation, seems to be of great advantage for a thorough setup.

3. choose an algorithm +to find a solution of optimal or at 1least
satisfying consistency. There are various algorithms in use: In
image sequence analysis nearest neighbourhood methods are very
common (cf. KORIES 1986), they correspond to the minimal mapping
approach proposed by ULLMAN (19789). Relaxation schemes as e. g.
used by BARNARD and THOMPSON (1981) are very popular, as they may
incorporate quite different types of consistency conditions. The
clustering approach proposed by STOCKMAN et. al. (1982) shows in-
tuitively that a global soclution is aimed at.

Table 3 contains the final result of the new procedure. It is a
robust estimation for the 6 parameters of an affine transformation
between the two images, corresponding to a tilted plane as object
model. All point pairs of the 1list of preliminary correspondencies
together with their weights were introduced. The corresponding points
are shown in fig. 2. The algorithm thus yields two results, which may
be the basis for further analysis:

a. a 1list of pairs of points which are consistent with the global
model and additional points in both images where point transfer
promises to be accurate.

b. parameters of the mapping function, which allow a point transfer of
other points, possibly not selected by the interest operator.

The next sections describe the three steps of the new procedure in
detail.

2. imum Likeliho stimati he Mapping Funct

The object model is setup in a parametric form to be able +to esti-
mate the parameters using maximum likelihood (ML) methods. This is no
severe restriction as very general surfaces, specifically piecewise
smooth surfaces can be represented in parametric form.

2.1 Object Model

For a first implementation of +the algorithm a simple object model
has been chosen. The surface of the object as far as it is shown in
the images is assumed +to be a tilted plane. This is a reasonable
approximation if +the images are not too large, say 40 x 40 +to
120 x 120 pixels of size (20 um)®. This object model is identical to a
linear mapping function between the images. Thus in general we obtain

the linear model for the parallaxes px = x" - x’ and py = y" - ¥y’ of
the corresponding points:

PXi 1 10
D = - (2-1)
pPyi wi [0 1

pxi + vp=xi xi°’

oy o
) 0>

!
Yy o)

Pyi + vpyi yirs

Solving for the 6 unknown parameters a to f yvields the result of.the
2D-matching result. In case the epipolar geometry is known we obtain d
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= e =1f = 0 if the parallaxes in the normal image are used. The para-
meter & measures the slope along the epipolar line, which is assumed
to be roughly parallel to +the x-axis, the parameter measures the
slope across the epipolar line, and € the parallax. If only points in
one epipolar line are used for matching the parameter b has to be
excluded, as it is not estimable. The 2D-matching in this case reduces
to 1D-matching of a gray level line.

The model eq. (2-1) for the parallaxes is assumed to be valid for
all corresponding points. The covariance, or dispersion matrix for the
parallaxes depends on the type of the point, specifically its texture,
and on the similarity between the 1left and the right image of the
object point. Dus to +the selectiocn principle of the interest operator
for 2Dmatching the x- and y-parallaxes are assumed to be uncorrelated
and of equal precision. Thus we have one weight for the parallaxes of
each point pair.

The non corresponding peint pairs can be treated as outliers with
respect to the model. As we start from +the 1list of preliminary
correspondencies, not knowing the true ones, all parallaxes may be
assumed to belong to a long tailed distribution. The most reasonable
assumption for this distribution would be the outlier model F = a N +
(1. - a) H being a mixture of a normal distribution N and a very broard
arbitrary distribution H. More simple approximations to F are the
Laplace-Distribution f(x) = ¢ exp(-|x|) or the Cauchy-Distribution f =
c / (1 + x*).

2.2 ML-Estimation

In order to eliminate the effect of outliers onto the result one
now can use ML or ML-type estimators. Then, instead of the (weighted)
sum of the squares of the residuals vi the sum of a less increasing
function T(vi) is minimized (HUBER 1981):

Z t(vi) => min (2-2)

which reduces to ML estimation if T(x) is proportional to the negative
logarithm of the density function.

Discussion:

1. Chossing t(v) = v®/2 gives the least squares estimator, neglecting
the weights for the moment.

2. Chosing T(v) = |v|P /P vields the estimator minimizing the Lp-norm.
A special case 1is obtained for p = 1: Minimizing ZtT(v) = I|v| is
the well known least sum method being the ML-estimate for the
Laplace-Distribution. It is the multiparameter version of the me-
dian.

3. The choice of T can be guided by the socalled “Influence Curve”
(IC) (HAMPEL 1873) being proportional to the derivative 06(v) =
dt/dv of the minimum function. IC(v) or 8(v) give an indication how
strong the influence of an outlier is onto the estimates in depen-
dency of the size of the outlier.

4. The solution of eqg. (2-2) can use existing programs for least
squares solutions by either modifying the residuals or by modifying
the weights, as

St(vi) = 3 %}’37% Y =% wvi) % => min (2-3)
using the weight function
wivi) = T(vi) (c <K vi2/2) (2-4)

vi37? + c

In an iterative solution the weights of all observations are up-
dated depending on their residuals from the previous iteration.
5. If the function T(v) is convex, thus 6(v) is non-decreasing, and
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the model is linear then convergence 1s guaranteed under broard
conditions (cf. HUBER, 1981, sect. 7.8).

Thus minimizing the Li-norm seems to be optimal, as it is robust, and
convergence is guaranteed. This method has, however,two disadvantages:
1.) =(v) has no derivative at 0, thus, IC(v) is not continuous, which
does not guarantee a unique solution and 2.) IC(v) = sign(v) is not
zero for large values. Thus even large outliers have still an influ-
ence onto the result, which is not desirable. We therefor propose to
use the following weight functions:

1. In order to ascertain convergence and a unique solution we slightly
modify the minimum function of the Li-norm (cf. fig. 3)
T1 (V) 2 (1T +Fv72 -1)
wi(v) = 4 (¥ 1 ¥v2/72 -1) / v (2-5)
B1(v) =v /41 +v/2

T1(wv) is strictly convex with decreasing curvature for large v.

2. After having reached convergence, one can assume to have good
approximate values for the parameters. In order to eliminate the
influence of large outliers one could +take one of +the following
minimum functions:

Starting from a Cauchy-Distribution on obtains:
t2za{v) = 1ln(1l + v?/2)
w2a (v) 2 In(1 + v /2) / v* (2-6) -
82a(v) = v / (1 + v2/2)

No convergence is guaranteed in the general case. Also as 8(v) is
descending for large v, no unique solution is guaranteed 1if ar-
bitrary approximate values are allowed. This is meaningful as the
Cauchy-Distribution has neither mean nor variance.

The following minimum function is proposed by KRARUP et. al. (1980)
which considerably reduces the weights of false observations due to
its exponential form:

T2b (V) = v* /2 exp(~-v*/2)

w2b (v) = exp(-v2/2) (2-7)

82b(v) = v (1 - v /2) exp(-v*/2)

This weight function fulfills practically all requirements for a
well behaved weight function (HAMPEL 1973, WERNER 1984). 1It, how-
ever, cannot be derived from a density function, thus does not lead
to a ML-estimate.

The functions are shown in fig. 3 together with the minimum-,
weight- and influence-function of the least squares To(v) = v* /2.

2.3 Algorithmic Solution

In each iterationm of +this robust estimation, the parameters, the
residuals, the precision of the estimates and the average weight are
determined, and the weights are adapted for the next iteration. If a
weight is smaller than a certain percentage (say, 10 %) of the average
weight, it is set to zero, eliminating this point. The first few (3 or
4) iterations are performed with the weight function w1, after which
the redescending function w2b 1is applied. The algorithms stops if
either the reqired precision of +the parameters is reached, not enough
corresponding points are left, or a preset number of iterations is
reached. The residuals of the last iteration are then tested and with
all points passing this test one additional iteration with equal
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welghts is performed to obtain the final parameters.

The obtained 1list of corresponding points may then still be
ambiguous, as the same point in one image might correspond to several
points of a cluster in the other image. The list of pairs of points is
then cleaned keeping’ those correspondencies which have the smaller
residuals (cf. table 3).

The result obtained this way has to be checked independently in
order to be able to guarantee for its correctness. For this purpose a
global correlation coefficient is calculated from the gray levels of a
regular grid, +taking the estimated mapping into account. If this
correlation coefficient is below 0.5 the result is rejected, which may
be caused e. g. by non-sufficient approximate values. We made the
experiance that +this indicator is very reliable: it never suggested a
false solution to be correct.

3. Similarity Measure

The estimation procedure requires initial weights for the observa-
tions which in our case are the parallaxes of the point pairs in the
list of preliminary correspondencies. Hence the majority of the obser-
vations are outliers and assuming equal weight would prevent the solu-
tion from getting started.

Now the welghts can be obtained from the covariance matrix of the
estimated shifts if we would apply LSM to all point pairs. It is given
by (cf. FORSTNER 1986): .

A p gxs 2 Ex « gy -1 ~

C=0D0 = g% = g® Q (3-1)
Py AE |Z Bye-gx 2 gy° AE

where g is the gray level function of the object, restored from g’ and
g", Oag? is the estimated variance of the gray level differences thus
the noise, and gx and gy are the derivatives in x- and y-direction
resp.. The sums are to be taken over all pixels of the window around

the points in concern.

The covariance matrix fully describes the precision of the match
between the gray level functions g’ and g" and can be visualized by an
error ellipse. A good match therefore must fulfill the following two
reqgirements:

Cl: the error ellipse should be close to a circle, otherwise the
match is not well dfined in one direction, e. g. at an' edge.
C2: The error ellipse should be small.

The interest operator is based on these two criteria. As the cova-
riance matrix directly measures the curvature of the 2D-autocovariance
function within the window, the interest operator, except for the nor-
malization, 1is essentially identical with HANNAH’s operator. It is
however, much more simple to be calculated.

We now can assume the error ellipses of all selected points to be
close to a circle. Then the weight can be directly derived from the
trace of the covariance matrix: '

w=1/1tr {C)=1/(3;gtr Q) (3-2)

Observe, that the trace is invariant to rotationms. Taking the gray le-
vel differences directly +to estimate ©ag® has the disadvantage of
being biased if the two images have different brightness or contrast.
The correlation coefficient is known to be a better measure. Now, if
one, for simplicitity, assumes the images g’ and g" to be related to
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the true image g by g’ = a’ (g + n’) + b* and g" = a" (g + n") + b"
with o®n® = 0©0%n" = o0°n where a and b represent contrast and bright-
ness, the signal to noise ratio SNR® = o0g?/on?® is functionally related
to the correlation coefficient r by:

o " a2
- g’eg" _ g _ SNR2 _ r a
r = EETE;: = Eir;—ai = BNRE T 1 or SNR? = T—7% (3-3)

By using the approximations Zni* =~ N on? (N being the number of pixels
in the window), og® =~ ogg’ og", tr Q~ 4 tr @ tr Q" and opg® =~ 2 on®
we cobtain the following relation for the weight of the parallaxes:

r 1 1

1 — , " F) L1
r Ug ug {tr Q tr Q

W ==

(3-4)

0o 1z

on:

i. The weight depends on four +terms. The number N of pixels in the
windows is equal for all points, thus can be neglected. The second
one reflects the similarity between the two points in concern and
needs to be calculated for all pairs of points. Actually only those
correlation coefficients are calculated where +the parallaxes are
less than a prespecified task dependent threshold. The other terms
depend on values ocbtainable separately from both images and are
provided from the interest operator.

2. The traces tr Q' and tr Q" measure the distinctness or the locat-
ability of the points and are critical for the selection of appro-—
priate points. The reason is, +that the noise level can reasonably
be assumed to be constant in both images (cf. eq. 3-2). .

3. The weight 1is a generalization of the one used by BARNARD and
THOMPSON (1981). It is independent of brightness and contrast and
takes the texture of the points into account.

4. A simple and reasonable criterion to reject pairs of points based
on the correlation coefficient is r < 0.5. This is equivalent to
requiring SNR to be larger than 1.

5. As the correlation coefficient, thus the similarity measure 1is not
invariant with respect to scale, rotation and shear, +the approxi-
mate values for these unknown parameters still have to be Dbetter
than 30 %.

6. However, the separation of +the different terms in eq. (3-4) has
the advantage in its ability to include other measures of similari-
ty. The correlation coefficient needs not be derived from gray le-
vels but may use other features of the points, e. g. one could use
a small set of features just to decrease the computing time, e. &£.
the low frequency terms of a cosine transformations or one could
use structural information, the result of a classification or a
linguistic description in combination with statistical measures,
in order to obtain invariance with respect to the expected geome-
tric distortions. The only requirement for the measure is to have
the properties of a correlation coefficient, or x/(1-r) to be a
metric distance measure.

4. The Interest Operator

The interest operator has to find points with the two req rements
for the error ellipse which one would obtain from point transfer: Cl:
it should be close to a circle and C2: it should be small. Now, the
error ellipse can only be calculated using a the gray levels within a
certain window, which usually is chosen 5 x 5 or 7 x 7 pixels. The
centre of the window in general is not the best point for matching, as
the transformation of this point is not invariant to geometric distor-
tions (cf. fig. 4a). An optimal point within the window is the
weighted centre of gravity, which proves to have attractive features.



-9 -
4.1 Selecting an Optimal Window

We have required that the error ellipse representing the covariance
matrix of the parallaxes is close to a circle. Moreover, we require
that the point can well be located. Measures of both requirements
(C1 and C2), should, in a simple way, be derivable from the gray level
function of the image patch, as they are to be determined for all

pixels, 1. e. all possible positions of a small window within the
images.

New the eigenvalues of the covariance matrix are invariant to rota-
tions. We will use them to determine the <closeness of the error
ellipse to a circle. Moreover, the eigenvalues of +the coefficient
matrix, say @', and those of the inverse N’ = (Q’)-1 are related by
i (Q') = 1/ (N’). Thus, let pi and puz be the eigenvalues of N’, then
the ratio

_ 4 det N° _ 4 u1 pa _ B M1 - up2 g _
L= AT T T F pz)E o 1 ( ur o+ oz ) (4-1)

is an adequate measure for the roundness of the error ellipse. 1If q =
0 (and not both m1 and pz are zero) then det N' is zero and the matrix
is singular. This means that gz and gy are lineariliy dependent thus
the point may ly on an edge (cf. NAGEL/ENKELMANN 1986). The case g = 1
is reached only if the eigenvalues are equal thus representing an
error circle. The calculation of g needs not use the eigenvalues, but
rather the determinant and the trace of N’ which can be derived from
the sums Zgzx?, Zgy® and Zgxgy. We also do not need to invert N’.

Similarily we can derive an expression for tr Q’:
tr @ = tr N° / det W’ (4-2)

Thus the selection of the optimal windows can be accomplished for both
images separately in the following steps:

1. Determinationdthe elements of N, which essentially are three convo-
lutions, namely of the three derived images g=® (i, Jj), gy*(1i,J) and
gx(i,3)*gy(1,3), with a separable kernel containing only 1’s, which
needs just 4 additions per pixel if calculated recursively.

2. Determination of tr Q and of q using eq. (4-1) and (4-2).

3. Determination of the interest value, being a preliminary weight for
each pixel:

- 1/ trQif @ > gnin (e. g. 0.5) _
W=l 0 else (4-3)

4. Suppression of all local non-maxima by setting the function %(i,J)
to 0 at local non-maxima.

5. Extraction of all windows for which W(i,j) is not O.

Until recently we treated the centres of +the windows as selected
points. The example given in section 1 is based on this selection
principle. For images with sharp edges this selection principle re-
veals severe deficiencies increasing with larger window sizes, which
has also been discussed by DRESCHLER (1981). There a specialized inte-
rest operator for finding corners has been developped. This seems to
be too restrictive for genmeral imagery. We therefore follow a diffe-
rent approach.

4.2 Selecting Optimal Points

The selection of optimal windows was based on the expected preci-
sion of LSM. By taking the relative maxima of w, the expected pre-
cision using the small window is better than the precision obtainable
with all neighbouring windows. Now it can be shown that this selection
principle also yields optimal precision for +three other tasks, which
lead to a normal egquation matrix N with the same eigenvalues:
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The determination of the weighted centre of gravity =z = (x, y)t of
the window leads to the following model:
X +wvi = % gxi® gxi-gyi
. W = (4-4)
yi + wvi o= 4 Bxicgyi gyi®

Thus each pixel contributes +to the weighted centre of gravity
according to the size and direction of the local gradient.

The same egquation system would be obtained for LSM if x4+ and i
would mean 1local, i. e. pixelwise estimates for the shifts x and y
from xi = (g" - g’) / gxi and y1+ = (g " - gi’) / gyi. Because
derived from the same gray level difference they are 100 % corre-
lated with the weight matrix in eq. (4-4).

The determination of +the intersection of all gray level edges in
the window leads to the following model:

di + vi —cosai X + sin ai ? D(di) = gi’® (4-5)

with tan ai = gyi/gri, di = xi cos ai + yi sin ai, and g ’? =
gxi® + gyi?®. Thus each individual edge-element contributes to +the
intersection peint according to the square of the magnitude of the
gradient.

The determination of the intersection of all local 1lines of
steepest descent, thus of slope-elements, within the window leads
to the following model:

di +vi = -sinai X + cos ai ; D(di) = gi’® (4-6)

with the same abbreviations as before. Thus each individual slope-
element, which is perpendicular +to the 1local edge-element, con-
tributes to the intersection point according to +the square of the
magnitude of the gradient. If the gray level function is consisting
of one or several circularily formed edges the intersection of the
slope-elements is the centre of these circles.

Discussion:

1.

The selection of windows, which are optimal for matching are also
optimal for determining the weighted centre of gravity, the inter-
section point or the centre of a circle or a set of rings.

The numerical solutions of problem 1. and 2. coincide, i. e. the
weighted centre of gravity is identical to the intersection of all
edges in the window. ThisA can be seen by setting up the normal
equations. The solution is z = (ZWi)-1 Z(Wi =i}, with zi=(x1, yi)t.
The estimation of the images of corner points of polyhedra 1is
invariant to rotatioms in space, if based of the model eq. (4-5).
This 1s probably the most far reaching consequence of this deriva-
tion.

The number of edges within a window needs not to be known in ad-
vance in order to be able to estimate the intersection point (cf.
fig. 5: 1-6,13-15)

Similarily the number of edge-rings within a window needs not to be
known in advance (cf. fig. 5: 10-12)

Alsc mixtures of intersecting edges and lines can be determined.
Moreover, the end point of a line can be estimated due to the
existencde of an edge-element at the end of the line (cf. fig. b:
7-9, 16-18).

The ML-estimate provides the precision of the estimated point. The
standard deviations of the estimated coordinates usually are below
1/4 of a pixel.

The classification of the point can be based on the closeness of
fit with respect to +the 3 models (general point, intersection
point, centre of rings), which has not performed in the examples in
fig. 5.
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Fig. 4 shows the centre of the selected windows (4.a) and the se-
lected points (4.b) for a checker bord in twoorientations. MNearest
neigbbourhood resampling was used for the rotated one. In fig. 5 seve-
ral image patches are shown together with the edge- or slope-
elements, the estimated point and the confidence ellipse derived from
tbe fit of the gray levels with respect to the model. The true point
with a probability of 99 % lies within the confidence ellipse, provi-
ded the model holds. The wedge- and slope elements are positioned
between the pixels as Roberts gradient has been used. The examples
clearly demonstrate the capabilities of the point selector.

4.3 A Measure for Seldomness

The preliminary weight W = 1 / tr Q (eq. 4-3) for the points selec-
ted this way only takes the local gray level function into account,
thus is independent on the other selected points. In images with re-
petetive patterns one, however, should give those points a higher
weight whose features are seldom, in order to increase the reliability
of the initial estimate.

Th§ problem of finding seldom, thus specific structures for
matching is a very general one. There are basicly two solutions:

a. The supervised selection of features uses the information of cor-
rect matches of a representative sample. Thus those features are
selected, which in a training phase gave best results. The approach
by KAK et. al. (1986) follows this line.

b. The unsupervised selection of features is based only on the mutual
similarity of the points or objects in concern, specifically how
dissimilarity can be expexted to influence the matching result. The
approach by TURNEY et. al. (1985) follows this line.

For supervised selection the representativity of the training
sample is crucial, whereas for unsupervised selection the underlying
mathematical model for matching is decisive. We are only intersted in
a relative weighting of the points and , because of the inherent limi-
tations of +training procedures, do not want to rely on a - possibly
large - set of correct matches. We therefore propose the following
simple method for measuring the seldomness of the selected points,
which can be derived after the selection from the set of points in
each of the images alone.

Seldom points have features which are different or dissimilar from
those of all other points. As we used the correlation coefficient for
measuring the similarity of points in different images we now also use
the correlation coefficient for measuring the similarity (or dissimi-
larity) between points within one image. Let R = (rij) be the correla-
tion matrix of all selected points within one image, derived from the
gray levels within the window arocund the points. Then the seldomness
Si of point i, similarily to eq. (3-3) for SNR, can be obtained from:

Si = (1 -rxri) / ri for ri > 0, 85i = « else (4-86)
where ri is a correlation coefficient measuring +the similarity of

point i with all other points. There are at least two choices at hand
for deriving such a summarizing value:

1. ri = max (rij) (4f7.1)
Jfi
2. ri’® =1 - [(B1)1]-1 =t R-1 xi (4-7.2)

The first choice ri just measures +the maximum similarity of i with
all other points j. The second cheoice ri’ is the socalled total corre-
lation, which for instance is proposed by JACOBSEN (1982) for evalua-



ting the mutual dependency of additional parameters for selfcalibra-
tion. It needs the diagonal elements of the inverse of the correlation
matrix. In eq. (4-7.2) ri is the i-th column of R without the diagonal
element Rii = 1, and Ri is +the correlation matrix without row and
column i. Obviously ri® 1s the weighted average of all correlation= of
roint i with the other peoints. ri’ is theoretically more attractive
than ri, as it measures the separability of point 1 and +the other
points (cf. FORSTNER 1983). It can be algebraicly related toc the in-
formatlion theoretic notion of seldomness in the sense of low probabi-
lity. This is, because for small ri’, thus for a point well separable
from the others, the information, measured in bits, necessary to
describe this point, given the others, is large, indicating the point
to be a seldom one. This forms a 1link to the supervised selection
principle for structural features proposed by KAK et. al. (1986).

But, as can seen from 2 x 2 matrices, for which ri* = rz: = ]Rlzl
holds, ri’' cannot discern positive and negative correlations. We

therefore propose to use the, also more simple measure ri for deriving
the seldomness.

In both cases large correlations between +the points, thus large
off-diagonal elements in R lead to large summarizing correlation co-
efficients ri, +thus to small seldomness measures, as should be expec-
ted.

Example: The correlations of the 3 first windows of fig. 5 are ri2 =
0.92, r1a = 0.29 and rz23a = 0.39. We obtain:

1: 51 0.09, 82 = 0.09, 53 1.58
2: st 0.43, S2’ = 0.40, 83’ 2.29

both choices indicating the third window +to have +the most seldom
characteristics from these three windows, which corresponds to intui-
tion. The total correlations are ri1’® = 0.85, r2’%2 = 0.86 and r3’® =
0.16.

The preliminary weight Wi from eq. (4-3) of each point can now be
corrected for seldomness by multiplying it with Si. Altogether the
weight of a preliminary correspondence between point i in image I’ and
j in image I" with eq. (3-4) now can then be written as:

wy oy pEi A AW W - AE 5 (4-8)
g’ e’ :

The main effort for deriving these weights is the calculation of the

correlation coefficients of the points within and between the images.

. C ion

The feature based matching algorithm described above has been imple-
mented on a photogrammetric measuring device, a Zeiss Planicomp C100,
within the program PALM (SCHEWE/FORSTNER 1986) for automatic line and
surface measurments developped for the mensuration of car body sur-
faces. The algorithm supports the least squares matching algorithm by
providing reliable and accurate approximate values if necessary. The
precision of this FBM procedure has been shown to be appr. 1/3 of a
pixel in case the centre of the selected windows are used as feature
points and the images show enough texture. The time for matching two
images of 120 x 120 pixels is about 2 seconds on a VAX 11/780. On an
HP1000 A900 computer the time for two images of 40 x 40 pixels is
appr. B seconds. The accuracy can be expected to be significantly
better if the weighted centres of the windows according +to sect. 4.2
are used as feature points, then yielding accuracies which may be
sufficient for robot control or inspection tasks. The concept is able
to include a similarity measure, being invariant to the ' expected
geometric distortions without changing the interest operator and to
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extepd the object model to much more general surfaces. The ability of
the interest operator to find and accurately locate corners with
arbitrary number and orientation of edges or lines need further in-
vestigation, specifically for supporting image analysis.
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Figure 1 Artificial Image Pair With Selected Points (black pixels)
NOTE: Window size of interest operators: 7
Window size for non-maximum suppression: 3
Lafr Image Right Image
i N . ] a i N v B . LI - Ch s rho
1 - . 7 n H u b m ol 1 2 o1 4.7957 410. ETTS 0.812910
2
a 12 b %7 o7 3 I 2 0 » 229 vy potd Pt 4
4 13 a 364 4 . 12 3 e n - - - -
M b s 210 e M x 7 -y 2 4 3 09 9. 129 907. 708. 0. 769720
6 14 17 430 Eod e N = 9 el 3 4 06 3.99 364. 469. 0. 732839
7 16 4 N4 ae 7 2 n 433 o2 6 4 o8 8. 666 368, 443, 0.872919
8 ry a1 e ] 24 18 a3 ot 7 s 03 2798 410 386, 0.932111
? 16 n 13 b 4 24 = 7o0a = a 5 10 2.032 410 280. 0. 572882
10 2 a3 e s 10 a o 220 » 9 & 03 16436 450, 284, 0.863114
1 24 at sa i 29 ] 223 20
s e , o et 2 = o Ha 7 10 6 0@ 2733 430, 443, 0. 633302
= 2 o4 pesy P b+ b P 1378 o 11 7 o8 16.076 714 443, 0. 893973
14 28 0 63 31 14 ar as 348 . 12 | o8 11. 647 443, 0.
13 20 - 448 53 12 E] 3 308 30 13 8 10 1. 838 ae0. 0
18 a1 38 1871 94 e = 3 340 34 14 9 08 4,333 69, o.
17 3 ol 1 = 4 s i ;: - 13 @ o8 11. 360 443, 0.
19 4“0 E-d
19 a1 43 ant as " -2 " 96 a2 16 9 11 2 187 =29, o
ey pod o o= o 3 H ot n 17 10 02 2 891 200. 0.
21 4s 14 324 30 21 a3 3 9 el 18 10 03 2.434 B8, 0.
a3 19 327 s7 P 4 10 asa Ead 19 10 04 2.378 ey o.
n a3 E &8s el o 3 28 1683 = 2 10 07 2. 692 423, 0.
a4 4 B4 s b a1 11 02 2.333 964, 300. Q
22 11 03 9. 660 964, 2e8. 0.
23 11 04 33. 150 964 s88. . O
24 11 o7 2. 328 964 ‘423, [
23 11 13 139224 964, 1374 0.
26 11 14 3. 310 964 368, 0.
27 11 13 13. 244 964. s08 0.
28 11 16 7. 181 964, 940 Q.
9 12 12 4.827 316, 718 o
30 13 12 @732 622 718. a.
. : 31 13 12 7.178 623 1374, [
Table 1 List of Selected Points R 13 17 1891 ey 314, o
. 33 14 03 2. 963. 280, o.
NOTE: x,y coordinates 34 14 04 11. 141 3. - 488, o
~ . 33 14 07 3. 303 963, 423 [
w interest value 36 14 09 2.978 963. o.
. . . 37 14 13 13.047 963 1374, 0.
q measure for isotropy of error ellipse (in percent) 3. 14 13 4. 759 963. o
39 14 16 3. 142 983. 340 3
40 13 12 7. 200 449, 7189 o.
a1 13 13 2.030 448, o
42 13 16 2.129 448, 340. o.
43 13 17 132. 494 448, 14 0.
44 13 19 24.3% 448, 396 o
43 13 22 11. 948 448 446 o
46 16 09 9.9%8 1871, 708. 0.
47 16 11 3. 991 1871 323 o
48 16 23 129139 1871. 1683, [3
49 17 06 16.139 1318 469 0.
s0 17 os 2. 468 1918 443 0.
1 17 17 & 066 1318, 314 0.
2 17 19 4.692 1318, 39 0.
53 18 10 1.%67 867. 280 0
54 18 24 5183 867. 344, 0.
3 19 14 3. 144 311, 368 o
36 19 13 7.749 a1, 308, a.
57 19 16 6.314 a1 340. o.
sa 20 13 3. 133 840, 1374 o
39 23 23 29.446 686. 1683. 0
Table 2 List of Selected Pairs

NOTE: ij point No. in left and right image (201 = (2,1)), w initial
weight,w preliminary weights,rho correlation ccefficient.
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1. 19929 0. 10307 . 3.38
-0. 08947 0. 88201 7 -6.43
a)
i laft right 21 gyl I yr dx dy
1 2 & 10. 000 34. 000 21. 000 22. 000 -1.961 0. 637
2 3 7 12. 000 43. 000 21. 000 33. 000 1. 563 -0. 840
3 3 9 12. 000 49. 000 24. 000 33. 000 -1. 437 -0. 840
4 4 e 13. 000 31. 000 24. 000 18. 000 -1. 684 1. 722
3 8 10 16. 000 21. 000 26. 000 8. 000 -1.129 2. 633
& T a8 16. 000 31. 000 24. 000 18. 000 1. 902 1. 433
7 11 13 24. 000 41. 000 37. 000 27. 000 -0. 303 0. 336
a8 13 12 26. 000 19. 00O 33. 000 8. 000 1. 618 -0. 027
9 14 13 26. 000 40. 000 37. 000 27. 000 1.782 -0. 303
10 19 17 30. 000 23. 000 39. 000 11. 000 2. 811 0. 142
11 13 19 30. 000 23. 000 42. 000 11. 000 -0. 189 0. 142
12 13 22 30. 600 23. 000 43. 000 10. 000 -3. 189 1.142
13 16 23 31. 000 38. 000 43. 000 24. 000 =0. 448 0. 282
14 S S 14. 000 13. 000 21. 000 7. 000 0. 862 -1. 480
13 13 17 26. 000 19. 000 39. c00 11. 000 -2. 382 =3. 027
16 & 3 14. 000 17. 000 21.000 7. 000 1. 068 0. 284
17 4 & 13. 000 31. 000 21. 000 22. 000 1. 316 -2. 278
clean list
b)
i left right xl yl xr yr dx dy
1 2 & 10. 000 34. Q00 21. 000 22. 000 -1.961 0. 637
2 3 9 12. 000 43. 000 24: 000 33. 000 ~1. 437 -0. 840
3 8 10 16. 000 21. 000 26. 000 8. 000 -1.129 2. 633
4 9 -] 16. 000 31. 000 24. 000 18. 000 1. 902 1.433
S 11 13 24. 000 41. 000 37. 000 27. 000 -0. 903 0. 936
& 13 12 26. 000 19. 000 33. 000 8. 000 1. 618 -0. 027
7 13 19 30. 000 23. 000 42. 000 11. 000 -0. 189 0. 142
a 16 23 31. 000 38. 000 43. 000 24. 000 ~0. 448 0.282
L4 & S 14. 000 17. 000 21. 000 7. 000 1. 068 0. 284
Table 3 Result of Robust Affine Transformation

a) uncleaned list, containing ambiguities
b) cleaned list, final result
(cf. Figure 2)

NOTE: 6 iterations
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Result of Correspondence Algorithm.
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