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served autoregressive process Yg T rn,, with z;= Eak -k T g It is shown, that
approx1mating theestimated Four1er power spectrum P (u} by a Ieast squares fit

E(F (w) = |H(w|? o+cl s identical with the var1ance component estimation solution
in the spatial doma1n The statistical and numerical properties of the procedure are
analysed showing the versatility of the approach.

Abstract: The paper discusses the determination of the variances g and oZ in an ob-

1. Introduction

1.1 Autoregressive (AR)models are widely used for describing the statistical behaviour
of one~ and two-dimensional randomly varying discrete functions. Examples are time
series and digital images. This study was motivated by the application of AR-models in
the analysis and prediction of heights of topographic surfaces. Preliminary investiga-
tions (Jickle, 1984) suggest that AR-models are suited to describe the behaviour of

the slopes or the curvature in terrain profiles. The results of this paper may be used
to derive an optimal, possibly adaptive, filter in the presence of observational
errors.

1.2 The model for a stationary AR(p)-process (stochastical variables are underscored)
7l ez tey Y

of order p is fully described by the p coefficients a, and the variance c; of the
driving process {fiJ which in most cases is assumed to be white Gaussian noise. Sta-
tionarity is achieved by choosing c; in a way that aéizraéj for all i and j. Usually
only the observed process (Hd)

AMS 1980 subject classification: 62 J 10, 62 H 12
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E{:Ei-p&{" (2)

is available, where the n, are observational errors. Then in addition to a, and G: the
additive noise variance 0; is unknown. For a reconstruction of the sequence Gxi) from
the observed sequence (y;)» e.9. by using a Wiener Filter or equivalenty by least
squares techniques, the power spectra of z. and nes i. e. the parameters a, and both
variances have to be known. The standard techniques for estimating the parameters a,
(cf. e.g. Box/Jdenkins 1976 [1]) however neglect the effect of the observational noise
R, or assume both variances or at least ai to be known (cf. e.g. Yum and Park 1983
[241). A joint estimation of all parameters is desirable.

According to an idea of R.L. Kashyap, which became known to the author after fini-
shing the manuscript, the variances can be derived from a nonlinear equation system
(Kashyap and Rao 1976 [11], ch.2h) which is based on the representation of an observed
AR-process by an autoregressive moving average (ARMA) process. It will be of great inter-
est to compare this approach with the following one which in addition to the estimates
of the variances also offers criteria for their evaluation. The estimation, however, needs
not necessarily be accomplished in one step but may be achieved in an iterative manner,
by alternatively estimating the process coefficients a; and the varijances 02 and ﬁ;.

1.3 This paper discusses the determination of the variances of the driving and the ob-
servation process assuming the process coefficients to be known. The procedure could be
part of an iterative algorithm for the joint estimation of all unknowns or used in cases
where the process coefficients are known from experience. As the transfer function A(w)
of the AR-process only depends on the process parameters, the proposed estimation pro-
cedure will immediately yield an estimate for the signal to noise ratio of the observed
signal and allows a proper reconstruction of the process @giJ.

1.4 We will first derive estimates for the variances c; and c; based on the power
spectrum of the observed process ) and then show that the resulting equation system

is identical to that obtained by a set up in the spatial domain using variance compo-
nent estimation technique and assuming the process_(ai) to be periodic. The 3rd section
analyses the estimability or determinability and the identifiability or discernability
of the variances for a doubly integrated white noise process which is already in use
for height interpolation in photogrammetry (Ebner 1979 [3]). The 4th section discusses'
the numerical effort.for the variance component estimation and the versatility of the
approach,

2. Estimation of the variances of the driving and the observing process

2.1 The power spectrum of observed AR-Processes

The power spectrum of the AR-process eq. (1) only depends on the parameters a; and the
variance c; of the driving process (e;). It is given by {cf. e.g. Liicker 1980 [17],
p.52., Fuller 1976 [71, p. 144, (4.3.8)).
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P (u) = T(u) - c; (3a)

with
1
Tfu) = . (3k)
~januk|?

)
1- a, e
k=1 “

With {gé) being white noise and independent of (gi) the power spectrum of (Ei) is
immediately

- - g 2 2
z;ru) = 3x(uJ + Pn(u) = T(u) o, + a,- (1)

Tfu) is the squared transfer function of the system yielding (fi) from rgi).

The total variance [ Pg{u)dh of the process is spread over the frequencies u and

consists of two gomgoneﬁts. As T(u), depending on a, only, is assumed to be known,

each value of the power spectrum is a linear function of the two unknown variance com-
2 2

ponents o, and o, -

Example 1: The non-stationary AR(2) process with a,=+2 and a,=-1 can be used to
describe the heights in a terrain profile (cf. Ebner 1979 [3]). It is a doubly inte-
grated white noise process. The power spectrum of an observed profile is then given by
eq.{4) using eq.(3b) with the above coefficients:

1
Tly) 5 ———— . (5)
1€ sin® mu

The Wiener or least squares filter for estimating (xi) from (ﬂd) is (cf. e.g. Castle-
man 1979 [2], cf. also Link 1983 [16]):

P_,c(u) 1
H(u) = = 5 ()
Pz(u) +P"(u)

g
1+ =3 » 16 sin" Ty
Te

and only depends on the ratio c:/o; between the two unknown variances. We will refer
to this ratio later in conjunction with the least squares solution in the spatial

. domain., =

2.2 Estimating Variance Components from the Power Spectrum Py(u)

The power spectrum P (u) may be estimated from (E¢) in various ways (cf. the review
Kay/Marple 1991 [12]) and leads to an estimate Eyru). If the process (giJ is periodic
and Gaussian 2 (u) reasonably can be estimated using a discrete Fourier transforma-
tion. Then the elements of E%(u) are independently (cf. Papoulis 1965 [19], p.368) x;-
distributed with variance V(Ey(u)) = P;ru), as they are derived from the normally
distributed complex amplitude spectrum of (Ei)' This leads to the following variance
component model :



266 W. Férstner

Erijyrun = Tu) od v ol V{‘Eyr'u)) = Pl (u) (7)
“Egq. {7) is Vinear in the variance components and reflects the “Expectation-Dispersion-
Lorrespondence” of Pukelsheim (1976, {20]),here applied to & linear model in the spec-
tral domain.

With approximate values ¢(0) and ¢7(0) one can now derive estimates L:E:/c:z’m
and @l#c?:!a;(dl for the variance factors using weighted least squares technique. The
normal equations are

5 2= w {8a)
- 4 22 10 ] [ L2
E P - o ; rtw) o 9, §., . rour - ai e B (u)
u ?yru; u Pj(u; u ?yru
, ; N K (a5}
; I'(u}»qﬁo‘n o, i‘ - of. B,
3
F () « Bw) i & Eow ‘
As Pyru) is unknown but needed for determining the weights
wiw) = 1/ wg?y (u) | ()

it may be substituted by éy(u). Then eq. {B) becomes nonlinear in the unknowns and has
to be solved iteratively {cf, Schaffrin 1983 [23]) by setting

S3ve1) 2 GEV) tB.v) 5 fze,n s vEO, 1, 3. (10
The equation system eq. (8) reduces tc that given by Paganc (1974 [18]) if the weights

wix; (eq.(9)) are neglected and the initial values for the variances are set to 1,

2.3 Estimating Yariance Components from the Process (g’

The derivation in the spatial domain is more extensive than in the spectral domain.
We start from the AR-model egs. (1) and (2) and rewrite it in the form of & linear
Gauss-Markov model {GMM) with :£=E(££).

of iTpel,m (11}

L3

P.
L U=Eled) =z, glak o Vial

1

-~ N 2 :
By = = A (12)
The expectation of the m-p prediction errors g, are zero, According to Helmert {1924,
[9]), wenow are able to change our model. We treat the expected values m,_.) as fic-
tion observations with value 0 and variance ai. It can be shown that the estimators
and their precision are identical in both models. Together with the m observed values
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U; we have Zm=-p observations for the unknown z, of the AR-process, leading to a re-
dundancy of p=m-p. In general not all =, need to be observed, moreover they need
not be observed directly, allowing irregular gaps between the observations, or obser-
vations at arbitrary points ¢ between two grid points £ and T

In this context we restrict the process By to be periodic making a comparison with
the previous results poessible. Then additional p equations in the form of eq.(11) are
available extending the range of the parameter i{{=I,m) and thus increasing the redun-
dancy te #=m. The complete GMM for the estimation then reads as:

2
E(l}) = A=z ; Vi) s ¢ = g ¢, Q‘f (13}
=1
With P
o "faJ 4 oI ¢
1= a=[%); a, =% : = {0 0. = gd/g?
n
and (-1 ]
-1 2, ag.......ak....t} &
o I SRR S Qe
: : N . . @
p . %
@y Gy e Gy J.. ¢ eee =l .
| 71

The periodicy of rgij is reflected in the circulant matrix A with kerne! vector
[-1 0..0 - -a, 17, The filtered values =z, can be estimated from the normal equation
system

N -2

= h o owith ¥ = A ear ; h=olly 114)

1>

if the variances a; and ui. or at least the ratio U;{U: is known,

The variances however canbe estimated using variance component estimation techniq&a
{(Helmert 1824 (9], Grafarend/d'Hone 1978 [8], Koch 1980 [14], Firstner 1379 [5]).

The variance factors ‘e and ¢n can be obtained from the equation system

Sgruw s
with

Sz (e, = (0 €D QD)) ¥ -3, 8,

w=iw) = (w0 DY), iz n

01 -arafeia T AT

. - el . s
The elements ”ij in our case are (with 91 =0, I and Qg =a, 1)

.1 T .12

autﬁria'l A3ﬁ A Qljl (18a)

879 = o [0 A q;! 2, y"ag’; s, (16B)

8y, =t (1 - u™ q‘;;“i : {16¢)

Y
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If we now exploit the special structure of the matrices AI. N and @ all three being
circulant matrices, we can further simplify the expressions.

With the unitarian matrix

1 e‘ﬁ“”’")' (12)

F=zif.) = (
Ea I}E
the circulant matrices 4, and ¥ can be diagonalized {cf. Klein 1976 [13], Fuller 1978

E7}1 P 135}:"
Fa, f =diagh,) ; FNF s diag(opt A |+ at); w=1,n  (18)
Pre- and post-multiplying the matrices ¥, 4, etc. in eq.(16) with 7 and 71z does

not change the values s.. but allows to write the traces as sums of the sigenvalues.
With Arw) = (3 | this finally leads to -

- - -4
Aw) 8 2 7
11 % (1_ m""ﬁ"—_) N 2.2
o Ut A 0P +dh % aF ea?)
" C“ A ruj U‘
e ]
311 = B = Z {18a,b}
® (Aiu) of‘ - aa)z w a"lrw gﬁ - 0,3;)2
and analogously
Mu o o A of of
" - I noe Z e n
12 =
U (hfu) -3: + aﬁiz u (A o? « of)? (30a,b)
e m
2 4 4
. - E Ao (ul a, . }'_' o,
o ; _ (23a,b)

RO I N L R

The right sides of eq.{15) can be treated similarily. But now we are able to show the
equivalence of eq.(8) and {19)-{21): The transformation eq.{18) is jdentical to the dis-
crete Fourier transformation, which also has been used for the estimation of P fu).
Therefore, if we substitute A %/u) by Tf{w) in egs.{19b}, {20b) and (21b) we 1ngtediate1y
obtain eq.{8b). This enables us to use both, the spatial and the spectral, version of
the estimation procedure to advantage. )

Example 2: Figure 1 shows the graph of a terrain profile with 150 points derived from
aerial photographs of scale 1: 28000 using photogrammetric measuring device (Zeiss
Planicomp 100}. The precision of the operator was determined using the model eg.(13)
based on the AR(Z)-process from example 1 (a, =2, a,==1)(cf. Lindlohr 1982 [15]). The
estimated standard error _Eiu was 0.45m. This is ca. 0,1 %k of the flying height of 4300m
over the terrain and in full agreement with photogrammetric experience, ®
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Fig. 1 Terrain profile, point distance 10m

3. Evaluation of the Estimated Variances

3.1 Determinability and Separability

The properties of various estimators for variance components have been analysed by
Schaffrin (1983 [23]). The estimated variances from eq.(15) are best invariant quadratic
estimators with minimum bias (BIQUAMBE). Though their distribution is not known, one can
derive their variance under the assumption that Q&i) is Gaussian (cf. Koch 1980 [14], -
p. 211):

Vg =2 s, - WE) 2.5

» _E_r;: (22)

They give an indication about the estimability or the determinability of the variances
c: and o;. 1f the standard deviations °$£ are below 0.2 the variances ui can be said to
be well determinable, as they are accurate up to 20% .

The correlation
1
. (5 Jqn

912 - o T (33)
A5 gy (514,

between the estimates on the other hand is a measure for the discernability or the iden-
tifiability. If the correlation coefficient Pys is less than, say, 75 % the variances
are well discernable. Then with a high probability (of ca. 95%) one will not identify
the observational noise as signal or vice versa. This measure is derived from testing
multiple linear hypothesis (Firstner 1983 [6]) and seems to be useful here also.

3.2 Analysis of an AR(2) process

We will now investigate, under which conditions the signal and the noise fn an observed
process are estimable or separable. In order to get an idea of the features of the esti-
mation process the already mentioned AR-2 process, with a,= 2 and a,=~-1, has been
analysed in detail.
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Fig. 2 shows the variances and the correlation of the estimated variance components
o® and G; in dependency of their ratio c;/a;.
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Fig. 2 Estimability and Separability of Variance Componenants Q: and §;
r = redundancy

Instead of P‘{_c'_i::) the relative accuracy, i. e. the variances V@’;) +p» of the variance fac-
tors are given. They also depend on the redundancy r which for periodic sequences equals
the number m of the observations. One can derive from fig. 2 that the estimated standard
deviation of the additional noise variance §: is 82 /7700 = 5% - 0.28 or 28%, if
o:/oz = 7 and rzm= 100 observations are made.

The variances and the correlation of the variance components have been calculated from
eq.{16) using simulated data. The used processes, with m= 100 observations each, were
not periodic (Lindlohr 1982 [15]). Independently the values were derived from the theo- '
. retical power spectra, thus representing periodic processes. The sums in eq.(8) were re-
placed by integrals assuming a sufficiently large number m of observations. E.g. the
elements s, then reads as {cf. ea.(19a}):

12 12 :
; Y 7 (u) G; du
g oz o ne—— T W J
11 a;) J’ P P (24)
@ VPR ~1/2 {;r 18 gintmu + 1J7 ,
e

The integrals for 8170 855 and s,, were solved numerically with a HP 150 computer. The
results of both calculations differed not more than 1%, except for some profiles with
very low signal to noise ratio. This demonstrates the low influence of the border
effects. ‘
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The correlation between the estimated variances never exceeds 75 %. The maximum value
is V18785 = 9.7177 and is reached for small ¢bservational errcrs ra:lvz4-03. Thus sig-
na! and noise are always separable, the procedure will not really interprete noise as

signal or vice versa. '

The variances o: and c; are not always determinable, though. If the variances are of
different order, i.e. the ratio s;fc: is very different from 1, then only the larger
variance can be estimated with sufficient accuracy. In the extreme cases {oﬁ**ﬁs U;-*3J
the relative accuracy is 4/r and 2/» for the variances a; and ci resp.. The last value
2/r is identical with the variance of the estimated variance factor ug of a least
squares estimation. The additicnal noise variance u; obviously can only be determined.
if it is not much smaller than the variance q: of the driving process. On the other
hand, even for strongly contaminated signals, a; is estimable, though with only mode-
rate accuracy.

These results are representative for observed processes where the spectral proper-
ties of signal and noise are different, specifically if the power spectra differ in
shape. [f, in cur case, the noise would have been correlated, e. g. according to an
autoregressive scheme of order 1, the separability would have been much less, due to
the similarity of the power spectra.

4, Humerical Considerations

4.1 Irreqular Observations

Up to now we always have assumed that all signal values =, have been observed. But the
estimation of the variance components is also possible ifvtha sequence of observations
is irregular. This is of great practical importance as it increases the flexibility of
the procedure,

If not all signal values are observed eq.{12) only is valid for the . observations Ly
Then, the special structure of 4 is lost. The normal equation matrix N in eq.{14} fs
still band limited, with band width p. The prediction of the =, from the observed vatues
by needs about mp®/6 operations (cf. Ebner et al, 1984 [4]).

On the other hand, the effort for calculating the e1ements 8, for the variance estima~
tion is prohibitive, as all elements of the inverse ¥ 1 are needed, which requires appr.

m*/2 operations. But is is possible to reduce the effort considerably, if one uses a
s1ightly different iteration scheme to solve the nonlinear (cf. the text after eq.{8b))
equation system.

The following equation system (cf. Fdrstner 1979 [5])

-

T 2, 81 % 812 7

(25}

~

0 gyl | 3y, ¢ 81 * %52

a]-e»: g&:
iF &
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diagonolizes eq.{15) and after convergence leads to the same result, as §e and §ﬁ then
equal 1 (¢f. Schaffrin 1983 [23]). But the sums 3}1 and ;}2 are much easier to obtain.
First observe, that

g, 78, strDarsm-p, (26}

the total redundancy of the system. Now, 323 can be calculated from
— _ -1 7, ~1y _ _ -1, 2
By, 7 tr tc-4¥% "4 }Qg 1= m, = tr N /cr’l _ faz)

where m is the number of observed values y., possibly not equal to m. The main effort
now is to determine tr ¥ 1. But as ¥ is band.limited and only the elements of ¥~
within the band are necessary, the number of operations is only mp®/Z, which is consi-
derably less than m®/2. Therefore with

812 7 " 8y (28
from eq.(26) the solution of eq.(25) can dikactiy be given:
AT a
~ w a a/ct
7B 2T % . yith the prediction errors 2 = A, z (e4)
=33  T¥y - N
and
AL~y 2z
- [F1] n ~p_@rﬂ . P
= I - LI . -
= " T, ; with the residuals e T T E ey

and 5, from eq.(27).

Thus the total effort for estimating the variance components especially the additional
neise variance a: is appr. 3 times the effort for the prediction of ﬁ:i) alone. (In
this model the estimation of Eﬂgi) equa}s the prediction of z.3 cf. Rao (1967 {21]).

The simplification has the disadvantage that the speed of convergence is reduced and
the information about the separability is not available, The convergence can be in-
creased by numerical methods, which are discussed by Schaffrin (1983 [23]) with special
emphasis on variance component estimation. On the other hand, the correlation of the -
variance components may be approximated by the theoretical values {¢f. 3.2).

4.2 Regular Observations

If all values of the process {z,) are observed with no gapsone might distinguish two
cases: -

a. For rather short sequences (m< 320) the direct calculation according to egs.(15) and
{18) seems to be feasible, if the sparsity of 4, and the diagonality of the @, are used
to advantage.

b. For longer sequences the estimation of the prediction errors Ei and the residuals §¢
could be achieved from eq.(14). The variance component ¢stimation could reasocnably neg-
lect the border effects and the nonperiodicity of the sequence and calculate the ele-
ments s directly from eqs.(19)-(21), whereas the right sides couid be derived from &
and z (cf. eq.(29), (30)). In this case the additional effort for the variance estima-
tion becomes negligible.
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5. Discussion

The estimation of variances in observed autoregressive processes can be accomplished in
a statistically rigorous manner from a single sequence of observations thus mot needing
more information than the classical identification procedures.

Tﬁé interpretation of the variance component estimation procedure as weighted least
squares sa?ution for the composite power spectrum enables a simple theoretical amalysis
of the madel in the spectral domain and at the same time numerical advantages. The solu-
tion in the spatial domaim is very flexible allowing irregular gaps, indirect observa-
tions such as slopes or curvatures or observations between the grid points. An evalua-
tion can be based on the variance covariance matrix of the estimated variances. Specifi-
cally, the estimability and the separability of the variance components can be derived,
which for a special process have been discussed in detail, demomstrating the feasibility

of the approach.

The method easily can be extended towards more general processes including autoregres-
sive moving-average processes or vector valued processes. The solution in the spectral
domain may even be used for processes with arbitrary power spectrum,
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