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QUALITY ASSESSMENT OF OBJECT LOCATION AND POINT TRANSFER
USING DIGITAL IMAGE CORRELATION TECHNIQUES
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Abstract: The paper discusses aspects of evaluating the results of digital correlation used in

photogrammetric high precision application. The most common correlation techniques are com-
pared with respect to their optimization criteria. Results from practdcal and theoretical in-
vestigations concerning the sensitivity of the methods with respect to deviations of the mathe-
matical model from reality are given. The aim of the paper is to provide some insight into the
dependency of the main parameters of digital image correlation on the image texture, e.g. the
pixel and the patch size, the quality of approximate values, the influence of unmodeled geo-
metric distortions or of correlated noise. The results are useful for increasing the adaptility

of the methods.
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1. Introduction

1.1 Correlation techniques are widely used for relative and absolute measurements in time or
space signals. Examples are electronic distance measurements based on the determination of phase
differences, measurements of time delays in radio astronomy (very long base line interferometry),
spectrum analysis in radar problems or speech analyﬁis or parallax measurements in stereo vision
systems. For more than 10 yeérs automatic correlation techniques héve been applied also in photo-
grammetry and remote seﬁéing for the derivation of heights in stereo models for subsequent ortho-
photo projections or for registration and rectification of satellite images using ground control
noints. Hobrough in 1959 made the beginning with the instrumentation of parallax measurement for
"Automatic Stereo Plotting". Since that time quite some systems have been developed. ilost of them
were designed for efficient generation of digital elevation models and/or differential rectifica-
tion of aerial photos (e.g. Sharp et.al./IBH (1965), Hobrough/GPM (1971), Gambino and Crombie/CDC
(1974), Helava/Bendix (1976), Hobrough/RASTAR (1978), Panton/CDC (1978), Marckwardt/Zeiss Jena
(1982), cf. the review by Konecny and Pape (1981)).

1.2 Helava (1976) was the first to discuss the different aspects of digital correlatien when it is
realized in photogrammetric instruments, starting with an image model and using it for the evalu-
ation of different parameters such as the pull-in range, the spot size and the optimum frequency,
the effect of quantization etc.. He came to the conclusion that adaptility is a "problematic
necessity: We know we need to adapt and we have the means but we have difficulties in deciding how
and under what circumstances". High adaptility is realized e. g. by Hobrough (1971) for following
the terrain roughness, by Widrow (1973) for matching chromosoms with the “rubber mask" technigue,
by Wong (1978) for changing the corfe]atjon threshold in different hierarchy levels or by Panton
(1978) for keeping track with the changing perspective in two dimensional correlation. These
examples show the efficiehcy of parameter tuning but also the necessity to.start heuristicly.

0f course the abi1ity'of acdapting correlation parameters to the characteristic features of the
object has to be seen in the context of the whole algorithm. This aspect has excellently been
discussed by Makarovic (1980). It would be interesting to investigate how far his concepts are
realized in non-photogrammetric applications of digital image processing especially in television
image analysis, where image segmentation is more and more based on the estimation of the velocity
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field and where the same algorithms are used for parallax estimation (cf. the extensive review
given by Nagel (1981)).

1.3 Obviously these applications mainly aim at high performance rates rather than at high
precision. Accuracies of one or a half pixel (#10-50 um) seem to be good enough (cf. Dowman,
1982). In most cases the evaluation of the quality of a match is based on measures using diffe-
rent and unlinked types of mathematical models for the description of the algorithms and the image,
such as the correlation coefficient,the slope of the correlation function or the difference of the
grey levels of the images in concern. No information is used about the precision of the estimated
location of the match in terms of a standard deviation. The situation is confirmed e. g. by the
probably first application of digital image processing in high precision point determination with
the "Automatic Reseau iMeasurement Equipment" (Roos/ETL, 1975),where with an extreme pixel size of
0.8 um empirical accuracies of 1-1.5 um are reached. This demonstrates the high technological
standard of the system but also poses the question whether this precision could not have been
reached with Tower resolution (cf. Billingsley 1982).

Table 1 summarizes some of the available precision figures for object location and point trans-
fer. They are given separately for empirical findings or estimations, for computer simulations and
for values derived from theory. Except for the result of an epipolar Tine correlator (Claus, 1983)

Table 1 Precision of object location and point transfer (all figures in pels)
N° | Author Year E?E;{ ?;??;ns 12§g;a] Application/Remarks
1| Sharp et.al. 1965 1 DTM
2| v. Roessel 1972 2 DTM
3| Bernstein 1973 0.1 registration (Jf cf.(1983})
41 Klaasman 1975 0.05 edge detection
5| Roos 1975 1-2 point determination
6| Cafforio/Rocca 1976 0.1 _ TV image sequences
7| McGillem/Svedlow 1976 0.5/SNR | registration
8| Lichtenegger et.al. 1978 0.5 registration
91 Hill 1980 0.02-0.1 object location, binary images
10 | Huang/Hsu 1981 0.02-0.1 parallax estimation
11| Wiesel 1981 0.1-0.3 registration
12 | Bergmann 1982 0.5 TV image sequences
13 | Forstner 1982 0.01-0.1| object . location, point transfer
14 | Thurgood/Mikhail 1982 0.02-0.1 target location
15 | Ackermann/Pertl 1983 0.1-0.2 point transfer
16 | Claus 1983 e DTH, epipolar correlation
17 | Ho 1983 0.02-0.2 object location, binary images
18 | Mikhail 1983 < 0.05 target location

they refer to area matching procedures. There seems to be a tendency of the empirical results
towards subpixel accuracy namely 0.1 pel or better, though already in 1973 Bernstein and indepen-
dently in 1976 Cafforio and Rocca reached these figures. They seem to be realistically obtainable
under production conditions and come very close to the coinciding results from computer simula-
tions and theoretical developments. These, however, were not used for a thdrough evaluation in
photogrammetric applications until a few years ago.

This leads back to the fundamental problem of adaptility, especially the question, under
which conditions the accuracy inherent to the images can be used for object location and whether
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the - compared to the theoretical values - low precision of some of the systems can be explained
by theory.

1.4 The paper wants to discuss some of the aspects which are concerned with the quality assess-
ment of digital correlation. It restricts to the dependencies of the different tunable parameters
of the algorithms on the features of the correlated objects and thus in some way is complementary
to Makarovic's paper (1980) which treats the systems aspect of correlation algorithms.

Section 2 first compiles and compares the most common matching procedures with respect to their
optimality criteria. It turns out that they can be subdivided in two categories one optimizing the
precision the other the reliability. The equivalence of the matched filter with the least squares
estimator for the unknown location or parallax allows the combination of two well known mathema-
tical tools, Tinear systems theory and adjustment theory which has first been realized by McGillem
and Svedlow (1976). Thus one can take advantage of the experience of both fields of application,
digital image processing and photogrammetry. Particularly interesting is the use of robust estima-
tors and the extension of the procedures towards multiparameter estimators and multiimage corre-
Tation.

The quality in this context can be described by local, global and economic measures Tisted in
table 2. The standard deviation of the estimated shift is the decisive measure for high precision
application. As a criterion for the acceptance of a match it only has value if the result is

Table 2 Quality measures for digital correlation

N°| name measure type causing effects

1 precision standard deviation Tocal random errors

2 sensitivityT bias ‘ local systematic errors
3 | convergency pull-in range, rate of convergency |local, economic | approximate values
4 :reh'abthyJr probability of false match global approximate values
5 speed calculation time economic algorithm

6 storage compression rate economic coding

T

the notion reliability in geodetic and photogrammetric literature means controllability and sen-
sitivity, i.e. local properties of the estimators, thus it is differing from the notion above.
This is beacause in those applications the signal to noise ratic 0g4/0, is at least 10" and
usually good approximate values are made available.

unsensitive to undetected or unmodelled systematic effects such as illumination or geometric
distortion. On the other side the quality of the approximate values strongly influences the eco-
nomy of a correlation algorithm. The convergency is also a local measure which might be described
by the pull-in range or the rate of convergency. These three quality measures mainly depend on

the texture of the object and are discussed in detail using a joint mathematical model. Section

3 also contains results on the reliability of correlation procedures and the effect of image
coding onto precision and reliability. In contrast to the previous results they are based on com-
puter simulations. The speed aspect is not treated as it highly depends on the optimization of
whole algorithms which is determined by the specific area of application. The results of this sec-
tion can be useful for increasing the adaptility of correlation algorithms.

Notation: Given g(x) with autocovariance function Rg(m) = g(x) = gi{-x). The inverse filter h{x)
which yields &(z) = g(x) * h(z) is denoted by #(z) = g *(z). Thus g ‘(x) % g(x) = g(x) x g *(x) =
§{x). It can be defined using the Fouriertransforms of g(x) and % (xz),namely G(u/) and H(u) resp.:
H(u) = 1/ G(u) for all u with G(u) # 0, and H(x) = 0 otherwise.Especially g '(x) = B;lﬂr)*g(ﬁr).
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We use this notation to avoid convolutions, especially deconvolutions in the spectral domain.
This enables us to show clearly the shift of a function, which is a convolution with &(x-x,),
instead of multiplying the spectrum with exp (-jemuz ). Substituting convolutions by matrix multi-
plications immediately yields the discrete formu]as. In this case the inverse of a matrix has to
be replaced by its pseudo inverse.

Stochastical variables, vectors or functions are underscored; % is the true value of the variable
z. E(+) and V() denote the expectation and the variance operators. For notational convenience
g(x) often is replaced by g. The signal to noise ratio (SNR) is defined by cg/cn. x' is the
transposed vector of wx.

2. Filters for Object Location and Point Transfer

2.1 Least squares filters

Let the template be given as a continuous greylevel function g(xz). According to fig. la the
signal g, (=) is observed which results from g(xz) by

1. shifting the template by %, i.e. by convolving it with G(m—%l)
2. possibly convolving the result with the point spread function Z(x) and
3. adding noise n(x) with autocovariance function Rn(w); thus

gl(m) = hix) % gl(x) * 6(.:(.‘-3::1) + n(xz) (1

It is assumed that g(x) and n(x) have zero mean.

Fig. 1 Object Tocation: given g, possibly %; observed g;s unknown 51 , noise n
a.) matched filter for estimating EI
M — o —
_.--.-i J

b
g; = h o* 6(.1:-5:1) * g+

n
=h*xg*8@g)+n
L]

h___, ‘ 2y "5,3,4
?'l'.

b.) filters for restoring Gﬁn%ﬁl)

In genéFa1 n and &, are unknown. The task is to find a filter m(x) such that the maximum of c(z) =
m(x) x g,(x), the search function as we will call it, yields an estimate £, for Z,. We will com-
pare the result of four different optimization criteria:

1. R known, maximize the signal to noise ratio of the filtered signal and the filtered noise
at &1: SNR® = N(g#m) / V(nxm).

740 R, known, maximize the ratio of the expected maximum and the average standard deviation of
c(x) at all other points: & = E(g +m) /V V(g ).

3. The expectat1on of the search function should be a &-function with peak value at x
E(e(z)) = Gnrﬂn Mo

4. The maximum of E(c) should be at m and the autocovar1ance function of the search function
should be a §-function: E(cﬁx)*c(—x)) =R, () 2 8(z).

The filter m(x}, the expectation of the search function and its autocovariance function are given
in table 3 for the case where no filter khiz) is applied.
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Table 3 Filters for Object Location

a.) Filter

N°|  Name Optimization Criterium Filterfunction m.

1 |Matched Filter SNRZ=N(g *m) /N (n*m) 1) R Mg (=) = R;l*Rg*g—l

2 |Wiener Filter for 8(z—i ) R:E(gj*!:?) /g #m) R'g';*g(—x) = R;;'*Rg*g_l

3 |Inverse Filter for 8(e-&,) | E(c(w))26(a-%,) Fiag(-z) = g
g i ~1/2 _ - p=1/2 1/2, -1

4 |Phase Correlation R (x)28(x) (RQ*RQI) *g(—x) = Rgl *Rg *g

1) also least squares, maximum 1ikelihood, best Tinear unbiased estimate (BLUE)

b.) Search function c(x) = m(z) x g (@) with max(c(z)) = £,

N°|  Name Expectation E(z(x)) Autocovariance function &_(x)
1 {Matched Filter B 4R *8(x-%) R‘Z*R *R
nog 1 4
; ; = _p1 = -1
2 |Wiener Filter for &(x x]) (8 ng*Rn) *8 (x xz) ﬁb *Rgz
3 |Inverse Filter for 8(x-& ) §(x ) .
g g1
4 |Phase Correlation R/ 2xp=Y/2x8 (x5 ) 8
g 9 1
Discussion:

1. The first filter m, = R;l*g(—m) is the most commonly usec matched filter (for a derivation

see e.g. Castleman 1979, p.210). In case 7z is white noise, 1. e. R, is a §-function, the expec-

tation of the search function ¢, is the autocovariance function Rg(m—&j) of the template shifted

by the unknown value ﬁl. It is well known that this filter is also optimal in the least squares

sense, where the difference f(g—gj)zdx between g and g; is minimized (Svedlow et al. 1976,

McGillem and Svedlow 1977, Meyers and Franks 1980, Ryan et al. 1980). Furthermore m, also yields

the best Tinear unbiased estimator (BLUE) for the unknown shift, i. e. it leads to the smallest

variance in this class of estimators (McGillem and Svedlow 1977). Finally @3 is also the maximum

likelihood estimator if the noise can be assumed to be normally distributed (McGillem and Svedlow

1976). The cited equivalencies are generally valid for least squares solutions (cf. e.g. Koch 1980)
In view of these overpowering criteria there seems to be no chance to find better filters.

Actually at Teast three others exist. The reason for their development was the experience that

the matched filter in practice often leads to unreliable results namely to mismatches at very

wrong positions. This is due to the local character of the optimization criteria. A1l three

filters try to minimize the probability of a false match by sharpening the searchfunction.

2. The second filter my = (ﬁé-+ﬁﬁ)—l*9_l*§g explicitely tries to optimally separate between the

true position 51 and all others (Emmert and McGillem 1973). The main part of the search function
is a é-function. As g, can also be generated by convolution of the now unknown function ¢&(z-%,)

with the given filter g(xz) and subsequent degradation with n(xz) (cf. fig. 1b) the filter me,
actually is identical with the Wiener Filter for restoring the function anx—iz).

3. The third filter Mg = g™t is the inverse filter neglecting the influence of the noise. The
average search function is a &-function located at the correct position. This filter seems to be
superior to the preceeding. But generally this is not true. Though both filters my, and m, are
highpassfilters (for normal imagery) the transfer function M, {u) of me, is bounded if the signal
to noise ratio /Pg(u)/Pn(u) is not going to infinity, which seems to be a realistic assumption,
whereas Mg(u) might have poles namely if G(u) has zeros.
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4. The covariance functions R, and R, show that both filters prefer one of the both functions
g or g,. The fourth filter n%-(Rg*R 1) 2 Zrg(—w)= (mg¥mg )1/2 is a compromise namely the geometric
mean of the filters m,, and mg The search function 2y (w) (R *H 1)'1/2*g(—m)*gl(m) is fully symme-
tric with respect to the given functions g and g5 The covar1ance function £, 1is a &-function.

The Fouriertransform ¢, (u) = ¢* G, / |G* gﬁ| of ¢, contains only the phase of the crosspower
spectrum G* G, of g and g;- This filter m, is therefore called the phase correlation filter
(Kuglin,Hines,1975;Pearson,Hines,Golosman,Kuglin,1977). The formulas given by Pratt already 1974
are a discrete version of ¢ (x) and are motivied by prewhitening both functions g = Rgl/z*g, 4,7
R§;/2*31 and then corre1at1ng g and g.. The phase correlation method thus treats all frequencies
of the crosspower spectrum with the same weight leading to results which are very robust to narrow
banded distortions or long waved disturbancies. The pictures given by Oppenheim (1981) demonstrate
that the phase of the amplitude spectrum really contains the main part of the geometric information

of an image.

5. A comparison of the autocorrelation functions &, of the search function c(z) reveals that in

case the signal to noise ratio is large the three filters Mgy M and m, lead to similar results;

in the noisefree case they are identical. On the other side if ihe noise component in g, is Targe
one needs a good estimate or a priori knowledge about the covariance function E_, except when
using the phase correlation technique, which does not need any a priory information about n. The
matched filter m, obviously is most sensitive to assumptions concerning the noise as, in contrary
to m,, and My s errors in R and thus in Rg do not compensate but cumulate. This is the price to be
payed for obtaining the 1oca]]y best so]ut1on. In case R, and Rg are proportional, i. e. Rg:const.
R, all four filters are identical. This situation rea11st1ca11y can be assumed if images are con-
taminated not only by film grain noise but also by long waved distortions, either geometric or
time dependent ones (cf. Emmert and McGillem 1973, Svedlow and McGillem 1976), but also is met in
radar signals where this type of filter is well known (cf. Urkowitz, 1953).

6. The filters can also be used in a slightly modified form when in addition to the noise and
the shift the template is passed through a Tinear filter %(x) before being observed, which might
represent smearing effects caused by the athmospheric turbulence or the movement of the sensor.
Then g; = k*g*ﬁ(wﬂx J+n and thus Rg, = Rh*R i with Rh:hﬁx)*h(—m) Then all filters have to be
modified by subst1tut1ng g by gxh, e. g. now the second filter reads as m, -KR *By R )"l g(~x) ¥ (~x) .
As the filter A(x) usually is not known precisely one uses asymmetr1csurrogate h{m) =hi-x). But
then Z, only is unbiased if the true function x(x) also is symmetric. Otherwise, e. g. in case of
onesided illumination effects, systematic errors have to be expected, as e. g. E(c (z)) = R“l
Rg*h *k*é(w—m J does not have its maximum value at z= xl, because %Z7'x% is not symmetr1c w1th re-
spect to z=0. The bias E(2,)-2, in addition to % depends on Rg and R .

7. The optimality and the linearity of the filters m,
tion function R, thus known By, If R or'Rgl is estimated from g, e.g. by cyclic correlation

or what is equivalent by taking the inverse Fourier transform of the empirical cross power spectrum,
the analysis of the properties of the search function becomes much more involved as the filters are
not linear anymore. This especially holds for the phase corrrelation technique the way it was ori-
ginally formulated by Kuglin and Hines (1975). On the other side, Emmert and McGillem (1973) and
Pratt (1974) proposed to approximate the autocovariance function, namely by assuming an autoregres-
sive image model.(cf. section 3.1). A similar adaption leading to a nonlinear filter is the common
standardization of the cross covariance function g(-z) *g,(x) leading to the cross correlation
function g{x)::g(~m)*gi(m)/./5;7577:;5753 where an estimate §§1::§g1(o) is used for the variance

of the signal g3+ Cross correlation not only is invariant to unknown brightness differences of g
and 95 but in its discrete and local version is highly adaptive to varying illumination.

s My and m, is only given for known correla-
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Summarizing one may distinguish two types of filters for object location:

a. The filters Mgy Mg and m, are restauration filters for the unknown function G(m—éi). The
phase correlation filter m, is the geometric mean of the inverse filter Mg and the Wiener Filter
mye It is invariant to arbitrary prefilters z(xz) which degrade the object g(x) and robust with
respect to bandlimited or longwaved distortions, such as oscillations, clouds, reseau crosses,
shadows, temporal changes, Tocal geometric distortions etc.  Assuming usual imagery all three
filters are high pass filters. They minimize the probability for a false match, which however
seems not to be proved rigorously up to now. Though they do not yield optimum precision, i. e. the
smallest possible standard deviation for the estimated shift, they are very well suited for deter-
mining good approximate values %1 for &1 in extreme cases (cf. Emmert and McGillem 1973, Pratt
1974) even down to signal noise ratios below 7 (Ehlers 1983).

b. The matched filter m, leading to optimal precision has only local properties and is therefore
suited for high precision application, provided the mathematical model (geometric, radiometric,
stochastic) is adequate. As the model eq.(1) is oversimplified and only suitable for detecting the

lTocation of one object in one image we will next discuss other optimization functions and extensions
of the matched filter.

2.2 Robust filters

1. The equivalence of the least squares and the maximum 1ikelihood estimator for normally distri-
buted noise suggests to base the estimation on other , especially longtailed distributions. This
1éads us to robust estimators. Here the maximum 1ikelihood type estimators seem to be best suited
as they fit quite well into classical least squares algorithms. Such estimators are obtained by
instead of minimizing the sum of squares one minimizes the sum of less increasing functions p(vi)
of the residuals v E p(vi,x)+min., e.g.:

elx) = L plg,(x.) - glx. —x)) ~ min, (2)
= . 277 T

Robust estimators can easily be realized using a least squares algorithm by modifying weights or
residuals after each iteration step (cf. Huber (1981), p. 181 ff): thus one either minimizes
Lvip. Withp, = p(vi)/(vz+k2) (with k2<<o?, cf. Krarup et al. 1980) or minimizes Z{%f with
Eé::vEWBET. The approach using modified residuals is most attractive as the set up of the normal
equation matrix needs not to be changed.

2. Several choices of the function p(v) are proposed (cf. Huber (1981), Gotze (1983), Kubik
(1984)): ~

a. The choice p(v) = v?/% leads to the classical least squares solution being a special case of

b. The choice p(v) = |v|¥ leads to the minimization of the Lp-norm. The well known least sum
technique going back to Laplace results from taking p = 1. Using this method, however is
not optimal, as large disturbancies still have an influence on the estimator (cf. Férstner
and Klein (1984) and Werner (1984)). Other functions have been proposed by Hampel, Andrews or
Tukey which eliminate this effect.
Also the exponential function

C. p(v) = v*/2+exp(-v?/2) proposed by Krarup et. al. (1980) and known as the Danish method guaran-
tees that large discrepancies do not influence the result.

3. The Teast sum method is the most commonly applied robust method,as it is the fastest one
(cf. Gambino and Crombie 1974). It is used e.g. by Barnea and Silverman (1972), Limb and Murphy
(1975), Wong and Hall (1979) for template matching. Widrow (1973) has used the method for his
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rubber mask technique. The corresponding estimate for the standard deviation the median absolute
deviation (MAD) has been applied by Bailey et. al. (1976), whose results however do not go quite
conform with the expectation, because using the MAD as optimization criterium only is superior
to the covariance maximization when the signal to noise ratioc is high. Martin and McGath (1974)
have applied robust techniques for detecting signals in noise assuming the probability density
function of the noise to be a mixture of Gaussian density functions., Their limiter-quadratic
detector belongs to class c. where large discrepancies do not influence the results. (cf. also
Kuznetsov 1976)

4, The impact of robust estimators on template matching lies in the fact that during Tine
following the influence of unpredictable disturbancies (clouds, reseau-crosses, shadows) onto the
unknown parameters can be totally eliminated, not only partly reduced as when using the phase
correlation technique. Hence, these disturbancies need not be treated with methods of pattern re-
cognition unless they are robustified themselves. This also holds for cases where parts of the
object are hidden by another one., Here the residuals, i. e. the gray level differences will be
large enough to he weighted down thus having no impact onto the estimated shift. This allows to
reach the segmentation borders without too much loss in accuracy.

2.3 Extensions of the matched filter

In this section we want to discuss several modifications and extensions of the matched filter
which are already in use or could be used to advantage in standard applications of photogrammetry
and remote sensing.

1.  The most important application of the filters for object location is their use for point
transfer. This seems to be trivial but in view of the optimality criteria it is not. The model
for point transfer is

g; = ¢ * Sl@=xy) + 1, (3)
gy = g * GﬁxﬁrZJ *+ 7,

where now the shifts &, and &,, the noises », and n, but also the template g are unknown. The task

is to estimate the unknown shift difference 512 = £2 - 51.

form very similar to eq. (1):using the estimates §J2, ﬁg and §= (g ;n,/:

It is easy to rewrite eq. (3) into a

22 :'é * 6(x - ::c:lZ) + 3';:/:2 - . (43)

But now the difference becomes apparent: The optimization of object location assumes the object
to be deterministic whereas point transfer, using an estimate § as template, has to cope with

an object having stochastical properties. Of course the filters derived for object Tocation can
be applied here substituting g; =9 and g = g . But then at least g has to be restored,
estimated from g; (or g, or both) making some assumptions about R, and Rg, using a Wiener filter
and solving eq. (4) for 512 while keeping § fixed. Of course this is an approximation. A rigorous
solution still has to be found.

2. Object location and point transfer in two dimensional images or sequences cannot be restric-
ted to estimating shifts. The images usually are more or less distorted radiometrically or geo-
metrically (cf. e.g. Bernstein and Ferneyhough 1974). Though one could think also of correlating
three dimensional objects we will restrict the discussion to the two dimensional case. Here

eq. (1) should be generalized to

gy(my) = T Lgl T (wy; p) 1+ n@y); p, ) (5)
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where Tr(g;pr) and Tg(x,y;pg) stand for arbitrary radiometric or geometric transformations which
depend on the parameter vectors P, and 2 We thus reach the problem of multiparameter estimation.
T, and T_might e.g. be Tinear transformations. T}_thencompensates for contrast and brightness and
Té for differential perspective, i.e. affine distortions, neglecting the local curvature of the
terrain {(cf. Pertl 1984):

T (9) =a; g +a,

Tg(m,y) £ Iém(x,y) = (b, b\ [z + bS {6)
Téy(“’y)) b, b5 (y) (ba
Other parameters could describe nonlinear transformations or e. g. the width of the point spread
function A(x, (cf. Thurgood and Mikhail 1982}.
0f course the additional parameters have to be predicted using a priori information or estima-
ted from the available data. The necessity to compensate for scale and rotation, possibly affini-
ty and the unability of the classical matched filter to provide an estimate Tead to more or less
sophisticated prediction schemes (cf. eg. Hobrough (1971), Kreiling (1973) or Panton (1978)).
Direct solutions are given by Emmert and McGillem (1973) for affinity parameters and by Casasent
and Psaltis (1976) for scale and rotation. They used invariance properties of the amplitude spec-
trum. In general estimating two or more parameters requires a refined searching strategy to
reduce the numerical effort. Hill-cTimbing or gradient methods for estimating additional parame-
ters are widely used and discussed in section 3.2 (cf. e.g. Schalkoff and McVey 1979, Wild 1979,
Huang and Tsai 1980, Meyers and Frank 1980, Forstner 1982a, Thurgood and Mikhail 1982).

3. The idea of deriving parameters from the amplitude spectrum, which is invariant to shifts,
suggests to look for algorithms which do not extract the information from the gray levels directly
but derive the shifts or other parameters from functions of the gray levels.

The most promising approach is to use invariants of the images. Thus instead of comparing ¢ and
g, one compares I(g) and I(g, 6/, where I is a function invariant to transformations T € C_. out of
a class ¢, of expected gray level transformations: Ilg(x)l= I{Tr[g(x)]}. Similarily one could use
functions which are invariant to an expected class of geometric transformations.

Using the gradient or edge image is the most commonly method being invariant to a large class
of temporal gray level changes of the image (cf. Hobrough 1959, Anuta 1970, Wong 1978, Makarovic
1980, Wiesel 1981). As taking the derivative of an image is high pass filtering this yields a
sharper peak in the correlation function (cf. Pratt 1974). It can therefore be a surrogate for one
of the filters Mgy Mg OF M, for obtaining a &-1ike correlation function. The precision of the
estimated shift however is not increased by this means (cf. Anuta 1970 and sect. 3.3.1).

Other functions which are used for correlation are <nvariant moments (cf. Wong and Hall 1978)
and Hadamardeoefficients (v. Roessel 1972). The concept of Fourier deseriptors commonly used in
the field of pattern recognition seems to be very powerful for object location as the identifica-
tion and the Tocation process are performed simultaneously within the same mathematical framework
besides being invariant to scale and rotation of the image in concern (cf. Wallace and !litchell
1980, Mikhail et al. 1983) The proposal of Masry (1981) to correlate entitics, i.e. features ex-
tracted from the image, seems to be a quite general concept as not only objects with closed boun-
dary can be handled (cf. Lugnani, 1982).

Quite differently motivied image functions are the complex exponentiation (Gopfert 1977) and
the binary or polarity correlation (cf. Makarovic 1980, Marckwardt 1982). The complex exponentia-—
titon T (g(x)) = exp(-jp=g(x)), with p depending on the variance of g, aims at whitening the signal.
Though this is not valid in general, e. g. for a rectangular function, the correlation function
Tr(g)*TrQ11(~w)) for normal imagery yields a much sharper peak than the cross correlation. This
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method is one of the fastest gray level transformations approximating a high pass filter if one
uses table-look-up procedures (cf. Ehlers 1983). Binary or polarity correlation on the other side
aims at high speed, but usually leads to relatively poor results though the autocorrelation func-
tion due to the arcsin-law (cf. Papoulis 1965,p.484) is sharp peaked (cf. the broad discussion

by Helava 1976). Binary correlation should therefore only be used for determining approximate
values or in cases where ultimate precision is not demanded.

The modifications discussed up to now have frequently been applied and have made algorithms
more flexible and reliable when being confronted with varying types of templates. The method of
template matching however has to be embedded into more general tasks such as aerial triangulation,
deformation measurements or mosaiking where not only one channel or one pair of images are to be
handled.

4. Multi-image object location occurs when several satellite images are simultaneously rec-
tified on the basis of well defined ground control points. The corresponding model is described

by eq. (3); but now the template g is given. The task is to identify the same object in two or
more images. The algorithmic solution reduces to simple object Tocation only if the degrading
noises n, and n, are uncorrelated. If however they have common terms, the estimation process for
the two shifts has to take into account the correlation. It might be caused by stochastic or deter-
ministic effects such as unmodelled geometric distortions or unknown filters hlrx) and hz(x) the

object is passed through. ¢

5. HMore involving is the simultaneous relative rectification of three or more images using
multi-image correlation.Eq. (3) then has to be compiemented by one ore more further equations,e.g.
Bz Now again g is unknown. The relative shifts xlg—mg—m 23-x3 xZ and
Eglzﬁl—% have to be determined. Obviously only two of them are independently estimable. This gives
rise to a condition equation f;g 23+£31-0 for the estimated shift differences. It can be intro-
duced into the estimation process (cf. Ackermann 1982) or it might at least serve as a triangle

check for detecting false correlations which proves to be very effective (Tanaka et. al. 1978,
Ackermann and Pertl 1932).

QS:Q*(S(.T:—;UI)-\L

6. No severe problems causes the simultaneous correlation of several channels of an MSS or
colour image at least from the theoretical point of view. The multi-channel correlation can also
be described by eq. (1) but now g, 9y and n are vectors depending on x. Thus with e. g. two chan-
nels @ and » one has to solve '
914(%;) = g, % 8(x, - Z) + n,(x.)

£ =1, «.. (7)
g]b(xi) =gy * S(xi - EI) + Eb(wﬁ)

for %1, which is the discrete version of the estimation problem. Observe that we now have two tem-
plates 9, and gy only one unknown shift. Collecting the corresponding vectors in one vector, e.g.

= (g}, gi), allows to rewrite eq. (7) and to obtain the discrete version of eq. (1): g,(x,) =
g * 8(x, —&,) + n. The matched filter obviously requires the covariance matrices C"ana and Cnb”b
but also C”a”b' If the noise vectors (n (x.)) and (ﬂb(xi)) are uncorrelated the shift can be sepa-
rately estimated from both channels. The estimates then have to be averaged using their standard
deviation (cf. sec. 3.2). Whereas film grain or electronic noise of different channels in iSS or
colour 1images will not be cgrre1ated correlations between 7, and 7y might result from unmodelled
geometric distortions. '

Experiences b& Anuta (1970) seem to prove that different channels of MSS images contain diffe-
rent geometric information, thus a combined estimation should lead to better results than
estimations from single channels. On the other hand the investigations of Prabhu and Netravali
(1982) show that the luminance component of colour images is sufficient for the prediction
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necessary for data compression in image sequences. This suggests that only parts of the spectral
information are necessary for precise template matching.

Further research will show which spectral bands are decisive for high precision object loca-
tion and which impact multiimage correlation has on the precision and reliability of point

transfer.

3. Quality of Digital Image Correlation

This section presents several quality measures which can be used for the assessment of digital
image correlation. They are based on the matching algorithms presented in the previous section
especially on the least squares approach and on“breper image models. The aim is to provide some
insight into the relations between the algorithm, the geometric model and the texture of the tem-
plate in order to visualize the limitations of the quality measures but also their value for in-
creasing the flexibility and the reliability of the procedures.

3.1 Image models

The prediction of correlation quality has to be based on an adequate image model. In this con-
text the image gray level function gjfx) usually is assumed to form a stochastic process consisting
of the true image g(z) and additive noise n(x): g,(x) = g(x) + n(x), where g and n are mutually
uncorrelated stationary processes. If one further assumes them to be Gaussian the covariance func-
tions Rg and R, or the power spectra Pg and Pnbeing their Fourier transforms fully describe their
statistical properties.

There are three main types of processes in use to describe g and n {cf. table 4):

The white noise model is only used to describe n.

b. The exponential model is proposed by Helava (1976) to describe g and is based on extensive
empirical investigations. Its parameters P and o are measures for the brightness and the
contrast of the image. A value of @ = 0.2 mm belongs to good imagery.

c. The autoregressive model (AR-model) is used very frequently in digital image processing (cf.
Rocca 1972, Pratt 1974, Emmert and McGillem 1973, Rosenfeld 1976). Also here P and r des-
cribe the brightness and the contrast. This model sometimes also is used to describe corre-
lated noise (cf. sect.3.3).

Fig. 2 Pu) Power spectra of
A image models b. and c.
Table 4 Image and noise models P 1
o AR-model
No name R(x) Plu) exponential
model
white noise o2 §(x) o?
exponential model. R, / (1+ (amx/a)?) P e"a|“|
c | autoregressive model R ehlxl/r P / (1+ (2mru)?) . . ; == 4
1/a 2/a 3/a 4/a

The difference between models b. and c. (cf. fig. 2) seems to be negligible. We can relate the
models e. g. by assuming both power spectra to have the same values at 0 and 1/a. This leads to
the relation r = ave-1/ 21 ~ a/5. Thé variance of the estimated shift however depends on the
effective bandwidth b of the signal which for white noise does not exist for the AR-image model.
b can be determined from

Ju? Pg/Pn . ) %/a%, 1-dimensional signal

I o

b2 = (8)

s Pg/Pn du 3/a*, 2-dimensional signal

For the AR-image model and white noise the integral in the numerator is infinite. For the expo-
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nential image model with white noise the effective bandwidth is v2/¢ and v3/2 for one dimensional
and two dimensional isotropic signals. b can be interpreted as the standard deviation of the
frequency having the standardized swr®(u) as probability density function.

The parameter r can be estimated from the empirical autocovariance function. The variance of
the noise can directly be measured if one uses flat imagery with no structure. The variation of
g then reflects the (film grain) noise (cf. Helava 1976, Ryan 1980). But Pg(O) and oi can rigo-
rously estimated using variance component estimation techniques (cf. Koch 1980) which for digi-
tal terrain profiles has given realistic results (cf. Lindlohr 1981).

3.2 Precision of object location

- We will now derive formulas for determining the variance of the estimated shifts after object lo-
cation. We start with the discrete two-dimensional model

Ql(wi’ y,) = g(mi—x, y;5) + g(’wi, yi), =1, ... , (9)

This equation holds for all n pixels which need not form a grid.

The idea is to linearize eq. (9) and solve the linearized problem using least squares tech-
nique (cf. Limb and Murphy 1975, Burckhardt and Moll 1978, Wild 1979, Meyers and Frank 1980,
Thurgood and Mikhail 1982). Hence since nearly 10 years this method has been applied for image
sequence analysis {(Cafforio and Rocca 1976, Schalkoff and McVey 1978, Fennema and Thompson 1979,
Dinse et. al. 1981, Huang 1981) and recently for target location and point transfer in photo-
grammetry and remote sensing (Ackermann and Pertl 1982, Fdrstner 1982a, Mikhail 1983).

Starting from approximate values x and Y, and setting éﬁ{zéﬁﬁmi’yi)zgi(xi’yi)—g(mi_xo’yi_yo)
and v,=v(x .,y ) =Rz ,y ) the unknown differnces £ and 7 (assuming x_ =y _=0 for the moment) can
be estimated from the n equations

g+ v

A

L&+
x, 7 =

gy,’.i 7 121, vo. , 1 (16)

vhere s 3g/3x and gy = 9g/dy are taken at the approximate values. The overdetermined equation
system (10) Teads to the normal equations

Ig2 g g\ [& Ig  Ag
( = s: y) . [ (11a)

o g2 Lg A
g, 9 9y g, A9

¥

&

[

it the disturdbing noise is white, Ug = 1, It can be rewritten if the sums are replaced by the cor-

R . . -
responaing variances or covariances, e.g. nggy n Ongy

| &r

2
g a Oy A

a| %= ixgy ) ER ( gx_g) or Nezz=h {(11b)
o g ) o
9.9, ‘9, J\ 7,59

Eq. (11) yields optimal estimators for the unknown shifts. Their covariance matrix for general o;
is 2

2 2 -1
o o} o g o/
o o n o a2
xy y Fydy gy

1. The precision of the Tocation is determined by three parameters
- the image noise variance
- the number of pixels and
the variance and the covariance of the gradient image. This is a specification of the edge

business in an image which proves to be decisive for the precision of object location.
If the image is isotropic, i.e. the covariance of the gradients is zero we obtain the variances
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for £ and 7 separately, e.g. {cf. Forstner 1982a)

a g

Ky o

02:%_%_:% 1 :%1 S (13)
og, SNR? o2 SNR?  (a27b_)?
£ g;r: x

with the signal to noise ratio SNR o / g, and the effective bandwidth b = 0g4 /(2ng ) in x-

direction (cf. McGillem and Svedlow 1976 Ryan et.al. 1980). Svedlov et. a1 (197%) havg given the
continuous form of eq. (13) omitting the number of pixels and assuming the template and the noise
to follow the same model, i.e. Pg/Pﬁ:const.. Eq. (13) also is the Cramer-Rao bound giving a lower
bound for the variance when using an arbitrary filter (cf. Ryan et. al. 1980, Meyers and Frank
1980). Moreover the variance og of the'gradient is identical to the curvature of the autocorre-
lation function due to the moment theorem oéx:— — g(OJ{Cf Papoulis 1965, p. 317; Ryan et.al.
1980). This specifies the criteria used by Helava (1976) or Panton (1978) namely the "drop" or the
"slope" of the autocorrelation function.

On the other hand the normal equations might be singular. This situation occurs when one wants
to correlate straight edges. One may use the pseudo inverse of ¥ in this case, but the estimated
shifts then are not unbiased any more. Thus only the part of the shift orthogonal to the edge is
determinable which shows up in a very flat error ellipse for the estimated location.

2. Assuming the exponential image model together with white noise one now can derive a simple
relation for the standard deviation

1-dimensional: o = I I _a

om/2  vn SNR o
2-dimensional: o = 1 1 a

om/3  Vn SNR

The standard deviations for point transfer are larger by a factor V2, if the noise in both images
has the same variance (c¢f. Férstner 1982a).

The results of computer simulations by Huang and Hsu (1981) are in full agreement with the
theoretical predictions (cf. fig.3 and 4). The Tinear dependency of the variance on the number of
pixels, i.e.the block size, is clearly visible, as doubling the Tength of the block size decreases
the variance by a factor 4. Already with the 16 x 16 block a standard deviation of 0.1 pel is
reached, proving the least squares algorithm to yield subpixel accuracy.

Fig. 3 Variance of estimated o2 b Fig. 3 Fig. 4
shift in [pels?] vs. the number %!
of pixels (block size); compu- e
tersimulations by Huang and Hsu LT o,
(1981)
ekt 0.2

Fig. 4 Standard deviation in

0.025 0.1
[pels] of estimated shift vs. G,
computer simulations by Huang bxh BxB  16x16 32x32  Ghxbh 0 R o,
and Hsu (1981), block size 9x9 Block size

Fig.4 demonstrates the effect of additional noise when using a block size of 9 x 9. The case with
g,=0 shows that at least some noise is inherent to the procedure possibly due to discretization

errors. This might explain the deviation of the result from a straight line as it would be expec-
ted from theory.
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3.3 The effect of filters onto the precision

Often other filters than the matched filter are used for object Tocation. This might occur if one
uses one of the filters for sharpening the peak of the correlation function or if the noise is
actually coloured and one applies the matched filter assuming the white noise model. Other linear
filters than the matched filter will increase the variance of the estimated shift whereas non-
Tinear filters might do better. We will discuss several filters used in practice and for simpli-
city restrict the discussion to the on-dimensional case.

1. The template and the signal are assumed to be passed through a filter %, e.g. yielding g =
h* g =1#gwith # for the moment being the circulant matrix with kernel vector % (cf Rosenfe]d,

Kak 1976). Assuming the noise to be white the least squares so]ut1on for £ from Ag = §é,i £
with uncorrelated error equations is not optimal. It leads to the est1mator

2= (g'g)"rtgl A
£=1(g9,9.)7 g, b9 (15)
— -1 r ]
= (gp H' Hg )™ gl H' H g :
Using the covariance matrix CAgAg =c, ve obtain the variance of £ from error propagation
2 _ 1 ' i A ! i -2
Op =g #' HC  H' Hg -« (gl B Hg) (16)

If we choose % such that 7' & = C;; = 0;2 I then eq. (16) reduces to eq. (13). In order to be able
to use the exponential image model we have to transform eq. (16) into continuous form and then
apply Parsevals identity . We obtain

2
o - 1 Ju? Pb P, Ph i (17)
X 2 2
arin [Ju? Pé Ph il

where Py is the power spectrum of the now continuous filter %. We discuss two important cases.

a. The commonly used transformation Tr(gﬁx)) = dg(x)/dx yields the gradient image and may repre-
sent edge images (cf. sect. 2.3). T is a linear filter with transferfunction #(u) = -j2m: (not to
be mixed up with the matrix z above), thus with power spectrum By = 4m?u?, Working out the inte-
grals we obtain the variance of the shift o (T (gl)) = &5/4- g, 2ea3/(4n*n). Compared: to the variance
a;. 2(g(x)) = 1/8+ o, 2.q%/(4m%n), which one wou]d reach with the optimal matched filter, correlating
the gradient s1gna15 leads to a standard deviation which is a factor 1.6 higher. This proves that
sharpening the peak of the correlation function in order to improve the reliability does not in-
crease the precision (cf. the experimental results by Anuta (1970)).

b.  An ideal Tow pass filter with upper frequency u, can be used to approximate sampling with a
pixelsize of Mc, = 1/2u,. According to Forstner (1982a) there exists an optimal frequency if the
number of p1xe1s and the signal to no1se ratio. is kept fixed, namely U, = 5-38 / a, where a is
the parameter descibing the sharpness of the image. For good aerial photos with @ = 200 pm this
leads to an optimum pixel size of Axoc = 30 um, which seems to be realistic. On the other side
if one keeps the length d = n Az of the object fixed oversampling does not change,namely deterio-
rate the precision as long as a good approximation for 9y is used (if necessary) and all frequen-
sies u < u,., are represented. As the powerspectrum Pg (u) of the gradient has its maximum at 2/a,
one should at Teast use the band around this frequency (cf. Helava 1976), which is 10 Ip/mm for
good imagery.

The 1nf?uence of the median filter is dicussed below.

C. Eq. (16) can also be used to get an idea how reliable the est1mated variance 0 is if we in-
correctly assume the noise to be white when in reality it is coloured.For this we subst1tute ' H
by the inverse ¢~ of the covariance matrix actually used in the estimation process. We can now
study the effect of different covariances ¢ onto the variance Um. The choice ¢ = Co yields the



- 183 -

least squares variance. If we now specify Con and assume the noise to follow the AR-model then

¢ . is a Toeplitz matrix ¢ = (cij) S U; exp(-p|i-j|), i.e. p is the correlation between adjacent
noise elements. Then we can compare the variance 9;1 estimated from a correlation with white
noise (C:og I) and the variance §;2 from a correlation with coloured noise, especially Cc=C, .- The
ratio V of the expected values of the variances then can be obtained from (the derivation is a
bit tedious)

COE(GR,|e=C ) =\
V = —————-——————_;fg Zm = A — (18)
E(ngIC:GOI) n-1

where A(g ) = g/ ¢t Cpn et g,/ 9, s g,. in the case ¢ = c; I lies within the range of the
extreme eigenvalues lmin = (I1-p)/(1+p) and Amax = (1+p)/(1-p} of the Toeplitz matrix Con for the
number of pixels being large (n + =, cf. Grenander and Szegd 1958). The first term in eq. (18)
results from the error in the normal equations; it is dominant to the second term (n-))/(n-1)
resulting from the error in the estimation of the noise variance. Taking p = 0.8, a value which
has been proved to be realistic for multitemporal images (cf. Svedlov et al. 1976}, results in
1/9 < X < 9, This means that the standard deviation for the shift estimated from a least squares
adjustment using the wrong covariance matric ¢ = U; I might be wrong up to a factor 3 in both
directions. The standard deviation will be too optimistic if G the derivative of the signal, is
Tong waved, i.e. without high frequencies. The estimated shift, however, is nearly not influenced
by using a slightly wrong covariance matrix, especially it still is an unbiased estimator (cf.
Koch 1980, p. 164).

2. The effect of nonlinear filters usually is difficult to predict. The statistical properties
of the median filter, though, especially with respect to contaminated edge images have been exten-
sively investigated by Justusson (1981}. His results can be used to predict the effect of the
median filter on the restauration of the gradient which is necessary for point transfer (cf. sect.
2.3.1) when applying the iterative least squares approach (eq. (10)), where 9 i and 9, ; have to
be estimated from one of the two images.

If one keeps the effect of a Tinear and a nonlinear filter onto the variance U;x of the gradient
of the noise constant one is able to compare their effect on the variance Géx of the signal gra-
dient T and with eq. (13) onto the precision of the template matching. Geiselmann investigated
the gain in precision based on the theoretical results by Justusson and on computer simulations
(cf. Geiselmann 1983). Using the conventional way of calculation the gradient (9i+1“gi—1)/2 the
standard deviation a, is smaller by a factor 1.35 if the median with 3 or 3x3 pixels is used for
restauration. If however the sharper gradient 9179007
1.6, showing the smoothing effect of the conventional gradient computation. Moreover, if the
median with 5 or 5x5 pixels is applied the gain is larger than a factor 2. It depends on the ratio
of the height of the edge and the standard deviation of the noise. The gain is even higher, about
20 % if the noise has a longtailed , e.g. a Student distribution. The findings are in full agree-
ment with those from Yang and Huang (1981). The theoretical findings have to be proved by empi-
rical test.

is used the gain in precision is a factor

3.4 The sensitivity of the matched filter

"~ The effect of unmode!]ed'geomef%ic distortions in the correlation may cause systematic effects and
reduce the total accuracy of the match. Specifically, we will investigate the influence of scale
differences between the two images in concern.

1. In the presence of geometric distortions there exists an optimal patch size. for correlation
(cf. Svedlow et.al. 1976) as small patches do not contain enough pixels and large patches cannot
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be matched well because of the geometric distortions. Fig. 5 shows the influence of scale errors
onto the output signal to noise ratio. These theoretical results are adapted from Svedlow et.al.
{1976). They are based on the AR-image model with white noise perturbation. The results here are
given in dependency on the parameter @, with a = 5 » (cf. sect. 3.1). Clearly the effect of scale

SNR

F1g' 5 T _I_C_L: 0
a

Qutput signal to noise ratio for different le] - T

values of scale distortion ¢ versus the
length d of a square area (adapted from
Svedlow et.al. 1976). with autocovariance

—|x|/r

function R = R e ,and @ = § r +

lel - .25 mn™
a

lﬁl - 0.5 mm_1
a

] I
1 '

2l
2 4 6 d[mm]

distortion will increase with increasing scale difference and decrease with increasing correla-
tion length r, thus increasing a, as the image is smoother for large «.The optimum patch size

d__,xd__, with dop = 2.5 r / |c| proves to be

optx opt T
dop = 0-8 o] (19)

For good imagery and a scale difference of 0.1 the optimum size is 7 mm®. Fig. 5 shows that for
smél?er patches the increase of the signal to noise ratio is approximately proportional to the
patch side d. Svedlov et. al. also analysed the effect of unmodelled rotation differences and more
general deformations occuring in LANDSAT images. As for high precision correlation at Teast linear
geometric deformations should be compensated by the algorithm it would be worth to investigate

the influence of unmodelled nonlinear distortions representing the local curvature of the terrain.
As the effective bandwidth of the image is not much influenced by geometric distortions eq. (19)
also holds for the minimum variance c;.

Actually very small patch sizes of only 5x5 pels are used in TV image sequence analysis (cf.
Dinse et.al. 1981, Bergmann 1982). In photogrammetric applications the patch size varies between
11x11 pels (cf. v. Roessel 1972, Gambino and Crombie 1974) and 32x32 pels (e.g. Markarian et.al.
1973). Hence most systems do not seem to take full advantage of the accuracy potential. Obvious-
1y severe local nonlinearities, especially occuring in large scales, require to use smaller corre-
lation windows, accepting the decrease in accuracy.

2. Quite a different approach to compensate for unknown scale differences or other geometric dis-
tortions is to look for a point C(ms,ys) within the patch whose transformed point C'(Tg(ms,ys))
is invariant to scale differences between the images. Thus the bias C'—Ci is eliminated. It can be
shown for one-dimensional signals that this point is the weighted centre of gravity of the patch,
where the weights are the squares of the gradient
2
z, = EfingLi (20)
ng,i .
The proof uses the fact that additional parameters in a least squares problem do not influence
the result if they are orthogonal to the other unknowns (cf. Forstner 1982b). As the partial de-
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rivatives of the function g(x) with respect to shift and scale are 9o and g, (w ) ) resp.,

, 7
where z, is the origin of the coordinate system (usuaily 2, = 0 is chosen), th1s leads to the con-

dition Eg; ; (v=,) = 0, from which eq. (20) is derived.

Fig. 6 o g(xi)
On the optimal choice of the

t f d point when a scale 4

rdastatt A R RR R ARE
5
"
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ferred points C' and M': error . K i { ]
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An example is given in fig. 6. The object g(xi)and the signal glﬁxi) differ by a scale difference.
The covariance function leads to a shift of £ = 2. If the centre M of the template is transferred,
i. e. shifted by &, the bias M'—ﬁ{=3 is very large. But if one transfers the centre C of gravity
one obtains the point C' which is very close to the true centre C1 of gravity. The bias of 0.2

is due to discretization errors.

The centre of gravity is not optimum in two-dimensional patches, but clearly reduces the effect
of unmodelled geometric distortions.

3.5 Convergence and pull-in-range

The convergence and the pull-in-range are essential for the economy of the least squares procedure.
Especially the requirements for the approximate values are determined by the pull-in-range. We will

analyse the pull-in-range for the case where no noise is present. Again we restrict the discussion
to one-dimensional signals.

The shift is estimated from the maximum of the crosscorrelation function 2 () which for the
noiseless case reduces to the autocovariance function Bgnx). Suppose the signal is ideal band Timi-
ted resulting from sampling with pixelsize Ax and assuming the signal to be white. Then & (z) =
R, st mo/ix. The least squares algorithm eq. (11b) is equivalent to a Newton-Raphson approach to
search for the maximum, adapting the gradient to the actual approximate values. The gradient tech-
nique, where the gradient is kept constant, and the Newton-Raphson iteration scheme for this appli-
cation have been excellently discussed by Burkhardt and Moll (1978).

They showed that the convergence rate is cubic. This is due to the symmetry of the autocovari-
ance function at the maximum. In general the Newton-Raphson iteration scheme only reaches quadra-
tic convergence. -

Moreover they proved that the pull-in- -range is rather small compared to the gradient technique.
Thus the approximate values must fullfill the condition !m |<1.52/m+Ax = 0.48 Ax, thus must be
better than half a pixel. However, though the actual position of the object is not known the gra-
‘dient of R, g(o), i.e. the curvature of B _(0) at the maximum is known. Burkhardt and Mo11 showed
that it can be used to increase the pull-in- range of the Newton- Raphson approach by nearly a fac-
tor 3. The approximate values then only have to be accurate up to 7.5 pixels.This result can be
used also in multiparameter estimation with the least squares approach, as usually good approxi-
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mate values for the additional parameters are available. The idea then is to keep the normal
equation matrix constant and only vary the right sides A. This would also Tead to an increase of
speed and would quite well fit into a robust algorithm with modified residuals (cf. also Meyers
and Frank 1980).

The condition lxb|<1.5 Ax can be used in the form u0<5/ (4xo), thus yielding an upper bound for
the boundary frequency of a low pass filter which guarantees convergence if the approximate
value is supposed to be inaccurate up to @ .

The discussion of the different quality measures up to now was more or less based on the same
mathematical model for the correlation algorithm and the image. The equivalence of the matched
filter and the least squares approach could be used to advantage. The following results are based
~on computer simulations alone, as especially the determination of the reliability would require
the derivation of the joint probability density function of the estimated crosscovariance
function involving the fourth moments of the original signal. The results however prove to be
essential for assessing the quality of digital correlation procedures.

3.6 The reliability of digital point transfer

As already pointed out in sect. 2 the matched filter may lead to quite wrong results. This is
due to the small pull-in-range but even more to the existence of relative maxima of the crosscor-
relation function which in case of disturbancies might become the absolute maximum. The aim is to
decrease the number of false matches which can be done by trying to increase the probability of
correct matches, i.e. the reliability. The proposed filters m
for this purpose.

The results of a thorough investigation by Ehlers (1982) are shown in fig. 7a and b.He compared
5 different filters for point transfer with respect to their robustness against additional noise.
These were : a. cross correlation

, mg and m, prove to be appropriate

2 3

b. complex exponentiation with local variance
c. complex exponentiation with global variance
d. least sum

e. phase correlation.

Fig. 7 Reliability of point transfer using different filters. Probability of a correct match vs.
the sNrR, used filters cf. text above (from Ehlers 1982) patch sizes 30x30 and 11x11

a. points with high contrast b. points with Tow contrast
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The simulation was based on 20 points with Tow and 20 points with high contrast, selected from
one image which was taken as true object and contaminated by Gaussian noise of different variance.
The signal to noise ratio varied between 0.8 and 20. The result of a match was accepted if the
estimated shift was 1 pixel or less giving an estimate for the reliability of the procedures in
dependency of the Swr.

The results for points with high and low contrast demonstrate the influence of the texture of the
object, namely the gradient Gy The highest reliability in both cases is reached with the phase
correlation (e.). For good points the S¥R might even be below 1, still yielding a reliability
of 0.8 or better. The dominance of the phase correlation, being representative for whitening
filters becomes clear from fig. 7b for the points with lTow contrast. The worst reliability is (d.)
obtained with the least sum method, which should be robust against noise. The reason for this be-
havior is not quite clear, it might be caused by the type of distribution of the noise. The com-
plex exponentiation (b.) with Tocal adaption to the variance proves to be as reliable as cross-
correlation (a.). For small signal to noise ratios however there is a slight difference in favour
of the complex exponentiation.

The investigation clearly demonstrates that for Tow signal to noise ratios the reliability of
correlation can be increased significantly by sharpening the peak of the correlation function.

3.7 The effect of quantization and data compression

Multi-image correlation as discussed in sect. 2.3 requires the storage of a large number of

image patches. In order to reduce the necessary storage the data have to be compressed. A pure
redundancy reduction where the original image can be restored without Toss is not efficient enough.
But information reduction will cause quantization errors and thus in&rease the noise component in
the images. Consequently the reliability and the precision will be worse.

1. Table 5 is taken from Bailey et.al. (1976) and shows the effect of quantization on the relia-—
bility for 5 different scenes using 25 points in each scene. The data are digitized pictures. The
reliability values are given for the median absolute deviation (MAD) and the normal product cova-
riance (NProd). 4 different quantization levels are investigated. The patch sizes of g, and g5
were 20x20 and 5x5 resp..

Table 5 Effect of Quantization on the Probability of Correlation
(from Bailey et. al. 1976)

Quantization Scheme

Continuous [ B8-level 4-level Binary

Scene Type MAD | NProd | MAD { NProd | MAD |NProd | MAD | NProd

Random .90 .95 .78 .87 .65 .74 .30 .30
Agricultural] .72 .72 .64 .52 .36 .40 .36 .36
Mountains .76 .72 .60 .60 .36 .32 .28 .28
Desert .92 .92 .80 .80 48 .56 .36 .36

Suburban .80 .92 .72 .80 .68 .72 .36 .36

Obviously the reliability decreases monotonically with decreasing quantization level. A quanti-
zation with only 4 levels on an average seems to be not sufficient. Also the MAD clearly gives
~worse results than the covariance (NProd), which does not quite follow the expections, as the
MAD is a robust measuré. The results are based on unmodified data, where not all 64 grey levels
are present in some of the regions. This should be kept in mind when analysing the results.
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2. Table 6 is taken from Mikhail et. al. (1983) and shows the effect of data compression onto
the precisicn of object Tocation for 24 artifical cross targets introduced into digitized ima-
gery. The precision of the location is estimated from the results of a least squares approach.

Table 6 Empirical precision of target location vs. data compression rate, standard deviations
in pels (adapted from Mikhail et al. 1983)

8 bit/pel J2 bit/pel 1 bit/pel [0.5 bit/pel
noiseless 0.028 0.054 0.105 0.28
Eﬁth noise 0.038 0.058 0.115 0.53

The precision is determined for the case where additional noise is introduced, having 1/4 of the
standard deviation of the signal background and for the noiseless case. The original data being
quantized to 8 bit/pel have been compressed to 2, 1 and 0.5 bit/pel using the cosine transform
compression method.

The results clearly show the decrease in precision due to information reduction. The additional
noise seems to have an influence on the presision 1in the extrem cases. Data compression down to
0.5 bit/pel seems to cause problems, as the identification process of the procedure (using the
Fourier descriptors) is not able to work when one leg of a cross target is missing. The identifi-
cation using the moments of the patch however worked also in these cases. Nevertheless, even when
data are compressed to 1 bit/pel the precision of target location is still 1/10 of a pixel.

Both investigations give cIear indication that data compression decreases the quality of corre-
lation. Further research has to clarify whether there are methods to economically store templates
without loosing too much information needed for high precision image correlation.

The previous sections discussed quality measures which have a direct impact on the economy of
the whole procedure of image correlation. Of course there are other aspects which strongly influ-
ence the performance, e.g. hierarchical structures (cf. Sharp 1965, Pearson et, al., 1977, Hobrough
1978, Tanaka 1978, Wong 1978, Wong and Hall 1978, Makarovic 1980, Baker 1983) or the use of the
epipolar geometry (cf. Helava and Chapelle 1972, Keating 1975, Kreiling 1976, Wrobel 1977, Benard
1982), which could not be treated in this contribution, but on which the relations discussed above
might have an influence.

4. Final remarks

Digital image correlation is the basic prerequisite for all tasks in digital photogrammetry and
remote sensing where the geometric aspect is dominant. Digital correlation is the bottle neck

for an economical implementation of systems for height measurements or differential rectification,
but also aerial triangulation, deformation analysis or other high precision applications. The
accuracy potential inherent to the images may be used to advantage if the correlation algorithms
are able to react on extremely varying situations in an optimal way. This optimum has to be de-
fined by the user who may then apply the results collected in this paper.

Though. there are still quite some problems to solve tempate matching obviously is a simple
procedure compared to the algorithms which are necessary for automatic mapping especially in
1af§e scales. Here the oversimplification of the mathematical model becomes apparent, as it is
only a 2D-model working on the basis of more or less undisturbed i%ages of a smooth surface. Thus
digital correlation in its classical form will fail in all cases where the surface tobe reconstruc-
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ted is not flat anymore. Modifications of the algorithms may efficiently solve some of the prob-
lems coming up with images of really 3D-objects. The first examples of the application of pattern
recognition principles to photogrammetric problems {cf. Baker 1983, Benard 1983) however show
that other concepts are needed which are able to correlate 3D-objects with 3D-models.
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