I Proceedings of the ISPRS Comm HIANG 3 Intemalional Colleguium on Mathemslical
Aspects of Digital Elevation Modals, Photogrammeitnic Data Acquisition Temain Madeling
. Accuracy, KTH, Stockholm 1983, pp. §.1-6:18

ON THE MORPHOLOGICAL QUALITY OF DIGITAL ELEVATION MODELS

by Wolfgang F&rstner, Stuttgart University

Summary:

The paper discusses the morphological quality of digital elevation mo-
dels (DEM). Quality is understood as the precision and the reliability of
the height, the slope and the curvature at interpolated points. Whereas
precision is described by the standard deviation, reliability - accor-
ding to Baarda - describes the effect of incorrect heights or incorrect
assumptions about the type of the terrain onto the interpolated DEM,

First the influence of the sampling intervall onto the representation of
the morphology of profiles with different spectra is discussed. It is
shown that the sampling intervall leading to a preset relative height
fidelity is not sufficient to reach an acceptable representation of the
slope or even the curvature of the terrain, provided all frequencies are
of equal interest.

Therefore the effect of additional form measurements (slopes and curva-
tures) onto the quality of the interpolated DEM is investigated. Using
the method of finite elements it is shown, that additional measurements
of slopes lead to an increase of precision and reliability of appr. a
factor 1.4, thus the maximum influence of nondetectable errors is de-
creased by a factor 2.

It is shown that in addition to the power spectrum the distribution of
the modelling stochastic process is decisive for the average sampling
density, at the same time suggesting to sample the terrain by data com-
pression using form elements.

1. Introduction

1.1 Digital elevation models (DEM) have recently become subject of in-
tensive research. This is caused by the increasing need of digital in-
formation about the topography in cartography, civil engineering or re-
mote sensing. DEMs are used for generating contour maps, for determining
volumes or for rectifying aerial photos or scanner images. There exist
quite a number of powerful computer programs which are able to produce a
DEM from irregularly distributed terrain data including breaklines,spot
heights or structure lines.

A DEM consists of a data base containing discrete information about the
height (or any other feature) of a surface and a specification how to in-
terpolate between the stored points. The quality of the DEM depends on

1. the representation of the true surface (i. e. the one that was meant
when it was measured) and 2. the ability of the interpolation method

to approximate the surface.Representation and interpolation interrelate;
this interrelation however is not yet investigated.

1.2 The generation of a contour map, or any other product, using a DEM
can be interpreted as an information transfer from the surface to the map
(cf. Makarovic, 1972). Using the terminology of information theory (cf.

Shannon, Weaver, 1949) the terrain surface is the information source (cf.
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Fig. 1 Information transfer using a DEM

fig. 1) which is encoded by selecting and measuring certain points or fea-
tures. The measuring errors and the nonideal interpolation correspond to
additional noise in the channel, while the decoding consists in interpo-
lation possibly with filtering to suppress the noise.

Obviously the interpolation (the decoding) cannot be done indepentently
of the sampling. But what is more important, the sampling (the encoding)
is decisive for the information which reaches the user. This already was
stated by Makarovic in 1972, without referring to information theory.

Nevertheless, geodetic research has nearly exclusively concentrated on the
problem of interpolation and on filtering. Again Makarovic was the first
who treated the problem of an adequate sampling (1973), well known as
progressive sampling which is combined with linear interpolation. His

idea is to sequentially densify a regular grid in dependency of the local
roughness of the terrain determined from the already measured heights.

1.3 The evaluation of both, the sampling and the interpolation methods,
up to now has been based on the height precision of the reconstructed
terrain surface (Clerici, Kubik 1975; Riidenauer, 1980; Ackermann, 1980;
Tempfli, 1982 e. g.). Several applications especially in cartography,
hydrology of geomorphology however require morphologically accurate in-
formation. This paper wants to invc:tigate the morphological quality of
DEMs including the reliability of the interpolated points,especially dis-
cuss the value of additional form measurements and wants to stimulate the
discussion on sampling methods which are not based on a regular point
pattern and on height measurements alone.

The paper consists of three sections. Section 1 deals with the theoretical
dependency of the morphological fideiity on the sampling intervall. It is
based on the power spectra of the height, the .slope and the curvature of
profiles and on the transferfunction of the reconstruction procedure fol-
lowing the approach of Tempfli (1982). As an increase of the point den-
sity does have only little influence on to the fidelity of the morpholo-
gy, section 2 investigates the influence of additional form measurements
onto the precision and the reliability of the interpolation.Section 3
shows that for terrains with identical power spectra the type of the
distribution of the underlying stochastic process is decisive for the
average point densit! suggesting to sample the terrain by data compres-
sion.

2. Morphological fidelity of profiles

Fidelity can be measured by the standard error between the true and the
reconstructed profile. |f one can assume homogeneity the fidelity can be
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determined from the power spectrum and the transferfunction of the recon-
struction procedure, provided it is linear (cf. Tempfli, 1982, Frederikson,
Jacobi, Justesen, 1978). This approach does not necessarily need a stocha-
stical model for the description of the terrain surface, it is even purely
deterministic if measuring errors are not taken into account, as will

be done in this section.

As the phase information of the terrain, contained in the amplitude spec-
trum, Is lost in the power spectrum or - what is equivalent - the distri-
bution of the modelling stochastic process alternatively describing the
surface does not influence the power spectrum, the approach does not use
the entire information about the terrain. This will be demonstrated in
section 4. This section, however will stricty follow the linear filter
approach, based on a stochastical model for the terrain surface.

2.1 Power spectra of terrain profiles

Extensive studies by Frederikson, Jacobi and Justesen (1978) have shown
that power spectra of terrain profiles are linear in a wide range if the
power P(u) and the frequency u are measured in a logarithmic scale, i.e.
;S U< Uy, (1)
where the parameter o describes the distribution of the energy between

the high and low frequencies and B determines the general roughness of the
profile. The slope of the power spectra has been found to range between

-2 and -8. Of course eq.(1) has to be restricted to a frequency band, at
least for empirical spectra, as P(u) will be limited for low frequencies
and will not tend to zero for large frequencies due to measuring errors.
This is in full agreement with the empirical findings.

logP(u) = o log(u) + 8 , u

Jacobi and Kubik 1982 have proposed the model of fractional noise for a
description of terrain profiles, explaining the linear behaviour of the
power spectra and allowing the parameter & to vary continuousliy. We will
use a different model in order not only to explain the phenomen terrain
surface but also have an interpolation method at hand. There surely will
also be an interpolation method based on the model of fractional noise
but it seems that it will be more complicated.

We assume the terrain to be adequately describable by a markov process,
especially an autoregressive (AR) process of order p. The i-th height g.
of a regularly sampled profile then depends on the p previous heights

g; = - 2 a9 + €, s i =0, +1, +2, ... (2)
and deviates from the prediction, the sum in eq. (2), by the generating
process {Ei}, which usually is assumed to be white, i. e. consisting of
identically distributed uncorrelated random variables with variance o2.
The power spectrum of the autoregressive process is given by

g2

P(u) =

’ (3)
[1 + E a, exp (-j2nusx) |2
1

where Ax is the sampling intervall.

Eq. (2) contains several special cases which will be used furtheron.
The processes
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AR(1): a, = Yy

1
2
AR(Z)- a] = 2 YZ’ az = Yz > 3 ("’)
AR(3): a; =3 v3, 8, =~ 313, a3 = V3 »
are p-fold integrated white processes if y_ = 1. They are nonstationary.
The second order process AR(2) with y, = 1P is the basis for Ebners inter-

polation method with finite elements “(1979). The e; can be interpreted as
curvature of the profile.

For the investigation in this section we use the continuous version of
eq. (2) with the coefficients of eq. (4) leading to the power spectrum
(cf. Gelb, 1974) (a=y)

P
P (u) = ———»—-———Om—-p . (5)
8 (1 + (au)?)
The reason is twofold. Eq. (5) is easier to handle than eq. (3) and is
a spectrum of type eq. (1) with slope a = -2 p. Thus at least for even

values of a empirical spectra can be explained by an autoregressive pro-
cess of order -a/2.

In case the power spectrum is composed of linear parts with different

slopes and positive curvature it can be thought of being the sum of
AR-processes of different order, similar to the idea of Kubik and Botman

(1976) who composed the covariance function (the inverse fourier transform
of the power spectrum) by additive components.
2.2 Power spectra of slope and curvature
From the representation of a continuous profile g(x) by its amplitude
spectrum G(u)
g(x) = fG(u) exp{jZnux) dx (6)
one can derive the amplitude and the power spectra of the 1st and 2nd
derivative g'(x) and g''(x) resp.. With P(u) = |G(u)]|2 one obtains
P, (u) 4 12 u? P (u)
9'( g

]

6 b b ‘ (7)
Pg“(u) =16 7t u Pg(u}.

For a continuous markov process of order 2 with the coefficients of eq. (k)
one then obtains the power spectra for the height, the slope and the
curvature

P u? p! ut pv
P (W)eu-—-2 P (u)=——2 P Gw)e—L (8)
9 (1+(au)2)2 S (1+(au)?)? 9 (1+(au)2)2

The power spectrum P ,,(u) of the curvature is not integrable and there-
fore no fourier spectrum (cf. fig. 2). We cannot use it for the follo-
wing analysis. For demonstration purposes we therefore apply the power
spectra

2 -au

P ,(u)=P' ul e

ORI
which possess an exponential term, thus all being integrable (cf. fig 2b).
This type of power spectrum is used to describe digitized images, but is
not found for terrain profiles.

au

L =au | (9)

Pg(u)=Po e , Pg”(u)=Pg u e
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a
Fig. 2a Fig. 2b
Power spectra of AR(2)-process Exponential power spectra
and its derivatives eq. (8) eq..(9)

2.3 Transfer function of reconstruction

Any linear reconstruction method can be described by its transfer func-
tion H(u). For its construction one has to consider several steps (cf.

fig 3).

g(x) ——H, () |—> g(x) —f 111(x)|—>g;(x) Tﬁ,o(u) — §,p(x)

Fig. 3 Reconstruction method, ID = ideal interpolation, LI =
linear interpolation, H, (u) ideal low pass filter,
. : Ax
111 (x) ideal sampling

The terrain is not bandlimited. This causes aliasing effects during sam-
pling which can be circumvented by previous low pass filtering, i. e. by
smoothing. We assume an ideal low pass filter with transfer function

H (u) =

Ax lu| < Uy = 1/2A% (10)

1,
0, -elsewhere

The sampling is assumed to be ideal. Thus the smoothed profile a(x) is
measured at evenly distributed point with an intervall of Ax and without
measuring errors, leading to the sampled profile g.(x). For comparison
reasons we apply two different interpolation methoés, ideal interpola=
tion with the sinc-function and linear interpolation (ID and LI resp.).
Whereas the ideal interpolation is restricted to frequencies < Uy
linear interpolation is not. In order to keep the analysis simple we on-
ly consider the transfer function within the range of U and ug -

Altogether this leads to the transfer functions

H  (u) = H (u)

ID (AX
and (11)
_ 2 mu
HLI(U) =si" 5o, [ul <u_
o)
with si x = sin x / x.

Using Parsevals theorem the fidelity of the reconstruction can be deter~
mined by 2
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o2 = [lg(x)-5()%dx = [(1-H(u)) %P (u)du (12)

(cf. Tempfli (1982), eq. (15)). For the ideal interpolation eq. (12)
leads to

2

I 1p= 2 [ P(u) du . (13)

u
o

in order to be able to solve the integrals analytically the complement
l-si%ﬁu/ZUO) of the transfer function HLI(U) is approximated by (u/auo)
with a=1.3" (from siZ(n/2)=(1/a)2=0.41). " One then obtains

2

¢ 2 2
o = 2 f° (u/auo) P(u) du + ¢ (14)

r,lD
o

The actual used transfer functions are shown in fig.(4).
H
b

D

U

TP Uo

Fig. b Used transfer functions of reconstruction method

2.4 Fidelity of reconstructed profiles

The fidelity of the reconstructed profiles will be determined using the
power spectra eq. (8) and (9) and will be given in terms of relative
rmse. With the standard deviations o , ¢_, and o _,, of the heights,

the slopes and curvatures we determifle 9 the 9 relative fidelities
or fidelity ratios

-
\Sa
L

fg = Ur/og s f, = cr./o

g 1y fgn=0u/0|| (

g r g
where o _, and g n are derived from eq. (12) using the power spectra of
the derfvatives'

We first discuss the results of the exponential power spectra. Fig. 5a
shows the fidelity ratios f , f , and f _,, for ideal and linear interpo-
lation in dependency of thegsamgling infervall Ax in a doubly logarithmic
scale.

A qualitative interpretation can be summarizes as follows:

1.) Linear interpolation leads to worse results than ideal interpolation,
the difference increasing with the sampling density.

2.) The relative fidelity of the slope is much less than the relative fi-
delity of the height by a factor 4 - 10 depending on the type of
inrepolation. The fidelity of the curvature again is worse than that
of the slope by a factor 2 - 5.

3.) The differences between the relative fidelity measures are nearly inde-
pendent of the sampling intervall, except for very large Ax.

4.) The relative fidelity increases exponentially if ideal interpolation
is used, whereas it increases with the square of the sampling inter-
vall, if linear interpolation is applied.
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The interpretation of the relative fidelity for the 2nd order markov pro-

cess, shown in fig. 5b yields the following results:

1.) Linear interpolation is slightly worse than ideal interpolation, dif-
fering by 25 % for the height and only by 10 % for the slope. The
difference between the fidelities of the two reconstruction methods
however does not depend on the sampling intervall, at least for smal-
ler Ax.

The results referring to the height already have been found by Kubik
and Botman (1976), there based on processes with exponentially de-
creasing covariance functions, being characteristic for markov pro-
cesses. One of them corresponds to a 1st order markov process.

2.) The relative fidelity of the slope is much less than the fidelity of
the height. The factor ranges up to 100 in the investigated band. The
curva;ure could not be analysed as already mentioned (but see remarks
below

3.) The dependency of the fidelity reflects the type of power spectum, the
fidelity of the height increasing with vAx3, the fidelity of the slope
increasing with V/Ax. Thus the qualitatively different result obtained
for the exponential power spectrum is specific for that case.

The results have shown that the type of dependency of the fidelity on the
sampling distance is governed by the relation between power spectrum and
reconstruction method. The square term in the transfer function of the
linear interpolation prohibits an exponential increase of the fidelity.
On the other hand profiles with exponential power spectrum allow a rather
good reconstruction also of form elements. Though this type of spectrum
has not been found for terrain surfaces, the results are interesting for
a thouroughinterpretation of the quality of different interpolation
methods.

Exampie:

Assume, a profile with power spectrum eq. (8) has to be reconstructed
with a relative fidelity of f,=1 % or 1 %o. Then the average sampling
distance has to be Ax = a/32 or Ax = a/150, where a is the charakteri-
stic length of the terrain. With this spacing one finds fg: = 0.38 and

fgu = 0.13 resp..Thus the standard deviation of the slope, due to recon-
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struction is 38 % or 13 % of the standard deviation of the total profile.

This immediately shows the weakness of the reconstuction of form elements.
Of course the reason is not the chosen reconstruction method but the type

of profile.Moreover, increasing the sampling rate by a factor 5 to yield a
10 times better height representation only leads to a poor ‘increase of

the slope fidelity. B

Curvature cannot be reconstructed at all, if all frequencies are taken
into account. This is to be expected for 2nd order markov processes,
which in the limiting case y, = 1 are doubly integrated white noise pro-
cesses, which have no boundeé energy and can be interpreted as the cur-
vature of the integrated process.

If however the user specifies an upper frequency u_ (or a lower bound for
the sampling distance) then it is possible to reconstruct the curvature.
But then it is necessary to measure with the given sampling density, as
the fidelity fgu of the curvature proportionally depends on the deviation
from ug.

The results can easily transferred to processes with order 1 or 3. First
order processes possess a nonintegrable power spectrum for the slope and
therefore describe locally rough terrain. Thus the results found for the
curvature of second order processes above are then valid for the slope.
On the other hand , third order processes which are useful for smooth
terrain have an integrable curvature spectrum. Therefore the findings for
the slope of secondorder processes are then valid for the curvature.

Generally the fidelity values decrease with the sampling intervall depen-
dent on the order p of the process as follows:

£y ax (2P=1)/2
fg' N Ax(2p-3)/2
fg“ N M(2p-5)/2

The figures given by Ackermann (1980) suggest that the investigated ter=-
rains , with the exception of the difficult terrains, can be approxi-
mated by markov processes with an order of at least 2. This probably will
also be caused by the fact, that breaklines were never neglected during
interpolation.

Main conclusions of this section are:

- It is difficult to reach a heigh fidelity for the morphological recon~
struction of terrain profiles by increasing the sampling density. Espe-
cially a large increase of the sampling density leads only to slight
improvements of the slope fidelity.

- The curvature of profiles only can be reconstructed in smooth surfaces,
describable by marcov processes of order 3 or larger, or if the user
specifies an upper frequency of interest, i. e. the size of the smal~
lest terrain feature to be reconstructed. The consequences, a sampling
density which generally is too high, are not encouraging to follow
this line of thought.

The next section therefore investigates whether additional form measure-
ments increase the morphological quality of profile reconstruction.
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3. Quality of interpolation

The quality of interpolation usually is given in terms of the precision
of interpolated heights. We will extend the notion and - according to
Baarda - also discuss the reliability of the interpolated points. Relia-
bility is described by the controllability of the observations (internal
reliability) and the sensitivity of the result with respect to errors in
the observations or the mathematical model (external reliability). The
evaluation of the reliability thus requires redundant information and
the interpolation process to be an adjustment procedure. Therefore we
use the finite element method according to Ebner (1979).

3.1 Mathematical model

The interpolation is based on observations of different type which deter-
mine the u unknown heights g; of a regular pattern of grid points corres-
ponding to a constant sampling distance.

a) The heights g; in the given points, also referred as nodes, in this
investigation always coincide with a grid point. They lead to the error
equations
. +v. =3, i=1, ... ,n_ ;o0 (16)
9; 9, 9;> g g
b) The ficticious curvature observations c, connect three adjacent grid
points

c. tv. = 921 - 2 g, +4g,
=0

The value of c; is zero. (17) reflects the underlying AR(2) process eq.
(2) also used in sect. 2.4, with the expectation of the generating pro-
cess to be zero. The results have to be compared with those of sect. 2.4..

i=1, ... ,n_, o, (17)

We now introduce two types of additional observations, extending the ori-
ginal approach of Ebner.

c) Additional slope measurements s; lead to

+ = =3 a i =
s VSi 3,4 * 8, , =1, ..., 0, 0 (18)

d) Additional real curvature measurements, designated with k., yield

ki +v, =8..,-2§; +37; i=1,...,n ,0 (19)

k. i- i 94 k

The standard deviations o , o and o, have to be chosen according to the
measuring accuracy. The sPand3rd devfations o_ and o also can be used
to impose constraints onto the profile by set%ing o “=0, = 1076 (zero
is not possible for numerical reasons). The standard deviation 0. repre-
sents the roughness of the terrain with respect to the chosen intervall
between the grid points. For the real and the fictitious observations
the standard deviations may also be determined using variance estimation
procedures.

The error equation system eq. (13)-(19) has redundancy r=n_+n_+n +n, -u
thus can be solved using least squares technique. 9 ¢ s

The precision of the interpolated heights §j can be determined from a§i=

Oo Yqji. Similarily on can obtain thestandard errors og} and oz of the
slope and the curvature at the grid points by error propagation.
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The reliability of the interpolation mainly depends on the distribution
of the redundancy r onto the observations, namely the redundancy numbers
ri=1- ck./ 02., with Ir. = r. Small redundancy numbers (< 0.1) indicate
a low contrél]agflity of the observations. The complement u, = 1 - r. is
the contribution of the ith observation to the unknowns, with Zu; = u.
Therefore small redundancy numbers, thus large uj-values indicate, that
this observation is decisive for the interpolation. The external reliabi~-
dity of the result can be evaluated using the sensitivity factors

8gi = 8o Yui/r; (8o = L4). The influence Vx of nondetectable errors onto
the unknowns §; is bounded by Vx < &5; o,. The sensitivity values should
be less 10 to guarantee a reliable result which is not distorted by errors
in the observations or incorrect assumptions in the mathematical model.

The idea behind this notion of reliability is to check the residuals with
respect to gross errors in the observations.A preset lower bound 8, for
the power of the test leads to lower bounds for just detectable gross er-
rors. The maximum influence of nondetectable gross errors onto the re-
sult is ameasure for the sensitivity of the result. The noncentrality pa-
rameter 85 (=h) depends on the critical value and the power B, of the
test (k=3.3, By=80 % used: cf. Forstner (1982)).

It has to be pointed out that also the fictitious observations c;j can be
evaluated. Thus it can be checked whether the assumption c; = 0 is justi-
fied.

For the following investigation the standard deviations

og = 0.3 m, o, = 0.5 , o, = 0.21 m and o, = 0.33m

are used. o_ and o_ are the result of a variance estimation (Lindlohr,
1982) usingga photggrammetric profile sampled with an intervall of 10 m
in a scale of 1 : 10 000. The variances for the additional measurements
are assumed to be appr. a factor 1.4 better. As has been tested, the.
results are not much effected by using a slightly different choice. The
The sampling of the profile, simulated in the study, varies from i = 2 Ax
=20mto i =8 Ax = 80 m.

3.2 The influence of additional form measurements onto the
precision at interpolated points

Fig. 6 shows the precision of the heights, the slopes and the curvatures
for a profile with 6 nodes having a distance of i = 8 Ax, thus with 49
points. For symmetry reasons only the left half of the profile is shown.
The 4 precision curves correspond to the following 4 cases

0: only height measurements (g)

1: additional slope measurements (g, g')

2: additional curvature measurements (g, g”)

3: additional slop% and curvature measurements (g, g', g').

The measurements are assumed to be performed in the nodes only.

The figure allows the following statements:

- The height precision of the interpolated points increases rapidely with
their distance from the nodes. The maximum standard deviation lies in
the middle between the nodes., The influence of additional slope measure-
ments (case 1 and 3)increase’the height precision significantly appr.
by a factor 1.5. On the otner side curvature measurements have only
little influence onto the height precision.
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Fig. 6 Precision of height slope and curvature at interpolated points
' sampling intervall i = 8 Ax; influence of additional form
measurements (slopes:1 and 3, curvatures: 2 and 3)
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- The slope precision at the interpolated points increases with their
distance from the nodes, the minimum standard deviation lying in the
middle between the nodes. Additional slope measurements improve the
slope precision only in the vicinity of the nodes, the improvement
of the precision in the middle between the nodes is only 15 %. Again the
curvature measurements have practically no influence.

- The precision of the curvature at the interpolated points shows only
slight variations, in case only heights are measured (case 0). Additio-
nal slope measurements have only little, additional curvature measure-
ments have only local influence onto the curvature precision. The over-
all precision is mainly determined by the fictitious measurments c;.

3.3 The influence of the sampling distance onto the
quality of interpolation

Fig. 7 shows the standard deviations and the sensitivity factors in
dependency of the sampling intervall. The standard deviations refer
to the points in, the middle of the investigated profile, thus repre-
sent the maximuﬁ)standard error of interpolation. The sensitivity
values refer to the three types of observations at the nodes.

The results obtained for i = 8 Ax are obviously also valid for the other
sampling distances.
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Both quality measures of the heights increase with i3/2 a5 expected (cf.
Ackermann, 1965 and sect. 2.3). The theoretical dependency i1/2 of the
slope quality measures on the samling intervall does not show in the in-
vestigated range . The quality measures of the curvature are practically
constant with the exception of the standard deviation for i = 2.

The standard deviations of the heights increase from 0.3 m for i = 2 to
1.3 m for i = 8. Compared with the given standard deviations of the ob-
servations this could be expected. The sensitivity values however are ra-
ther high. Already for moderate sampling distances (i > 2) they are not
acceptable (> 10). Only for i = 2, i. e. one new point between two nodes
the reliability is good (6pj = 5).

Example:
In order to visualize the quality improvement by additional form measure-
ments, let us assume a sampling intervall i = 4 Ax = 40 m. If only heights

are measured the maximum standard deviation is 0.52 m. As the sensitivity
factor is 15 the influence of nontetectable height measurements is less
than 15 . 0.52 m = 8 m. With additional slope measurements we obtain

a maximum standard deviation of 0.35 m and a sensitivity factor of 11.
Thus nondetectable errors have an influence less than 3.8 m onto the pro-
file. The additional slope measurements significantly improve the quali-
ty of the interpolated profile.

0f course increasing the density of the nodes by a factor two leads to
an even better result with 0 = 0.31, 6 = 7 thus a maximum influence less
than 2.1 m. W

The investigation showed that additional slope and curvature measurements
can improve the quality of the morphology and that slope measurements al-
so increase the quality of the heights. The effects mainly are of local
nature because of the poor quality transfer of the fictitious curvature
observations. The findings are in full agreement with the results of sect.
2, where it was stated that for 2nd order processes the curvature of the
terrain cannot be reconstructed from the height measurements.

This leads us to the meaning of the fictitious observations c¢.. Their re-
dundancy numbers range between 0.25 for i = 2, which is fully acceptable,
to 0.08 for i = 8, which is not acceptable. As the precision of the ad-
justed profile curvature with appr. 0.45 m is in the order of the given
standard deviation 0.5 features with slope changes smaller than 4-6 m
over a distance of 10 m will be filtered away.

Besides the poor quality transfer this is a reason to measure form ele-
ments and integrate them into the interpolation proces (vis. Wild, 1980).

In other words, the sampling has directly to reflect the terrain pro-
perties and should not be based on a preset sampling pattern. This is demon-
strated in the next section.

4, On sampl%ng of profiles

The last two sections have treated the dependency of the quality on the
sampling density. In both cases a constant sampling spacing was assumed,
which made the analysis tractable especially when using the power spectra
of the profile and its derivatives. As already mentioned at the beginning
of sect. 2 the power spectra do not contain the entire information about
the terrain surface. More precisely, the findings of section 2 can only
be used if the stochastical variables used to model the terrain are

known to have a distribution which is identical for different terrains.
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This section wants to give two counter examples to the theory of sect. 2
demonstrating the influence of the probability distribution of the gene-
rating process. They immediately lead to the problem of an adequate samp-
ling.

4.1 Counterexamples to theory of section 2

The examples consist of two profiles each which have the same power
spectrum but need a different number of sampling points for reconstruc-
tion.

Example 1:

The delta-function d(x-xo) and white noise with variance 1 both have

power spectrum P(u) = 1. Obviously the delta-function needs only one

value (xy) to be defined, whereas white noise needs infinitely many values
to be described.

The result of this example can be generalized, visualizing the reason for
the difference of the two profiles with respect to the sampling density
or what is equivalent the needed storage.

Given profile gq(x) with power spectrum Py(u) = [G1(u)|2. g;(x) may be

deterministic. Filtering white noise n(x) with transfer function H(u) =
vP1{u) yields a signal gp(x) = n(x) * h(x) with power spectrum Py(u) =

Pi}u). go(x) is also called couloured noise.

The difference between the two profiles in both cases is hidden in the
phase of G(u), which is decisive for the number of necessary values for
reconstruction. Whereas the phase of the delta function is deterministic
the phase of white or couloured noise is stochastic and evenly distributed
in the intervall |0, 27|m

The construction principle is similar in
Example 2:

Fig. 8 shows two profiles A and B with 128 points each. Both are AR(2)
processes with the same coefficients a; = 1.6 and as = -0.8. Both proces-
ses are generated using sequences {5.1 of uncorrelated random variables
with variance 0.5. According to equ. I(3) they theoretically have the

same power spectrum. This is shown in fig. 9. A closer look at the profiles
reveils that profile A is rougher than B whereas B has more sudden chan-
ges of slope.

The difference lies in the distribution of the €;- They are given by

A: P(ei= 0) = 0.5 B: P(siz 0) = 0.875
P(Ei= 1) = 0.25 P(eir- 2) = 0.0625
P(ei=-1) = 0.25 P(si=-2) = 0.0625

The generating processes are given also in fig.8 below the profiles. Ob-
viously the effort to describe profile A is higher than to describe B,
i. e. profile A contains more information than B which can be proved
using the results of information theory. Without going into details here
it can be shown that on an average one needs less than half the storage
to store profiles of type B compared with profiles of type A. This may
be decisive if one thinks of storing DEMs for a whole country. W

The essential quantity, besides the power spectrum, Is the entropy of the
generating process thus giving a clear guideline for an efficient sampling
method. If a profile adequately can be described by an autoregressive

process, whose parameters may be estimated from the data,only the genera=-’
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ing process has to be stored. For processes of order p this essentially
is the p-th derivative of the profile being specific form elements and
leading back to the ideas of the previous sections.
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Fig. 9 Power spectra of profile fig. 8 together with the theoretical
power spectrum.

The optimal distribution of the €; with respect to sampling (assuming
the values are bounded) is shown in fig. 10. Values within the peak part
of the distribution need not to be stored as they contain no information
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Fig. 10 Optimal distribution of Fig. 11 Distribution of curvature
e; for data compression (from Ridenauer (1980))
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as they are to be expected (F&rstner, 1982). The same distribution has been
independently proposed by Kubik (1982) for the cascade model, being optimal
for sampling by data compression. The distribution of curvature elements

of terrain profiles shown in fig. 11, which is given by Ridenauer (1980)
suggests the information theoretic approach to be realistic.

4,2 Practical considerations

Makarovic (1973) has classified the sampling method into three groups

1. selective methods, including selective sampling

2, methods using data compression, especially when using correlation
devices to generate dense samples and

3. prograssive sampling.

Seen from the standpoint of information theory the selection of points by
the operator during sampling and the methods using datacompression quali-
tatively are not dicernable, the main differenc being the objectivity of
the selection. Both methods practically use the entire information of the
terrain whereas progressive sampling only uses the information on a coarse
grid (cf. Makarovic, 1979). Regarding the present possibilities of image
correlation devices sampling by data compression could be an economical
alternative to classical sampling procedures.

On the other side it seems to be attractive to use the intelligence of the
operator for selective sampling methods which at the same time makes the
measuring process more attractive. A loose guidance by the computer,
scanning the model patchwise and leaving the final decision of the selec-
tion of necessary features to the pperator is a compromise between a
rigorous dictate by the computer and complete freedom for the operator
guaranteeing the completeness of the sampling of the stereo model. It can
be expected that in the near future analytical plotters will have corre-
lation devices which will allow the direct measurement of forin elements.
Until then coding can be restricted to the type of form elements leading
to morphologically better DEMs.
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