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ABSTRACT

The refinement of the functional model used for photogrammetric point
determination has lead to a significant increase of the accuracy, being
about 3-8 um at photoscale. It is discussed how the functional or the
stochastical model may be further refined to compensate for varying,
systematic effects and for local distortions which are caused by time-
dependent changes of the flight and measuring conditions.

1. Introduction

1.1 During the last 15 years aerial triangulation has increasingly been
applied for point determination as a basis for subsequent mapping and for
network densification. This is mainly due to the use of rigorous adjust-
ment procedures exploiting the potential of the highly developed hardware
components especially films,cameras and measuring equipment. If a number
of prerequisits are fullfilled (4-fold overlap,seifcalibration, targeted
points, 'statistical test procedures) one can reach a precision of about

3-8 um at image scale in all three coordinates and also with reliability

values E.ﬁ 5 is able to guarantee for the quality of the result.

1.2  Photogrammetric and geodetic point determination have comparable
characteristica.  As an image represents a bundle of rays photogrammetry
is a 3-dimensional and purely geometrical method using angular information
only. Thus there is no separation of planimetry and height (as long as the
bundle method is used) and no assumptions about the geoid are necessary.

As a method for the densification of point fields it essentially depends

on control points'or at least some scale-information, especially in close
range applications. The feature of the image conserving the metrical in-
formation may be a reason to prefer photogrammetry in deformation analysis,

provided the relative precision of 3-10 ppm. is sufficient.

1.3 The underlying mathematical model in most cases simply is the per-
spective relation between the image and the terrain points. The introduc~
tion of additional unknowns,i.e.the application of the socalled selfcali-
bration technique, for the compensation of systematic errors is widely
applied and has proven to be effective. It has lead to a rather good co-
incidence between empirical results and theoretical prédiction. This is
astonishing, as the stochastical model is still oversimplified: In most
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cases the photogrammetric observations are assumed to be uncorrelated

and of equal precision.

1.4  Though further refinements of the functional model by using diffe-
rent groups of parameters for each strip have lead to an increase of the
precision, this approach is not satisfying, primarily because it is an
ad hoc solution, which just argues analytically and does not reflect
reality. But also the control of the stability of the system have caused

serious problems demonstrating the imperfection of the attempt.

On the other hand any refinement of the stochastical model has to cope
with numericaldifficulties, which however can only be a short termed ar-

gument considering the future computer facilities.

But in both cases the justification:-of further refinements require com-
prehensive empirical tests which themselves have to be justified by the

theoretically founded formulation of a group of competing hypothesis.

1.5 This paper is supposed to discuss the possibilities of refiﬁfng the
mathematical model of photogrammetric point determination. Section 2
gives a motivation, classifying the error sources within the photogram=
metric measuring process with respect to the treatment in the mathemati-
cal model. Based on the theoretical influence of.systematic errors onto
the adjustment result section 3 deals with limitations of the estimation
procedures in order to check the necessity of establishing certain types
of hypothesis. In section 4 some empirical results about the effect of
refined models onto the accuracy are compiled, especially considering the
duaiity of functional and stochastical models. These results are used in
section 5 for the formulation of two equivalent refinements of the mathe-

matical model.

2. Error sources in photogrammetric point determination

2.1 The photogrammetric measuring process consists of several distinct
steps each being influenced by physical effects which disturb the ideal

geometry of the ''perspective' model.

Table 1 lists the different stages and gives a classification of the type
of error with respect to a possible subsequent refinement of the mathema-
tical model discriminating

- constant systematic errors

-variable systematic errors
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- correlations between different points
- correlations between the coordinates of one point

- variations of variance.

Table 1 Classification of types of error sources

EZigﬁiatic correlation

const var. [global local|Variance
Object (point definition, illumination) X X X
athmosphere (refraction) X X X
aeroplane (turbulence of athmosphere) X X X
objective (lens distortion) x (x)
pressure plate (moving part) x P
film (emulsion) X X b4
image motion X X x
film development b X b X
copy x X X
measuring (comparator,contrast) X X X
corrections b b4

Without going into detail table 1 demonstrates that most of the errors
are varying with time, at least cannot be treated as constant, lead to

correlations and to variations of the variance. Main effects are caused by

- the difference between calibration and real disposition
- the influence of the athmosphere and the film development
~ the instability of the instruments, especially the pressure

plate, which is the moving part in the camera.

0f course one must keep in mind the absolute size of the variations being

only a few micron, but significantly larger than the pure measuring error.

2.2  Though most of the effects have been investigated (cf. the compre-
hensive report by Schilcher, 1980) no general physical model is available.
This is due to the difficulty to study the interaction of the different
effects under realistic conditions and evén if this would be possible

the caliBratiqn had to be performed for each project, requiring a reduc-
tion of tRe number of free parameters, which therscarcely would be sepa-

able.

2.3 This is the reason why test field calibration only aims at the com-
bined constant part of all possible effects. Up to a great extent this
also holds for the selfcalibration thechnique. But this attempt without

much additional field work can be extended towards a more general analy-
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tical model for use in practice. The refinement does not necessarily have
reflect the physics of the photogrammetric process completely, but rather
can be set up considering aspects of performance as numerical stability,
ability to estimate parameters or to evaluate the result in a simple
manner. 0f course the actual reasons for the deviations from the idea-
lized model have to be investigated, e.g. in order to improve the in-
struments. But the development of practical procedures has to be done

independently.

3. Theoretical c¢onsiderations

The possibilities of refining the mathematical model cover a great range
of special alternatives. In order to get information, which extensions
can be checked, e. g. by statistical means, and which type of hypothesis
are not discernable we investigate the influence of errors in the mathe-
matical model onto the result. Only those systematic errors are necessary

to be modeled which really may distort the result.

Notation: Small letters designate scalars-and vectors, capital letters
matrices, stochastical variables are underscored. Model errors are desig-
nated with a Vv (nabla) in front of the variable.

3.1 Let the linearized model be given

l=Ax+eg, evNO,C ) (1)
with the observation vector | = (li)’ the design matrix A, the u unknowns
x and the model errors e. Their covariance matrix CEE is assumed to be
known. In order to compensate for systematic errors this model can be
extended to the mixed model

1l=Ax+Hs+e,

e v N(0, cas)’ s N(so, Css)' (2)

The additional parameters s are treated as stochastical variables with an

unknown mean so and a known covariance matrix Css' It is well known that

this model has two equivalent formulations which can be used for practical

parameter estimation.

The first one is useful, if CEEand Css are diagonal matrices:

il

Ax+Hs +Ht+e, en~NO,C )

‘ €€
t+_e_t, Et'\JN(O, Cs ). (3)

S

lo [—
i

The second one in general leads to a full covariance matrix of the obser-

vations:
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- ]
I=Ax+Hs +n, n~vNO,C_+HC_H). (4)

As all three formulations are statistically identical thus lead to the
same results, it is possible to replace the extended functional model

eq. (3) by an extended stochastical model eq. (k) and vice versa.

Model eq. (3) is frequently used in photogrammetric block adjustment
with 5o = 0; often the second group of observation equations is omitted
treating the additional parameters as free unknowns. In some cases at
least very low weights are given to these fictitious observations just

in order to achieve a stable solution (cf. Kilpeld, 1980).

We will now discuss the influence of not detected errors in the mathe-
matical model onto the estimated unknowns X, starting from the original

model eq. (1).

3.2 Systematic errors VI = H Vs in the observations cause changes of

the unknown %

vx = (A' PA) VA P H Vs (5)
with P = 0*2 C;l. A scalar measure is

. - - 2
62 = Vx! Cxl Ux = Vs' H' P A (A' P A) ] A' PHVYs /o (6)

which describes the total deformation of the network (including orien-

tation parameters). This deformation is zero only if A' P H = 0:

§(Vi) =0, V1 =HVs < A'PH=0 (7)

thus if the parameters are orthogonal to the unknowns.

3.3 Errors in the stochastical model do not influence the unbiased-
ness of the estimate X. But a wrong weight coefficient matrix

ﬁ=c"2'E=Q+VQ=Q+HVstH' (8)

leads to a change (VQ <<Q, cf. Koch, 1980, p. 167)
Ix=(A'PA) A PTQP (1 -A (A PA)A P) 1 (9)

in the estimates RX. The expectation E(vx' C;l Vx) of the total deformation
then results in

=2 _ REaEt | _ L

§° = E(vx' € Yx) = trace(P VQ P Q7 P VQ P Q) (10)

with the weight coefficient matrices QT = A (At P IJ«)'1 A' and QVV =

A g_and the residuals v =

I =i

Q - QTT of the adjusted observations i

i - 1 resp..
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With VP = P VQ P, the vec operator, which maps a matrix into a vector

and the Kronecker product m, eq.(10) can be written as a quadratic form
T2 = 1 -
§~ = (vecvP) (Q]] ® vi) vecVP (10a)

If furthermore VP is a diagonal matrix this expression can be simplified

using the Hadamard product A # B = (aij bij) (cf. Pukelsheim, 1977)
T2 = (diagWP)' (Q=7 = Q) diagWP (10b)
. 11 vV
where diag VP is a vector only containing'the diagonal elements of VP.

Example: Starting from eq.(10b) with Q = | the low influence of single
weight errors Vpi onto the coordinates is proved, as in this case

Ei = /F?ﬂTT:??T vp; < Vpi/Z, ry = (QVV P%ibeing the redundancy number

of the observation li'

From eq.(10) we now again derive conditions for § = 0 using the decompo~
sition VQ = H VQSS H', which may be interpreted as a neglected set

of additional stochastical parameters H s. The influence of errors in
the covariance matrix onto the coordinates is zero if VQ P in = 0 or
vQ P vi = 0. The interpretaion of the second condition is simplified

if we write the functional model in terms of condition equations, i. e.

according to standard problem | in the terminology of Tienstra: U' 1 = w.

Then U' A = 0 and QVV =QU (U'Q U)-1 U'Q. The conditions for § =0

then read as

0 or
0 (11)

§(vQ) = 0, VQ=HVQ H' < 1. A'PH
2. U'H

i

This result already has been found by Rao (1967), here however it is derived

from the general expression eq. (10).

The conditions eq. (11) have a geometric meaning: Neglected stochastic
parameters have no influence onto the estimation of x, if they are al-
ready contained in the functional model as a linear combination either
of the condition equations or of the parameters. This is because A' P H
= 0 is equivalent to H € col(U) and U' H is equivalent to H € col(A),
as A' U = 0 and the matrix (A U) has full rank. col(A) designates the

column space of A.

Example: The arithmetic mean is invariant with respect to (equal)
correlations between the observations. Here A' =(1,1,...,1) = H', Q =1
and Q=1+ p/(1-p)H H' and H € col (A).
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The second condition eq. (11.2) could not be found for errors in the functio-
nal model (cf. eq. (6)) as they would have lead to a singular normal equa-
tion matrix. But practically additional parameters which are very similar

to already existing ones do not deteriorate the result, if the solution

is stable enough to avoid rounding errors.

Thus eq. (11) gives complete conditions for additional parameters, fix and
stochastical ones, to have no influence on the result. Additional parameters
meeting these conditions then are not estimable in an extended model. The
normal equation matrix (A H)' P (A' H') for x and So is singular. Moreover,
if the covariance matrix CSS is to be estimated, the equation system for

the unknown variance components describing CSs will be singular showing

that the variance components are either not estimable or not discernable.

The common conditions may form a basis for a jeoint evaluation of simultaneous

ref inements of the functional and the stochastical model.

k. Empirical results

The last section has provided some tools to evaluate possible extensions
of the mathematical model. The following results of practical investigations
want to show how far a mathematical model is able to represent reality and

which further increase of the final accuracy one might expect.

L.1 The first example deals with the bundle block adjustment of the test
block Appenweier (Klein, 1980). Table 2 gives the estimated precision § =
NTPV/T of the image coordinates and the r.m.s. and the maximum errors at

the 85 check points which were not used in the adjustment, both for single
blocks with 20 % sidelap and for double blocks with 60 % sidelap. The ad-
justment has been performed 1. without any refinement of the model, 2. with
12 additional parameters common for all images of each block to compensate
for systematic image errors and 3. with 12 parameters for each strip in order
to consider possible differences of the deformations between the strips.

Not determinable parameters were excluded to obtain a stable solution. We

are only concerned with the planimetric results here.

The table shows clearly:

- The accuracy increases with increasing refinement of the model. This
proves that the additional parameters really compensate for varying
systematic errors.

- The maximum errors significantly decrease in the single blocks, which

is of utmost importance for practical applications.
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Table 2 Accuracy of bundle block adjustmentzTestblock Appenweier
scale 1 : 7 800, area 9.1 x 10.4 km“, estimated precision
of terrestrial control and check point coordinates 1.2 cm

single blocks double blocks
(sidelap 20 %) y (sidelap 60 %)
8 1 £ XL | s u € B
o Xy max G o Xy max 60
version
pm - cm - um - cm -
1 no parameters 3.0 5.7 5L2.9 2.4 (3.6 3.4 10.4k 1.2
2 12 parameters 2.4 3.8 18.6 2.0 |2.7 ' 2.6 9.3 1.2
blockwise
3 12 parameters 2.3 3.4 13.8 1.9 (2.6 2.0 7.0 1.0
stripwise
u = u2 + uz' i u = r.m.s. residuals at 85 check points
Xy X y’ "x’ Ty
€rax = maximum residuals at check points

- The results, though extremely good, are not quite in accordance with

~ theory as the ratio u#y (um)/ﬁo (um) should be 0.9 for single and 0.6 for
double blocks. This discrepancy may be explained by neglections in the
mathematical model, neglected correlations between the image coordinates
and certainly also unrealistic assumptions about the precision of the

control and check points, which have an average precision of 1.2 cm.

A plot of the parameter values (not shown here) reveals them to vary signifi-
cantly from strip to strip. As there is no justification for this type of
splitting the block with respect to the setup of the additional parameters

the systematic errors of the individual images were investigated,

4.2 The systematic errors of time series of up to 76 images were derived
from flights with reseau cameras (Schroth, 1982). The deviations from the
ideal reseau reflect the deformation of the film caused by film transport,
pressure plate, film development, temperature, humidity during the measure-
ment etc.. The time dependency of the deformations is desribed by the time
series of 18 orthogonal parameters, namely the 6 parameters usually needed
for the orientation and 12 additional parameters. Fig. 1 - 3 give some

representative examples.

The parameters significantly differ from zero. The mean value is given by
a straight line. The dotted lines indicate the 3-fold standard deviation
of the estimated parameter. Obviously the variation of the paramters cannot

be explained by random errors only.

Also the type of the time series varies. Most of the time series show no

correlation between the images (cf. fig. 1). Some time series seem to have
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a trend which cannot be described by a constant value(cf. fig. 2). Some time
series show rather large correlations between the parameters of adjacent
images (cf. fig.3). The autocorrelation functions of the time series fig. |
and 3 are given in fig. 4 and 5. The autocorrelation function fig. 5 can

be approximated by an exponential function exp(-c+Lag), being characteristic

for a discrete 1st order Markov-process.

This investigations shows that the additional parameters may be modelled as

stochastic variables.

Also time series for the variation of the scale of the images have been ob-
tained showing high variations, which mainly are caused by the humidity
during the measuring process. But this parameter only has to be modelled

i f geodetic measurements (e. g. with inertial systems) are used to get infor=
mation about the position of the camera platform. Otherwise scale variations
are absorbed by the z-coordinate of the projection centre. Thus the scale
parameter of an image is fullfilling one of the conditions eq. (11), name-

Ty (11.2).

4.3 In section 3 it was shown, that the refinement of the mathematical
model can be achieved by either extending the functional or the stochasti-
cal model. Of course one can also think of mixtures. Schilcher (1980) has

proved this empirically.

He analysed 120 images taken with two different cameras, a wideanglie and
a superwide angle camera, flown over the test field Rheidt. He distin-
guished 3 functional models of different quality shown in table 3.

A is the most simple, C the most refined functional model.

Table 3  Theoretical precision of checkpoints for different functional
and stochastical models (after Schilcher (1980)).

model
A B G c!
a priori corrections: lens distortion, no yes yes  yes
earth curvature, refraction
systematic errors common to all no no yes  yes
images
) ) " R _ -
covariance matrix CA CB CC Ioco
precision wide angle 3.7 3.8 3.7 4.3 um
precision superwide angle 6.7 5.5 5.1 5.8 um

From the residuals after a spatial resection he estimates covariance matri-

-

ces CA’ CB and CC. The theoretical precision of check points in terms of

standard errors are derived by error propagation for the different levels
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of the functional model and the corresponding estimated covariance matri-

ces. For the most refined functicnal model C also the results using a dia-

gonal matrix C = | 65 are given.

The standard errors for the first three models confirm that the neglections
caused by a very simple functional model can be compensated by a refined
stochastical model and vice verca. The coincidence of the standard devia-
tions for the wideangle camera can be said to be excellent. The moderate
deviations of the values for the superwideangle between the models A and B
can be explained by the large constant a priori corrections. Their neglec-
tion can not be fully compensated by an appropriate covariance matrix.

In this case the assumption for the equivalence of the models eq. (3) and

(4), namely the variability of the parameters, is not met.

The model C' using an extended functional model and an oversimplified sto-
chastical model obviously gives worse results, again demonstrating that
the introduction of constant common parameters leaves significant correla-

tions between the observations.,

The investigation clearly shows that the freedom of choosing hetween a refined
functional and a refined stochastical model is not only a theoretical
statement but can be realized leading to a further increase of the final

accuracy.

5. A refined mathematical model for photogrammetric point determination

5.1 The structure of the photogrammetric measuring process and the empi=-
rical results suggest to treat the images as a time series, whose defor-

mations may be modelled by a Markov-process.

The deformations thus can be described by the following 1st order auto-

regressive scheme

5= ny» 0y v N0, C)
2
~ N(O, (1-a”) css), la]<t, (12)
k >2

-

Lo b T oy

The parameter vector t, is the starting point. The parameter a controls

the degree of correlation between the parameters £y and the of different
-k ! -

images k and k', being a N ]. Thus if a = 1 all parameters are equal

(n, = 0), whereas if a = 0 the parameters are independent.

The stochastic process is cobserved by measuring the coordinates, contained

in the vector lk for each image:

(13)
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- (k)

Le=Ax+U e +U t +e, g N0, ). (13)

The unknown parameters x contain the cootdinates of the new points and the
orientation parameters of each image, t, is a constant vector of additional

parameters desribing the mean deformation of the images.

5.2 This mixed model egs.(12) and (13) has a similar structure as eq.(2).
Thus a first way to estimate the unknowns x and £y (k = 0,1,...) is solving

the equation system (cf. eq. (3))

w . (k)
T —_Ak x+U t o+ Ut te, g v N0, ) (1ha)
9, = "ty + 10y, ng v N(O, C_) (14b)
2
9, = At st +n, o v N0, (1-a7) C_.) (1hc)

using least squares. Eliminating t, from egs. (14b) and (1k4c) leads to the
equivalent model (assuming Cov(gk, Ek‘) =0, cf. eq. (4))

-lk = Ak x + Uk to + Ek’

- (k) -
Vig,) = €7 + U, Cog Up o Covig,, &) = U, .. Y

ke
sS

(15)

Both forms of the refinement have their advantages:

The extension eq. (14) of the functional model is favourable in large
systems, especially in cases with high point density in the images. The
number of parameters increases roughly proportional to the number of
images. The banded structure of the normal equation system can be preser-
ved. Main advantage is the ease of evaluating the extension, e. g. by
testing the ﬁkf Estimating the parameter a is simple, estimating the
covariance maﬁrix Css is feasible. The reduction of the normal equations
onto the orlientation and additional parameters easily is possible, if the
observations can be treated uncorrelated, at least if no correlations be-

tween points can be assumed.

Otherwise an extension of the functional model is unavoidable. This espe-
cially holds if local film distortions or similar effects cause corre-
lations between points over short (< 1 cm) distances within an image.
These deformations can not be compensated extending the functional model
but rather have to be descibed by covariance functions. Thus C$$) may be
split into two additive components representing measuring errors and local
film distortions. Refining the stochastical model so has the advantage of

allowing all kinds of correlations whithout increasing the numerical effort.
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5.3 Though the proposed extension of the mathematical model for photo-
grammetric point determination could be motivied by the results of quite

a number of experiments several problems are open for future investigations:

1. Empirical tests with extended models (eqs. (14) and (15)) have to prove
the efficiency of the refinement. Special effort has to be layed upon the
question whether the compensation of local distortions really leads to a

signifijcant increase of the final accuracy.

2.The numerical effort for the adjustment which is heavily increased by the
proposed extensions has to be limited. Therefore it seems necessary
- to find an optimal set of additional parameters which is at the same
time as small as poosible,
- to find a strategy for a stepwise refinement of the mathematical model,
if that is of any advantage and
- to compare the numerical properties of the two approches eq. (14) and
(15) with respect to computing time and stability of the system.

3. The increase of unknown parameters may weaken the whole system if the
géometry of the block is not chosen properly. Therefore the quality of the
result has at least to be checked. These checks should be as efficient and
at the same time simple as possible and may be used to give recommendations
for the design of blocks with the aim to reach a high reliability of the

result.

It can be hoped that these investigations will lead to a further increase of

the accuracy of photogrammetric point determination.
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