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ON THE GEOMETRIC PRECISION OF DIGITAL CORRELATION
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ABSTRACT

The geometric precision of digital correlation can be described by the
standard deviation of the estimated shift. The paper shows how the pre-
cision depends on the signal to noise ratio, the number of pixels in-
volved and the texture of the object and discusses the choice of a low
pass filter which minimizes the variance of the estimated location in
order to obtain an optimal sampling frequency.

INTRODUCTION

Digital correlation is the basic technique for geometric processing of
digitized images. It can be used for the measurement of passpoints for
rectification, for point transfer in aerotriangulation, for automatic
profiling or for line following procedures. There exist several algo-
rithms for correlation, maximizing the cross-correlation coefficient be-
ing the most common one. In a classical paper Helava (1976,] 3] )discussed
the different aspects of correlation with respect to an automatic proce-
dure, and provided clear suggestions for the design of a correlator, re-
garding the effects of noise, the general texture of an image and the
influence of filtering onto the convergency (the pull in range). However,
very little discussion is found in the literature concerning the geo-
metric precision of correlation; i. e., the standard deviation of the
estimated location of the correlation maximum.

The performance of the usual procedure, which maximizes the cross-corre-
lation coefficient, is evaluated using the correlation coefficient p it-
self. There appears to be no commonly accepted opinion on how large p
should be to indicate an acceptable correlation. It seems that each in-
vestigator tends to use his own criteria depending on the data he has
learned from. This paper will show that evaluating the correlation coeffi=-
cient is equivalent to evaluating the average signal to noise ratio. But
clearly the precision of the correlation will also depend on the sharp-
ness of the correlated object, i. e. only the presence of sufficient
high frequence signals will guarantee a precise correlation. Thus the
texture of the object has to be taken into account.

One straight forward approach for estimating the geometric precision
would be to make use of the curvature (2nd derivative) at the maximum of
the cross correlation function. The empirical solution, given by Wiesel
(1981,]6]), verifies the consistency of the correlation by correlating

9 adjacent points and determining the root mean square error of the simi-
larity transformation of the original onto the transferred point pattern.
This paper adapts a different approach and uses the standard deviation
of the estimated shift resulting from a least squares solution, which
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minimizes the sum of the square gray-level differences of the two images
and which leads to the same location for the point of maximum.

The paper will show that in addition to the correlation coefficient or
the signal to noise ratio geometric precision will also depend on the
variance of the first derivative, i. e. the gradient of the correlated
image. As can be shown in the frequency domain, high frequency signals

of moderate amplitude have a high influence on the precision. The vari-
ance of the gradient can be calculated in the spatial domain, being use-
ful in a real correlation procedure, or in the frequency domain using
Parseval's identity. This is extremely useful for planning purposes, in
case one has proper information about the power spectra of the object and
the contaminating noise.

In part 2 a derivation of the basic formulas for evaluating the precision
of template matching will be presented and in part 3 this algorithm will
be extended for the case of correlating two images. In part 4, the re-
sults will be compared with the usual procedure of cross correlation, and
a practical example will be presented. In part 5 the results will be ge-
neralized to the correlation of images which have been preprocessed with
a linear filter, This can be used for an optimal correlation in case of
coloured noise and for the determination of an upper frequency of an
ideal low pass filter which leads to an optimal precision. This part is
intended to show the applicability of the developed formulas. Hence
simplified assumptions were made, although more realistic ones could have
been chosen.

2. TEMPLATE MATCHING BY LEAST SQUARES

Let the known object be described by the one dimensional gray level func-
tion g(x), x € [0,L]. The image g;(x) of the object is assumed to be

gy (x) = g(x + xo) + n(x) , (1)
where x, is an unknown shift and n(x) is the additive noise.

With the observations Ag(x) = g;(x) - g(x), the corrections v(x) = - n(x)
and the derivative dg(x)/dx = g'(x) the following linearized error equa-
tions can be developed for each position x:

Ag(x) + v(x) = g'(x)x, (2)

(2) can be solved according to least squares techniques. Let the gray
levels of gj{x) and g(x) be observed at N regularly distributed points x;
within the interval [0,L] and have equal weight; thus n(x) is

assumed to be white noise, i. e. normally distributed with a mean of zero.
The normal equations

B Xy = C (3)
then contain N N
B =1 g'%(xi) 5 c=7 g'(x) bglxi) . (4a) (5a)
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|f the observations are sufficiently dense, the sums can be replaced by
integrals, i. e.

g'2(x) dx = N o2, (4b)

B = N
=T 3

O =T

and

N
c ==
L

O I

g'(x) Ag(x) dx = N Ogtag * (5b)

Thus o2, is the variance of the gradient of g(x).

The solution of the normal equations leads to

N

~ izl g'(xi) Ag(xi) - g A

o TN or  x, = —ﬂz—ﬂ (6a,b)
.z QJZ(XI) Ggl

=1

An estimate of the variance cﬁ of the noise can now be computed as

follows:
N

Yov2(xi)
VEAX| N
52 i=1 or &% = ——u-%

1
1) = o N-u

N - u

o2 (7a,b)

vZ(x) dx = N
N-u v

Q Y—r-

where u iszthe number of unknowns (u=1 in this case). An estimate of the
variance o, of the shift Qo can then be computed by the following expres-
sion:

N 2

L) 2

= v

o, = or g, = me————— (8a,b)

N 2
Y og'?(x) g

If the variance of the noiae n(x) is known, the theoretical precision,
i. e. the expectation of G5 is given by

2
2 1 0p
x TNz (9a)
g’
If instead of o2 the signal to noise ratio
SNR =0 /o, (10)
is known, equ. (9a) can be written in the following form:
1 %
g2 =1 g
X~ NeSNRZ o2, (9b)
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Eqs. (6a), (7a) and (Ba) can be used in a real correlation procedure,
whereas eqs.(9a) or (9b) can also be used for planning purposes, expe-
cially in case where the power spectrum of the object is known.

3. CORRELATION OF TWO IMAGES

The correlation process and its evaluation can easily be generalized to
the matching of two images of an object. Instead of correlating g;(x)
and g(x), the process is changed to correlating gl(x) and gz(x), where

g9, (x) = glx + x5) +n (x) , (11)

N

and

g, (x) = g(x) + n,(x) . (12)

Taking the difference and linearizing lead to the same error equations
expressed by eq. (2),

Ag(x) + v(x) = g'(x) 20

where now Ag(x) = gl(x) - g,(x) and v(x) = v (x) - v,(x) =
(x) - ﬁl(x).

Eqs. (6) and (7) can again be used to solve for X, and og respectively.

If the power spectra of nl(x) and n,(x) are equal and constant, the theo-
retical precision of X, is given by

o2 = = N (13)
*OON . cé. N -SNRZ ©g'

Remark:

All formulas for the variance of Xg gtven above depend on the texture of
the true object, namely the variance ¢2:, of the gradient. If the form

of the object is not known, as it is o?ten the case when correlating two
images, the object has to be estimated, i. e. restored, from one of the
images (or both). The gradient g'(x) must then be replaced by an esti-
mate §'(x). Using 9, (x) + vi{x), for example, is not optimal, as the cor-
relation procedure tS not designed to restore an image but rather only

to estimate the shift x, (cf. discussion in Castleman, 1979, pp. 217,[1])
Any restoration techniques may be used to restore g'(x) which may not

be optimal for a restoration of g(x). Of course correlating two restored
images can lead to quite different estimates for precision. Evaluation of
the precision should then take into account the correct power spectra of
the filtered noise, which will no longer be white (cf. ch. 5).
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L, COMPARISON WITH CROSS CORRELATION

It is well known that minimizing the norm of Ag(x) and maximizing the
covariance of g, (x) and g,(x) lead to the same location for the extrema.
If moreover g,and g have the same variance o2, the correlation coeffi-
cient pyp = 012/0 is directly related to the sngnal to noise ratio SNR
by

SNR? = 1/(1-p12) or o, =1 - 1/SNR? (14)

Substituting eq. (14) into eq. (8) ylelds the following expression for
the estimated standard error of x

2(1 - Dlz) 02
52 -9
9 N - 4 Uéu (15)

The usual correlation processes only need to be extended by the calcula-
tion of the ratio (og/cgu)z, which takes into account the texture of the
object.

Eq. (14) shows that evaluating the quality of matching by using the cor-
relation coefficient gives the same information as cg or the signal to
noise ratio SNR. But it does not give any information on how precise the
location of the maximum really is. Two comparable correlation coeffi-
cients may belong to matches with quite different precision.

The formulation of the correlation process as an adjustment procedure
allows the introduction of additional unknowns to compensate for geomet-
ric or radiometric distortions of the images; e. g. an affinity in two
dimensional correlation to take into account the geometry of the projec-
tion, or two parameters for a relative gray scale transformation.

Example:

Figures 1 and 2 show perspective sketchs of the gray level functions
g(x,y) of a garden bed and a traffic island respectively. The two stereo
pairs were correlated using the algorithm described in ch. 2 in a two
dimensional version using linear transformatlons for geometry and radio-
metry. The pixel size was (20 um)2. The correlation coefficients were
found to be 0.90 and 0.91 for image pairs 1 and 2 respectively, which in-
dicate a high quality of the match. The standard deviations (o, ) were
0.6 pm and 0.4 um for lmage pairs 1 and 2 respectively, which show that
the point transfer using image 2 is better than using image pair 1. On
the other hand, both standard deviations are clearly better than the
standard deviation of manual point transfer using natural points, which
is about op = 5 um. This results from the high quality of the image and
the large number of pixels used for correlation. The smoothed images are
sketched to make the unsmoothed image readable. The correlation was per-
formed on the unsmoothed images.
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5. CORRELATION OF FILTERED 1MAGES

The procedure will now be extended to the correlation of images which
have been preprocessed with a linear filter. The development uses the
possibility to express the amplitude and the power spectrum of the deri-
vative of a function in terms of the amplitude and the power spectrum

of the original function. Let g(x) have amplitude spectrum G(s) =

= [g(x) exp(-j2mxs)dx and thus power spectrum Pg(s) = |G(s)|%then the
derivative g'(x) has amplitude spectrum G'(s) = -j2ws G(s) and thus
power spectrum Poi(s) = ku?s? Py(s),, where both x and s range from -

to + » ., Also Parseval's identity is used to determine the variance cg

of a function g(x) as [gZ(x) dx = ng(s) ds = US.

5.1 Let it be assumed that the power spectra of nj(x) and n,(x) are
identical to Pp(s), with s being the frequency expressed in Ip/mm, and
that Pn(s) does not have any zero elements. With the linear filter Qn (s)
= 1//P,(s) and the corresponding impulse response q,(x), eq. (11) can be
transformed by convolving it with gq,(x):

il

9, (x) * q,(x) =: g (x) =g(x + x;) +7 (x) (16a)

9,(x) * q;(x) =: g (x) =g(x) +7_(x) (16b)

The power spectra of n,(x) and n,(x) are now P5(s) = 1. The adjustment
procedure of ch. 2 can be applieé to yield the following expression for
the precision of io:

o2
g2 = 2 _N (17)
X N UE|
g
with
+s,
og. = 4n2 77 s2 . |G(s)]|2 - |Q(s)|2 , (18)
-5,

where G(s) is the amplitude spectrum of g(x) (g(x) is assumed to be pe-
riodic here) and

+54
o? = E Pn(s)-
n -S,

o, (s)]2 (19)

This procedure for decorrelating the noise retains the optimality proper-
ties of the correlation process (cf. Castleman, 1979, p. 214,[1]).

The upper and lower bounds for the sums are necessary in evaluating egs.
(18) and (19),not for eq. (17).

For Practicaf applications only a computer program for the filtering of
the images with Q,(s) is needed. Of course, if another filter qn(x) is
used, eq. (17) still is valid.
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5.2 This fact can be used to design a filter which is optimal with re-
spect to the geometric precision of correlation. In order to keep the
formulas simple we restrict the discussion to ideal low pass filters with
boundary frequency s. applied to images with exponential and continuous
power spectra, i. e.

P (s) =P (0) - e2Is] 20
g ) . ) (20)
which are contaminated by white noise having a power spectrum expressed
by 2

P (s) =N . (21)

This is a realistic assumption as far as photogrammetric images are con-
cerned. (cf. Helava, 1976,]|3]).

An ideal low pass filter with boundary frequency s. can be used as an
approximation for the sampling with a pixel size Ax = 1/2s_.

In the following sections, the theoretical case where all frequencies are
used will first be discussed. Then, an algorithm will be developed to de-
termine the frequency s. which leads to the smallest variance of 20,
assuming that the number of pixels used and the signal to noise ratio are
given. Finally the dependency of the precision on the sampling, represen-
ted by sc, will be determined by fixing the size of the correlated patch
and the signal to noise ratio.

5.2.1 If all frequencies of the power spectrum in eq. (20) are used, the
standard deviation eq. (13) can be calculated from the simple relation

o = 1 ..._é_l__ . (22)
X Zﬂ;N SNR

This directly follows from eq. (13) with c; = 2 Pg(O)-fe’asds =2 pg(o)/a
and U;lz 2 Pg(O)-f-m2 fsze_asds = 2 Pg(o) 4r2.2/a3, °
(o]

Example 1:
a) Photogrammetric image of high quality (cf. Helava, 1976,|3])

a=20.2, SNR=5, N=100 -~ o = 0.64 um.

b) Photogrammetric image of low contrast, tidal lands (cf. Ehlers,1980,|2])
a=3.8 SNR=1.5N=100 >0 =40 un.

The relative magnitude of the two values of g, seems to be realistic. But
the absolute precision in both cases is somewhat higher than expected.
The reason seems to be that ideal assumptions concerning object and noise
were used. In reality, noise will be correlated and not all frequencies
can be represented by only 100 observed gray level differences. Therefore
at least low pass filtering has to be taken into consideration.

The true reason for the high precision will become obvious in example 3. H



5.2.2 By applying an ideal low pass filter which cuts off frequencies
above s, eq. (17) can be written in the following form:

+s

c
[ N2 ds
2 -s. ©
52 = 2. 3¢ (23)
N  ¥S¢ -als| ’
[ 4n2 p_(0)+e ?1%ids
- g
Sc

Reordering of the terms leads to

1 / N 2 N2
TN K/p‘o““(ﬁj> ' (;_11') *rse) 24)
g \
with Sc Sc 2 _as
r(sc) = 2 f ds f (as) e “7ds
0 )

An evaluation of the integrals showed that the function r only depends on
the standardized frequency z. (zC = ass¢). Therefore,

2 z.

(z) =
(z Son el (25)

The zero amplitude ratio ZAR = N _/G(0) {G(0) = VPQEOU can first be deter-
mined 4s a function of the signal to noise ratio SNR, restricting noise
and signal to frequencies s < sgp, where Pg(s)>N2 (cf. fig. 3). This is
equivalent to eliminating all frequencies s > son.OThe upper frequency

62(0)
= Pg(0) 4

Fig. 3: On the assumed relation between power spectra of
noise and signal and the signal to noise ratio SNR
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son of an object with the power spectrum in eq. (20) can be obtained from

Zon (SNR)

Son = —_—— (26)

where z5, is the stgndardized frequency. It depends on SNR and is ob-
tained by solving e“ON - | = z . SNR2,

SNR 1.5 2 3 5 10 20
Zon = asson | 1-45 2.33  3.47 4.80 6.48 8.08
Son (a=0.2) 7.5 12 17 2% 32 ko

ZAR = NO/G(O) 0.48 0.31 0.18 0.091 0.039 0.018

Table 1 Upper frequencies Son ©f signal and zero amplitude ratio
ZAR = NO/G(O) as a function of SNR and the parameter a
of the power spectrum Pg(s) = Pg(O) exp(-als|).

Table 1 lists some values of z,, and the corresponding zero amplitude
ratio ZAR = N (G(0) as a function of SNR. For example, in a good photo-
graphic image with a = 0.2 and SNR = 5 (cf. Example 1),there is hardly
any information above s, = 24 1p/mm, which agrees very well with expe-
rience.

r(zc)

%0 1 Fig. 4: Power spectrum Pgi(as)
of gradient g‘(x? and
variance function r(asc)

20 ! Pge(2) eq.(25) for given number

; of pixels
i
|
10 e Nem e e e N
1 1
Fopt = 5-18 [P ——T—TTT T Mot ase
o .
2 z, = 3.38 10 z_ = asse

The function r(z.) which is sketched in fig. 4 is now minimized. The
optimum frequency sgn for the low pass filter is

Zo
Soc =‘;“ s Zy = 3-38 (27)
The optimum value Fopt = 5.1% is independent of the parameter a, which
leads to the following expression for the best standard deviation of Xg
that can be obtained when correlating two patches with N pixels and a
given ZAR(SNR) = N, /G(0) and assuming the power spectrum eq.(20)
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|
a |
i ZAR(SNR1 ZAR (SNR) (28)

from table 1

Gx = 0.36 .

Fig. 4 demonstrates that the minimum is flat in the direction towards
higher frequencies. Using a boundary frequency s. which is somewhat lar-
ger than the optimum would lead to only slightly lower precision, where-
as omitting frequencies < s,. may deteriorate the precision of correla-
tion.

a 0.2 0.5 1.0 2.0 4L.0
s 17 6.8 3.4 1.7 0.8

ocC

Table 2 Frequency s, of low pass filte [or optimal correla-
tion assuming Pg(s) - Pg(O)-e"a S| and given number
of pixels

Table 2 lists the values of s . for several values of the parameter a.
Correlating two images with a = 0.2, say, gives best precision if only
frequencies £ zy/a = 17 are used. This is within the range where the
noise power is smaller than the power of the signal, if the SNR = 5

(17 < sgn = 24). If however SNR is below 3, say 2, the optimum low pass
filter keeps frequencies (between son = 2.33/a = 12 and z,/a = 17) which
mainly contain noise; but un upper frequency s¢ = sop would lead to in-
ferior results.

This seeming contradiction can be explained using the power spectrum
Pg'(as) of the gradient which is shown in fig. 4. The frequency band

around 2/a up to zy/a contains 2/3 of the variance of the gradient. This

is an agreement with the findings of Helava (1976, |3]|), who stated the
optimum band for correlation to be between 5 and 20 lp/mm, assuming a=0.2.
Thus if z. = z5, < 2z, parts of this band are not used, which leads to a
deterioration of the precision though frequencies between zg, and z, con-
tain more noise than signal. But in case z¢ = z,, > z,- the frequencies
above z, are not powerful enough to increase the precision.

Example 2 (cf. Ex. 1):
0.2, SNR =5, N
3.8, SNR =1.5, N

]
]
1]

0.66 um
70 um.

a) a
b) a

100, sgc = 17 0

]00, Soc = 0.8 UX

X

]
]
]

Both o, are higher than the corresponding values in example 1. Reason is
the different value N, in both examples: If all frequencies are taken

+oo
into account, N, is practically zero (with f Ng ds = cﬁ), whereas in
-co

example 2 N, amounts to 9 % in case a) and as much as 50 % in case b)
of the zero amplitude of the image. This also explains the different
influence onto the precision in cases 2 a) and b). Again, in example
2b) one must be aware, that the given SNR of 1.5 is only needed to de-
termine the ratio N /G(0) using frequencies up to 0.36 (= 1,45/a, cf.
table 1), whereas the correlation process is assumed to use frequencies
up to 0.8 (cf. table 2), which reduces the actual SNR down to 1.1.
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5.2.3 The precision of x. for a given length d [mm] of the object can
next b? determined since ?ow pass filtering with upper frequency s. can
approximate sampling with a pixel size Ax = 1/2s.. The number N = g/Ax
in Tg.(zh) can be combined with the frequency z. (= a*s.) in eq. (25) to
yie

oo = _fﬁi_ a® a 2
X oo _
Pg(O) bn?  2d 2 - e Ze (22 + 2z, + 2) (29)

This is a monotonic decreasing funcion of zZ. = a/20x cf. fig. 5).

2

oZ(ax=0)

10 4

zo = ass.

I, = 3.38 10

Fig. 5: Variance function Ui(a.sc) eq. (29) for given size d of the object

It describes the influence of the sampling onto the precision of %O. For
frequencies z. > z,. the standard deviation can be approximated by

B . L) with ZAR(SNR)
ox(d) 0.11 ZAR(SNR) +a ./d from table I (30)

Thus oversampling does not change the precision of the correlation, as
long as a good approximation of g'(x) is used and all frequencies s < Se
are represented.

Example 3:
a) a=20.2, d=1mm, SNR=5 > o = 0.9 um
The precision is lower than in example 2a), since only 34 (2:17

pixels are necessary to represent the object of length d = 1 mm.
100 pixels (as in example 1) thus represent an object of 3 mm !

34)
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b) Correlating an object of length d = 1 mm of which the parameter a = 3.8
does not meet the conditions of the formulas, since the lowest fre-
quency (s. = 1) is larger than the optimum frequency (soc = 3.38/a =
= 0.85). Thus only frequencies > z,. would be used and the deriva-
tion of a low pass filter is meaningless. But correlating an object

of length d = 10 mm leads to an optimum precision of o, = .12mm.
The reason for the lower precision than in example 2b is the same as
in 3a).

On the other extreme, if the pixel size is too large, i. e. s, << sg¢
eq. (29) leads to

with ZAR (SNR) (31)

Ja
o, (8x) = 0.32 « ZAR(SNR)Yg -4 x from table 1

Thus the standard deviation then increases proportional to the pixel size.

6. DISCUSSION

This paper is intended to show how the geometric precision of digital
correlation can be evaluated using the standard deviation of the esti-
mated shift. The basic prerequisite was the use of the least squares
approach as correlation procedure.The signal to noise ratio, the esti-
mated variance of the noise and the correlation coefficient are equiva-
lent measures for the quality of the match; but the variance of the first
derivative, as a measure of texture, is decisive for the geometric preci-
sion.

Generalization of the equations developed in part 2 for preprocessed
images is straight forward. It is shown how the images have to be filte-
red if they have been contaminated by coloured noise. If noise and sig-
nal have the same power spectrum (except a constant factor), the adjust-
ment procedure is equivalent to phase correlation (cf. Pearson, 1977,I5|)
the precision of which can thus be estimated using eq. (17).

The applicability of the theory is demonstrated in section 5.2. When the
number of observations (pixels) and the signal to noise ratio are fixed.
minimizing the variance oy leads to an optimum boundary frequency Ssc=Soc
for an ideal low pass filter. Increasing sc, however, has only small
influence on the precision, i. e. a resolution which is too high does
not deteriorate the precision of correlation provided that a restored
image or the object itself is used for the determination of the gradient
g'(x).

On the other hand there exists a lower bound for the standard deviation
of the shift which cannot be decreased by using a higher resolution while
keeping the size of the object.

In all parts of the paper simplified assumptions had to be made. This was
necessary to keep clear the line of thought. But it was also necessary as
in many cases no better information was available.
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A proper model for describing the noise is urgently necessary. In this
context noise includes not only film granularity, sampling or quantiza-
tion noise but also shadows, reseau crosses or temporal changes of the
object or its surrounding etc. These informations have to be used to op-
timize the correlation procedure as well as the restoration of the image
to gain a proper estimate of the gradient of the object, in order to get
a reliable information about the precision of the correlation. The abili-
ty of an image to produce correlation of high precision may in addition
to the signal to noise ratio (cf. Welch, et.al. 1980, |5|) be used as a
measure for image quality.

Moreover, any preprocessing of the image has to be taken into account,
when determining the variance ci. In case of template matching, e. g. the
measurement of signalized points, the transfer function of the optical
system must also be considered. In section 5.2 only an ideal low pass
filter was treated. Sampling and bounding an object are linear filters,
and thus can be treated in a similar way. This may lead not only to an
optimal sampling but also to an optimal size of the correlated part of

an object.
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