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Summary:

Photogrammetric net densification is based on a mathematical model, which takes into account the
systematic errors of the image coordinates. The paper discusses possibilities for estimating
covariance matrices or parameters of covariance matrices for photogrammetric image coordinates.
The positive definiteness of the estimated matrices and their decomposition into products of
smaller matrices are treated,

Zusammenfassung:

Der Netzverdichtung mit Hilfe photogrammetrischer Methoden liegt ein mathematisches Modell zugrun-
de, das die systematischen Fehler der Bildkoordinaten berlicksichtigt. Der Artikel diskutiert die
M3glichkeiten zur Schdtzung von Kovarianzmatrizen oder von Parametern der Kovarianzmatrizen und
ihre Zerlegung in Produkte kleinerer Matrizen zur Vereinfachung ihrer Struktur.
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1. Introduction

1.1 During the last 10 years the accuracy of photogrammetric point determination
has reached a standard, which makes it attractive for high precision application
as network densification or deformation measurements. One of the reasons for this
development is the successful refinement of the mathematical model for the ad-
justment process, especially the refinement of the functional model by using self
calibration technique (additional parameters) including checks to guarantee the
reltability of the result. The accuracy then reaches standard deviations of 2-3um
in the image and high reljability with & < 5, i.e. it can be guaranteed that the
coordinates, photogrammetrically determined, are correct within 10 - 15 um tolerance
{(in the image), if proper tests and checks concerning gross and systematic errors,
controllability and reliability are applied.

1.2 However, self calibration technique only is able to filter out the constant
part of the systematic errors. Further refinement of the functional model using
locally different sets of additional parameters to compensate varying systematic
effects leads to miscellaneous difficulties in computation and evaluation. 0n the
other side it seems to be impossible to quantify the different sources for the
deviation of the idealized from the real beam passing atmosphere, optic, film
development and measuring process to its representation - the image coordinates.
Most of the systematic effects are varying with time, i.e. from image to image,
leading to correlations within and between the images, even if the constant part
of the systematic is conceived within the functional model.

1.3 The stochastic properties of photogrammetrically observed coordinates have
already been analysed by Stark (1973) in a pilot study and recently by Schilcher
(1980). They obtained moderate and high correlations within photogrammetric
models and images. Schilcher demonstrated the possibility of compensating a rough
functional model by using a refined stochastical model and vice versa (Ackermann,
Schilcher, 1980). In both cases the estimation of a full covariance matrix

was based on the residuals of a system with high redundancy. The residuals there-
fore were treated as true ervors. This leads to difficulties with the positive de-
finiteness of the estimated covariance matrix, which in both cases could be cir-
cumvented by either imposing restrictions on the structure of the covarijance
matrix or by modifiying the estimation process.

1.4 The benefit of using a refined stochastical model was demonstrated by
Ackermann (1976), who showed that in cases with high redundancy the precision of
the points after an absolute orientation is strongly influenced (improved) by the
(more realistic) stochastical model. It showed that point estimation is not so
much influenced by errors in the stochastical model as interval estimation is.
Especially all accuracy measures are directly dependent on the assumed stochastic
properties of the observation.

Even if full covariance matrices will not be used in large block adjustments
within the next years they will find an increasing market in small block applica-
cation especially in industrial photogr&mmetry and in connection with on-line
error detection, as the sensitivity of the statistical tests is improved.
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1.5 The rigorous estimation of a covariance matrix for image coordinates has to
cope with two difficulties:

- the data acquisition and
- the enormeous computational effort.

In order to meet the conditions of a multivariate adjustment there should be a
possibility of obtaining images with nearly the same exterior orientation. This
only is possible in a laboratory test, which gives nonrealistic results. The
application of variance component estimation requires the handling of full matri-
ces with 106 and more elements if only 20 images with 25 points each are ana-
lysed.

In order to come to a theoretically satisfying solution, though, we restrict our
investigation to a part of the total error budget. Reseau images give sufficient
and ideally positioned information about a great part of the systematic errors such
as flatness of the pressure plate, filmdeformation, measuring process etc. So we
will not get any information about point definition, refraction or image motion.
The fix frame of the reseau grid yields repeated realization of a regular point
field being ideal for all kinds of muitivariate analysis.

1.6 This paper is supposed to collect, discuss, modify and develop mathematical
tools for the estimation, approximation and evaluation of covariance matrices
for reseau images. The main problem is the positive definiteness of the estima-
ted covariance matrices. The solution is based on a theorem by Pukelsheim and
Styan (1979) which gives a sufficient condition for the estimated variance co-
variance matrix in a variance-component model for being positive, requiring the
set of basis matrices to form a special Jordan algebra. The construction of such
algebras is discussed in detail and tries to take into account the real struc-
ture of the data.

2. Mathematical Model for Multi-Reseau Images

The successive exposure of a reseau during a flight mission can be interpreted
as a realization of a reqular net at different epoches. This makes the applica-
tion of the multivariate analysis feasible. It also allows a simultaneous treat-
ment of all images and the estimation of full covariance matrices, if the ad-
Jacent mathematica) model is chosen appropriately leading to a multivariate
Gauss-Markov model (GMM).

We assume that all reseau images are generated under the same conditions, i.e.
tail effects in the time series are aveoided by e.g. omitting the first images of
the film. As the calibration of the reseau only has influcence on the constant
part of the systematic, we assume that the calibration data are not known and
should be estimated. This leads to the following functional model for the

p images (cf. Fig. 1).

-h+vk:§§k+z for k=1, ..., p (2.1)



with the observed reseau coordinates 1., o(l,) = nx1l, the corresponding residuals
Vi» the design matrix A of order o(A) = nx3 to define the datum of each image
by a 3-parameter transformation and the mean vector é of order 0(2) = nxl of the

reseau coordinates.
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Fig. 1 : Model of multi-reseau images

If the vectors ]k’ik’gk are collected in the matrices

L=(1 Tyssadsly)

= _1 e )_k > _/_p

V= (il""’!k""’xp)
A A A

X:(il,.,.sik‘A..,ip),

we can rewrite eq. (2.1)

A A
L+v=aR+28 (2.2)

with the vector 2z (now generalized to a matrix) and the vector B, o(B) = px!,
consisting of 1's (B =1, also generalized to a matrix). An equivalence to
)

eqg. (2.2 1is

A
vecl + vecV = (I ® A) vecg + (B ®TI) vecZ | (2.3)

with the vec operator mapping the columns of a matrix into a vector and the

" "

Kronecker product ®

The corresponding stochastical model is

)

D(1

1) =C=02Q foFePs 1L, (2.2)

iy

and
C(_]_kslkl) = Gkkq g = Y‘kkl E s (2’3)

in which D and C represent the dispersion and the covariance onerator, resp., ci
is the variance of unit weight, C the covariance matrix, 0 the matrix of the

weight coefficients. The covariance between different epoches are assumed to have
the same structure as the dispersion matrix at one enoch; the Fygr are correspon-



ding correlations between the epochs. Eg. (2.5) makes the covariance of two ob-
servations ]ik and ]i'k' in different epoches only dependent on the covariance
between observation No. i and i' and the correlation between the epoch k and k':

COGgViver) = Thgr G50 = Opr * Q44

We can rewrite Eqs. (2.4) and (2.5) in

D(vecL) =R®@C=:@®0Q (2.6)

with the correlation matrix R = (r,,) and the covariance matrix Z= (o)

Remark:

This multivariate model is an extended version of the usual multivariate GMM for
homogeneous and complete observations.The term é gT contains common systematic
errors (cf. Buck, 1977) as used in photogrammetric block adjustment. The intro-
duction of a full covariance matrix C for the image coordinates instead of a unit
matrix is essential for the following analysis, but no real generalization of the

normal GMM.

The regular point pattern of a reseau suggests a further decomposition of the
dispersion matrix first leading to

c=|c (2.7)

ENK Eyy

If the covariance of two coordinates Xi5 and xi‘j‘ can be written as the product

of separate contributions of the corresponding indexes (i.e. coordinates) i, i',
j and j'

Cxg55%5141) = G?i"”?j' (2.8)
The dispersion matrix C,, becomes the form:
Ci %60 ® Loy
Similar decomposition of E«y and Eyy finally leads to
C=|C @, Sy @gﬁy = | S E:y s Sy
*
S8 Gyo8y Sk Sy |9x Sy
= Ex*'Ey , (2.9)

where "%" is the generalized Hadamard product.

If this special structure could be found in real data - and we have found it - ,

this would lead to a very much simplified generation of a full covariance matrix

and also to enormeous savings in computing time for the estimation process. Kee-

ping this in mind we want to discuss the existing procedures for estimating posi-
tive definite (p.d.) covarjance matrices.



35 Applied Methods of Multivariate Analysis

This chapter collects the methods applied for estimation, approximation and
evaluation of covariance matrices. It follows the steps of the calculation pro-
cedure which leads to the results presented in ch. 5. The analysis was based on
a covarijance matrix estimated in the multivariate model given above, in order to
separate the estimation and the approximation process (cf. 3.1). This is justi-
fied by the fact, that using the estimated covariance matrix of the first itera-
tion step for an improved estimation of the parameters leads only +to neglectable
changes of the covariance matrix in the second iteration step. The approximation
itself uses the method of covariance component estimation which can be very much
simplified if an estimated covariance matrix is given (ch. 3.2). The theorem of
Pukelsheim and Styan (1979%) gives sufficient conditions for the estimated cova-
riance matrix to be positive definite. This condition requires the basis matrices
to span a special Jordan algebra. Ch. 3.3 discusses the choice of different sets
of basis matrices, which can serve for an approximation of C with the structure
of €q9.(2.9). For this pilot study however, we approximated Exx
and extrapolated Exy' The necessary separation of C  and Ey is described in
ch. 3.5.. The results are compared with a principal component analysis (ch. 3.5)
and evaluated by different tests (ch. 3.6).

and Eyy separately

3.1 Estimation of the covariance matrix in a multivariate Gauss-Markov model

3.1.1 Estimation using true errors

The estimation of covariance matrix in a multivariate GMM is based on the resi-
duals which are correlated and in general give not full information about the
stochastic behavior of the observations Therefore we first discuss the simple
case, where there are no parameters to be estimated:

E(L) =0 , D(vecL) =R®C=:®Q . (311.1)

If R is given, we obtain

. Mgkt
L = —/—/—— with p=>n (311.2)
p
and if Q s given
. LTQtL
L = ——— with n>p . (311.3)
n

The estimated matrices are p.d. with probability 1, if their order is smaller
than the rank of the corresponding quadratic forms. Thus with a given set of ob-
servations L only one of both estimators can be used (except in the case p = n,
where there is no redundancy!). A simultaneous estimation of R and C or £ and Q
in general is not possible. If restrictions are imposed on one ar both matrices_
during the estimation process (e.g. using variance components), one is only able
to get information of R and C, which is statistically meaningful. This does of
course not mean that it is realistic in all cases.



3.1.2 Estimation using residuals

The estimation of the covariance matrices C or I in the generalized model eq.
(2.2) uses the residuals V. With the projection matrices

S R
D=L - AT AT AT CT with o(Dy)mnem, r(D)en-r(A)  (312.1)
and
T -1 -1 - .
Dy =1, -8 (B R B BT R with o(g)=pxp, r(Dg)=p-r(B) (312.2)
they can be written as
g
Vo= -D LDy (312.3)

(Proof cf.appendix A), with their covariance matrix

= T T
D(vecV) = Dy RDy; ®D, C Dy =R ©C, . (312.4)

Using the first moments of the quadratic form E(EI Bfl_gi.) of two residuals v,
and v,, in all epochs, we can estimate the elements of covariance matrix C , of
the residuals (R given)

T ,-1 -1 T -1 T
Evi R wg0) = tr(RT E(yquv7)) = tr(RT Dy R Dg (Cyy)i40)
_ =1 T
v {Evv)ii' tr(R ~ By R Bg)
= (Cy)sqr (P - 1) (312.5)
lTeading to
. YR L
Lo * ——;—:~I— with r(—vv) = n=u (312.6)
and similarly to (C given)
. vty I
Riv * B with r(R,) =p-1 . (312.7)

As in the simple case E(L) =0, a simultaneous estimation of Evv and Evv is not
possible. Moreover both matrices are singular. The rank deficiency of 1 and u
corresponds to the single mean vector Z and the u=3 unknown parameters for each

epoch. Thus no estimations for R and C are avajlable under this model.

Remark:
Eq. (312.7) converts to the standard equation §= !TE'f(n-u} if Z=0 and C=1.

Z is p.d. with probability one in this case.

As a simultaneous estimation of R and C is not possible we restrict our analysis
to the estimation of C. The correlation matrix R is assumed to be the identity
matrix, i.e. no correlation between the images are assumed.



3.1.3 Distribution of Evv

As the estimated covariance matrices are singular they are not Wishart distribu-
ted, The similarity of the estimation process to the standard case suggests the
introduction of a singular Wishart distribution which has no density function
but only a characteristic function.

Definition (singular Wishart distribution)

|eax =

The matrix is said to follow a singular Wishart distribution MW(m,E), o(Z) = p,
N
r(£) =r <p if there exists a matrix P that the transformed matrix Eg;ET follows

a regular Wishart distribution W(n, E_EBT) with r(RQBT) = o(E'EET) =

Remark :

We will not change the notation to distinguish between the singular and regular
distribution, as e.g. Searle (1971) does for the normal distribution. The results
on the Wishart distribution with regular z are also valid for singular © if the
rank of & is taken into account properly.

We now have the following

Theorem 1 : (Distribution of

)
v
AX+2B , DvecL)=1@® C(ofL)=nxp,ofA)=nxu, r(A) =

0(B) = pxd , r(B) =d, o(X) =uxp , o(Z) =nxd , o(C) = nxn, p > n). With the Teast squares
residuals (eq.312.3) the matrix

— Lﬁ)

Given the model L +V
0

>-:> i

C,y = __H.V il (313.1)

follows a Wishart distribution with n-u degrees of freedom

(n = u) LI — W(n-u, Coy)-
Proof : The projection matrix QA leads to the residuals V with respect to a
weighted centre of gravity. The alternative projection matrix EK
T 1 T
Dg=1-A(A E.A) (313.2)
with
. T
= blockdiag(0, P,) » P, =Py, r(Py) =0(Py) =u (313.3)

leads to the residuals

U= -opoLby = -BpLDy (3134
the Tast u of them beinghzeru. The corresponding covariance matrix é;; has the
same rank deficiency as C ., namely u. As the last u columns and rows of Cg; are
also zero, this can be interpreted as an adjustment with the last u observations
used as datum parameters. If they are deleted from the adjustment, the reduced
covariance matrix CVVde has full rank and is Wishart distributed. It can be
obtained by a transformation PC A ET, where P contains the first n-u rows of Dg-
g.e.d,



3.1.4 A positive definite covariance matrix for the observations

Given R = I, we are able to estimate ivv from eq. (312.6). But we want to have a
positive definite covariance matrix for the observations. Though it is easy to

modify a positive semidefinite (p.s.d.) matrix by adding p2l1 , we search

for a matrix i which is as close to Evv as possible. In general the transforma-
tion from 1, to v,

1

lk £ = EA lk = = E‘VV E J.k {314‘1)

is a similarity transformation according to Baarda (cf. v. Mierlo, 1978). The
matrix Dy in our case transforms the coordinates 1,, which are measured in an
arbitrary (a)-system, into the (m)-system of the centre of gravity, taking into
', as D, depends on C. If we denote the un-
known covariance matrix of the observations with ﬁ, one may require

account the unknown weight matrix C~

A - AT
Coy = D CDp . (314.2)

But this equation is fulfilled if

A A T A~
L=C,tA(RC

LayytaT (314.3)

as Dy = ﬁvv B i from eq. (314.3) is p.d. by construction. O0f course this is one

choice for g as the solution of (314.2) is not unique. Eq. (314.3) describes an
iterative procedure determining ﬁ. Also eq. (314.2) 1is only valid at the point of

convergency. A refined notation would designate EA being stochastic.

The iteration procedure for the estimation of the matrix C is summarized by the
following flow chart:

v = 0
E(‘-’) lﬂ
—= v = - (" L ")
T
fv) o LY
=V p-1
£ ﬁ\(,\‘,’) ‘A (ﬂT @(u)}-l &)-1 AT
v = v+1

We now simplify the structure of Evv and i using variance components.

3.2 Approximation of covariance matrices using variance components

The estimation of the full covariance matrix imposes no restriction onto Evv ar
g, except being p.s.d or p.d. respectively. In order to simplify the application
of a full covariance matrix we try to extract the structure of the covariance
matrix. This can be done in several ways which are discussed in ch. 4.



Here we restrict to the powerful tool of variance components. The functional model
for the approximation of § i

E- fey . (32.1)

The matrices EK are given, they impose restrictions onto the structure of i. The
factors tK are unknown. If we rewrite eq. (32.1)

vecC = Dt (32.2)

T

with D = (vec Vy ..., vec Eﬁ), t = (tl“"‘ ) the similarity of the variance com-

ponent model with the GMM 1 = A x s revealed.

The corresponding stochastical model uses the dispersion matrix of vec ﬁ which -
in case i is Wishart distributed - depends on the matrix of 4th moments

F=tet WA
(cf. Pukelsheim, Styan, 1979).
The leastsquares estimator t for t thus given by
- @iyt et (32-4)
results inan approximated matrix
k .Y
C= le to V|- (32.5)

This matrix is not necessarily positive definite., This reveals a great disadvan-
tage of the method if used without care. Moreover the individual values %K may

be not positive thus making an interpretation of the result very doubtful. However
the matrix C might be positive, though the individual EK are not.

The problem of choosing appropriate matrices V _ is similar to the problem of choo-
sing appropriate additional parameters, to cope with systematic errors in a GMM,
There are two lines of thought which can also be followed here:

a) The parameters (i.e. matrices V ) represent a physical error source, e.g.
a cylindrical distortion of the image. In this case the result of an esti-
mation process has to be checked whether the assumed parameter is realistic
or not.

b) The parameters or the matrices V, are just chosen to compensate unknown
effects by extending the mathematical model. In this case one must check
whether the mathematical model is really able to determine the parameters
in order to guarantee a reliable result. The parameters can be
chosen arbitrarily, e.g. in order to simplify the evaluation of the para-
meters.

The already mentioned impossibility to model all sources properly and the follo-
wing theorem support the second line of thought, where the matrices V., are selec-
ted without having certain physical effects in mind.



Theorem 2 : (non-negativity-condition, Pukelsheim, Styan, 1979)

Consider independent and identically normally distributed random R"-vectors z,
with common mean 0 and common dispersion matrix Z tk V¢ » where p >n. Assume

that the k decomposing matrices V¢ span a k-dimensional special Jordan algebra B,
Define G C M< to be the region of those values t of the dispersion parameter such
that ) t. V. is positive definite, and assume G $ 0. Then:

a) The maximum likelihood estimator for t e G is almost surely equal to the
uniform minimum variance unbiased estimator

D)"'D' vec €, (32.6)

>
—

where D: = [vec Vy,..., vec Vk} »and C =}z QL /p .
b) The estimated dispersion matrix C =] h:!K is nonnegative definite: in fact,

if the sample dispersion matrix C is positive definite, so is C.

{The explanation of a special Jordan algebra i1s given below.)

Remark :

- The theorem gives a sufficient condition for T to be positive definite. It
is not known, if it is also necessary (cf. Pukelsheim, 1980).

- The special structure of the set {!K} does not only guarantee the positive
definitness of C but also simplifies the estimation of t drastically, as
the fourth moments have not to be calculated.

- The theorem does not give the assertion for a given singular C, that the
approximated matrix C has the same rank. This restricts the application,
if one follows the statistical reasoning.

The vital assumption is , that the matrices V, span a special Jordan algebra
which we will discuss now.

3.3 Choice of basis matrices V.

Let Sym (n) be the set of all symmetric nxn matrices.

Definition 2 : (special Jordan algebra)

A subspace B of Sym (n) is a special Jordan algebra, iff it is closed under the
multiplication A OB:= —lz—(ﬂg + B A).
Example 1 :

n=2, Sym (n) contains all symmetric matrices of order 2x 2

1 0 1 1 a b
By = o 1111 consists of all matrices which have the form 5 oal

Obviously B1 is a special Jordan algebra, as for arbitrary a, b, c, d:

A - [a bJ’ 8 ={c d] follows %( AB+BA)e B;. The space can also be spanned by
- b a - d ¢

-1 0 -1 2 -1 0 0 1 .
h tri d or even b and . This shows that
the matrices [ 0 _1] an [ ) _J y [ o _1} [1 OJ



there is enough freedom in the choice of the basis matrices which span the alge-
bra and the basis matrices must not necessarliy be positive semidefinite.

In order to be able to construct further algebras one needs criteria to check the
closedness. This can be done by the original formulation of the conditions by
Seely (1971) who used a different terminology, namely the notion of quadratic
subspaces.

Definition 3 : (quadratic subspace, Seely, 1971)

A subspace B of Sym(n) is called a quadratic subspace iff AZe B whenever A e B,

It can easily be proved that the algebra By forms a quadratic subspace.
Seely gives several conditions for B to be a quadratic subspace (or a special

Jordan algebra).

Lemma 1 : (conditions for B to be a quadratic subspace, Seely, 1971)

Let B be a subspace of Sym(n) and let B0 be an arbitrary spanning set for B then
the following conditions are equivalent:

a) AeB :'——:-bﬂzﬁB

b) A, B e B> (A+BfeB

¢) A B e B—mAB+BA € B and
d) AeB  ==AeB for each finite integer k> 1.
Remark :

The third condition shows the connection with the special Jordan algebra. It is
at the same time the easiest way to check whether a set of matrices spans a spe-
cial Jordan algebra.

The following lemma is needed for the construction of algebras containing Kron-
ecker products of matrices, which we want to apply for the approximation of Exx
etc.

Lemma 2 : (commutative subspace, lemma 6 in Seely, 1971)

A necessary and sufficient condition for a subspace B to be acommutative quadratic
subspace is the existence of a basis V,, V,, ..., ¥, for B such that each V, is
idempotent and such that Ei V. =0 for i % j. Moreover, apart from the indexing

J
such a basis for a commutative quadratic subspace is unique.

Remark :
- Commutativity of B implies AB =8 € B whenever A, Be B

A
dot with (I,-d,)-d, = 0. (J, cf. example 4)

= By is commutative as By = {I,-J,,
As the reader will not be familiar with the possibilities, these lemmas give for

the construction of special Jordan algebras, we will give several examples. To
simplify the notion we will only refer to B as a Jordan algebra.



Example 2 : (k <n, commutative)

Let ¢, i=1, ..., k<n be k mutually orthogonal and normalized vectors. Then

span a k-dimensional commutative Jordan algebra. If k <n all matrices A e E, are
singular. In order to be able to approximate a regular covariance matrix B, must
be complemented by at Teast one regqular matrix, e.g. a identity matrix (cf.
example 4 which is a special case of 82u I). If k=n, the identity matrix is

T

n
element of B as ) c;cy=1.
= S

Example 3 : (k =5, commutative)

In order to approximate a 5x5 covarijance matrix, e.qg. gx (cf. eq. 2.9) we chose

XX

the special vectors c; :

c, = (1|, ¢,=|=2], e = | 2], c, = |-1], ce = [-1] ,
=0 2l ]t gt |k

1 0 -2 0 -6

1 1 -1 -2 4

1 2 2 1 -1

leading to 83. They correspond to the first 5 orthogonal polynomials on the set
of points (-2, -1, 0, 1, 2) representing shift, scale and several deflections.

Example 4 : (k = 2, commutative)
= 1 T_1 . T
Let J, =511 =24 with 1" = (1, ..., 1). Then
B4 = {_I_n‘ gn}

is an extension of By and also commutative. This algebra may be used for repeated
measurements, though the correlated mean in this case is independent on the cor-

relation coefficient, thus leading to a singular normal equation system (eq. 32.4),
if based solely on repeated observations.

Example 5 : (k =5, n= n1+n2)

Let be all matrices of order nxn be partitioned according to ni+h, = n. With the

matrices

Yy = | (U Vo = |0 0 |, Y3 =[] of,
1 1
0 0 0 I 0 0
- — n2
3 2

vy =0 0|, Vg = 3.
0 J
I

BS = {!i | + = 1,...5} spans a non commutative Jordan algebra. It can be used
for covariance matrices of the following form, being extensions of B, towards
two correlated groups of observations:



a b ..., b C eininn C

- Y b C  vvennn c
b b ........ a C v c
C C vivninnnn c d e
C C vevinnnn c | e e
C C i c|e e d

Example 6 : (k=9,n= n1+n2+1)

A further partitioning into 9 submatrices, one of them being a single element,

leads to the following basis (ny > 2, n, > 2) of a non commutative Jordan algebra:
E]_: lnlg _QJ !2: 9. 9 9» !3= 9 9 9’
0 0 0 0 I 0 0 0 0
—_ —_ — — - — — _— —
2
0 0 0 o o o0 o 0 1
Y= 3 0 0] Y5 o= j0 0 0 Y= 0 0 ;
0 0 0 0 0 0 J
- = = = -n, = = g,
0 0 0 0 0 o
Yy = -jn wm, 900 Yy o= __%T E 0 1| s Yy o= L-]n .+l
M2 T R s M
0 0 0 0 0
10 1

The smallest values for

ny and n, together with a renumbering gives the following

Jordan algebra Bg which is used for the analysis of a 5x5 matrix. The basis matri-
ces are:
S I S S DN L R N
..... | .1
..... .1 e e
L c 1 - | [P
v B Y I V7 I T, v. = [11.11]
4 A S1.1 -6 11.11
N S1.1. 11.11
B o1 - - - .. ] 11.11]
v [ R N I P T, Vg = [11 |
7 DR N 111 ? 11, ..
1.1.1 111 . .
RN 111 11
1. 1.1 L . i 1 1]




They impose the restriction onto § to be also symmetric to the co-diagonal , i.e.
they allow an approximation which yields the structure:

gt = [\ /T
N s
\a b ¢ d e/
b f g h d
c g i g ¢
d h g f b
/e d ¢ b a_
~
// \J

This is useful for a symmetric pattern of observation as e.g. reseau coordinates
are. This Jordan algebra is the first example in which B has a dimension
n< k<n(n+l)/2 !

Example 7 : (Kronecker product)

The following Jordan algebra, based on an idea of Pukelsheim (1981), is not
commutative

By = {A;® ﬂj ®...eA | A;€eByp, A; € Bys A e B By, By, B are
special Jordan algebras & Sym(1), Sym(m), Sym(n) resp., all must

be commutative except one}

Proof : using Lemma lc (see appendix B)

This seemingly complicated Jordan algebra is used for the approximation of the
25 x 25 matrix gixagix in eq. (2.9), see ch. 5.2.

If E:xe By and Eixe BE the dimension of By is 5 x 9 =45, thus being much lar-
ger than 25, the rank of Cox - This allows a closer approximation than the com-
bination Q:x and ;_ix € B3. Nevertheless, the reduction from 25 x 26 /2 = 325 elements
is still large enough. A further reduction to 6 parameters will be discussed

in the next chapter.

Example 8 : (Hadamard product)

The approximation of the full covariance matrix eq. (2.9) can be based an the
following Jordan algebra

T T T : £
R A A By S & S Dyf| Aye Bye o Dy being 4 sets o
By T T|* T T mutually orthogonal normalized
B, A, B. B D, ¢, DD
S = - matrices

Setting B, =-C, =¢'_'r1;l and A, =D, =/1—r0(2 1 0 -1 —E}T yields a base matrix repre-
ar

iation in a 5x5 reseau grid, whereas ﬁi= 7%34 1 01 4)T.



8. - T T

1 1

- D = — - _2
=3 /10 Y /RT( 210~ )
a variation of longitudinal tilt (rotation about the y-axis).

(2 1 0-1-2), 9k=%(11111) yields

We have not applied this Jordan algebra for variance component estimation. But we
have used the structure to extrapolate Exy from an approximation of € and gy
after extraction of the matrices A,, By, C
The following example only shows that the concept of variance components with a
special Jordan algebra can be linked with the estimation of a covariance function
of a discrete time series.

K and 21, which is described in ch. 3.4.3..

Example 9 : (zyclical Toeplitz matrices)

The Jordan algebra

1 for |k-1] =i or |k-1| = n+l-i

By = <V =(vi)= | 1=0,....[n/2
9 - k1 0 otherwise [ )

[n/2] = smallest integer > n/2

consists of all zyclical matrices with Toeplitz structure. It is not commutative.
However the normal equation matrix (eq. 32.4, F = 1) is QTAQ =2n1. The estima-
tion is simply an averaging over all covariances with identical difference of indi-

ces: (ET VeC§)1~ =k21 €1+ The fact, that B

is a special Jordan algebra
=i
or|k-1Ln+1-1

9

proves the positivity of the estimated covariance function i = (tys ooy th/ﬂ ) of
a discrete time series if periodicity is assumed.

Counterexample : (length dependent variance of distances)

The set

B = {I, diag(s%) | not all s; identical}

is no special Jordan algebra, as the second matrix is not idempotent.

This might be an explanation for the existence of negative variance components in
this special case. The conclusion can be
- that a length dependent variance is not possible without correlation between

distances. In this case theory would unveil a to much simplified mathemati-

cal model, v or
- that the condition, the set of base matrices spanning a special Jordan alge-

bra, is not a necessary one.

The examples show a great variety of applicable basis sets for variance compo-
nents. We are now ready to analyse the estimation process itself and check wheather

it is possible to reach the desired structure of the estimated covariance matrix
from eq. (2.9).
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3.4 Separation of approximated covariance matrices

The aim is to use the special Jordan algebra By for an approximation of the sub-
matrices Exx and ny, separate them into Kronecker products and then extrapolate
Exy according to the structure of Bg, if possible.

3.4.1 Variance components with basis By

The model for the variance component estimation is

A

Cox = )y i !ij ) (341.1)
1]
with
= Y X Y
!ij = Ve !j . ¥V, eB !j e By (341.2)

The specification of B, and By is irrelevant in this context. ny is treated simi-
Tarly. If we introduce the matrix

T = (tij), (341.3)

the least squares solution for T is:

A - -
i = vecl = (QT D) ! QT veecC = § 1 vecQ (341.4)

with § = ET_Q and vecQ = QT veq@ . As the matrices !ij have the special structure
eq. (314.2) the solution can be rewritten

-1, -1
= 50088 (341.5)

[—>

with S = (tr(V] ¥,)) and s, = (tr(¥ ¥W)). (The proof uses tr(A®B) = trA - trB).

Thus the special structure of the basis matrices leads to a simplified normal
equation system, reducing core requirement and computing time.

A
3.4.2 Approximation of T

The approximated matrix

- - A X A
ty - ;j ty5 (o ¥) (342.1)

A
does not have the desired structure Ez(e Eix' Only if T has rank 1, i.e. being
separable into

T = ab, (342.2)

with a =(a1) and b =(b1L Exx can be written as a Kronecker product

¢ = X Yy - X Y
S = L2y oYy = Tay Vel iy (342.3)
J 1 J
A
The rank of T can be obtained by a singular value decomposition (SVD) (cf. Rao,
1973, p. 42)

A r T "
T = § x;a;b; R r=r(), (342.4)



where the a, and the b. are sets of mutually orthogonal normalized vectors.

A

Generally T will - at least numerically - have full rank. But if Ay > Ay >en> )

T can be approximated using the largest eigenvalue and the corresponding eigen-
vectors a = a; viy and b = b; Vixy leading to T = a ET.

r

This step, of course, disturbs the estimation process fundamentally, so that after
the approximation of i the positive definiteness of the covariance matrix can
not guaranteed any more:

X e - X W
Exx - Exx ® Exx ; a3 !i ® § bJ !J (342.5)

It has to be checked separateley.

If one of the two components é;x and ézx is not p. d. one might use only the posi-
tive parts, which can be obtained after a SVD yielding e. g.

b S T
Cox = ;.Ei.ﬁi A (342.6)
by restricting the sum to the positive eigenvalues or even only to the largest
one:
~X T
C = Y U ous L, (342.7)
=XX Ai>0 =i =i 7

The resulting matrix mow is p. s. d.

3.4.3 Extrapolation of gxy

Let us assume that the separation of Exx and Eyy has led to an acceptable approxi-
mation, then we are able to extrapolate Ex using the structure of Bg. To do so
we use the positive parts of e. g. Ex and Qix leading to a decomposition

XX
X ‘ T _ T
Ai>0
and
XL T _ T
i
With the matrices U and V the matrix é:y becomes the form
X T
Gy = Uy

E{y is approximated similarily. Thus the approximation ef the matrix § is
complete.

3.5 Principal component analysis

The analytical simplification of the structure of ﬁ, as described in the Tast
chapter can be cicumvented by a principal component analysis, &. e. a SVD of Q.
This is a one step procedure, where standard programs are available. The disad-

vantage is the interpretation of the components, which has to be done by visual
inspection.

The SVD of €



T

C = ErE = 12)‘1‘31‘31 = ;L-L (35.1)
leads to vectors ii’ which are mutually orthogonal. Each ii can be interpreted

as a variation of the coordinates lj around their mean value with a standard de-
viation of fij' A graph of the ii admits an evaluation of the component and might
give insight into physical effects.

On the other hand, as tr(ﬁ) = in,ﬁ can be approximated resticting the sum eq.
(35.1) to the k largest eigenvalues or to those for which the sum is greater than

a certain percentage of tr(é):
k
_ T
=L heg (35.2)

[

This matrix again is singular with r(g) = k, thus having the same disadvantages
as C consisting of the submatrices Qix etc.(eq. (342.7)).

3.6 Evaluation of the approximation

A statistical test for the variance components t,. (eq. (32.4)) is available, if
a commuting special Jordan algebra (ch. 3.3) is used and the basis matrices V,
are mutually orthogonal idempotent matrices. If r(VK) = 1, then

te * x2 o2, with 62 = tr (C V).

In all ether cases the similarity of two covariance matrices C and T, C being an

approximation of C, can at least be checked using the spectrum {A;} of cct,

resulting from the general eigenvalue problem

T - xcl = 0. (36.1)

The following three criteria use the eigenvalues of (36.1)

3.6.1 Quotient criterion

The quotient

k = -MaX (A . = min x;) (361.1)
min min A1>0 !
is a measure for the quality of the approximation, if C = C, the quotient is 1. The

Raleigh-Quotient T
X

x Tx
Xx = (361.2)
X Cx
is bounded, lying in the range between Apin and L— It can be interpreted as the

quotient of two weight coefficients, the factor vk thus gives the maximum devia-
tion between the standard deviations calculated with T and C resp., e. g. k = 100
indicates that the standard deviations of arbitrary functions 5Tl of the coor-
dinates calculated with T vary 10 times more than if they were calculated with C.
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This criterion only uses the extreme values of the spectrum, whereas the follow-
ing criteria use all eigenvalues and adopt the matrix C to be Wishart distribu-
ted. The tests are generalized to singular Wishart distributions, which can be
proved by a proper S-transformation.

3.6.2 Test on the equality of C and T

If the nxn matrix C, r(T) = r, is Wishart distributed, pC ~ W(p,C), the test on
C = C uses the test statistic

Tp o= p(L (nag+g)-r) (362.1)
xito

(cf. Koch, 1980, p.138), which for p»>~ follows a xz(r(r+1)/2)—distribution.

3.6.3 The sphericity test

If the nxn matrix T is Wishart distributed (cf. 3.6.2), the test on T = o2 C
with Gg unknown uses the test statistic

T, = 1 x / (J a0

2 7 o N ) (363.1)
(cf. Giri, 1977),with the approximation

PL-(p-1) o log Ty < 2) = P(x% < 2), (363.2)

with p = 1 - (2r2+r+2)/(6r(p-1)) and f = r(r+l1)/2 + 1 for large r.

4. Comparison with other Methods

4.1 Methods for the approximation of covariance matrices

There exist several other methods for the approximation or analysis of covariance
matrices. The properties of the most important ones are collected in table 1 in
sequence of increasing strength of the assumptions, i. e. of decreasing flekibili-

ty.

Table 1 Methods for the approximation of a nxn covariance matrix C

Method Given fFree Parameters Model (k=1,...,k) Conditions/
Information | Abbreviations
. P v, T T ~
Factor Analysis - e Ao diss k | C = d1ag(d_.r1.)+ég'<e_'< A e 8.6
Principal Component - e, A,k C=Jee X gT_e_ =6,
Analysis -« K - LK K K ~K KK
Variance Component v t, k E =)t V -
Estimation - K - Z k=
. - T .

Analysis of Cis o2, t ., k C=0?{(c;.)+3Y gg.t .} | special struct. of (t )
Covariance Matrices i S 0% k! - ° H m,x'—K_K' k! hex!

. . < * % s .
Fourier Analysis fe k €= sz‘fK et F=(/m L() = Fouriermatrix

= exp(-jik2n/n), j*= -1




Variance component estimation reveals to be a compromise between the most flexi-
ble method of factor analysis, which can be interpreted as a generalization of
variance components, and the unflexible method of Fourier analysis, which uses a
special set of basis matrices, namely {V.} = {f f¥} but forms a link to variance
functions (cf. Ellenbeck, 1976; Schuh, 1981). Factor analysis, being numerically
involving, has no unique solution, the conditions inforcing a unique solution
making the interpretation difficult (cf. Press, 1972). These disadvantages are
avoided by the principle component analysis; but this is purchased with an appro-
ximated matrix which always is singular, though non negative, and whose rank may
be data dependent. Without a priori information factor and principle component
analysis may give a good starting point, being a disadvantage if one searches
certain structures. The only opponent to variance component estimation is Ebner's
theory for the analysis of covariance matrices (1975), which has certain tempting
properties, variance components do not have.

4,2 On Ebner's theory for the analysis of covariance matrices

We adapt Ebner's notation of (1975). The idea of his theory is to check whether

the hypothesis :
-

=C+6 (G -1

R T

0

[

T6) "6

holds true. C describes the assumed covariance matrix of the coordinates, G the
effect of the filter parameters, i.e. the systematic effects, and T weights these
effects and is unknown. The column vectors g; of G correspond to the vectors c.
defining 11 = EigiT‘ In order to check the choice of C and G separately, Ebner
proposes to use two criteria. The corresponding tests are given below, modifying
the criteria of Ebner.

The tests are based on two alternative hypotheses. The first one serves for
checking the choice of C, assuming the systematic effects are contained in G:
- T 1 .7
s €= ¢ G
As the significance of the parameters 6 is not known, they are eliminated by a

S-transformation using P, which contains the first n-u rows of the S-matrix

+G6 (6 T6)

bz =1-¢6 (QT E. G)'1 QT E.(with E_from eq. 313.3, u = number of filter parame-
ters = r(G)). If § is supposed to be Wishart distributed with p degrees of free-
dom, P & P'- W(p,P C PT) under How Thus the

Criterion I+ P gT =P C BT

can be checked with the test given in ch. 3.6.2.

If Ho is accepted, the second test compares HO with

Ho: C = C

2:
to find out whether the filterparameters are significant. Exchanging the rdle of

Ho and H2

. ; . T _ T
Criterion II: ﬂG g Hg = Hg € Hg s
with 'G = (¢' [ G)- 6’ £_£ can be checked by the same test, as Hg, 4 ﬂg ~ W(p,

—G C H ) under H2’ wh1ch plays the rdle of the null hypothesis. If criterion II

C

is not fu1f111ed, the filter parameters are significant.
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If the null-hypothesis is generalized to H, : é = agg + g(gTigg)'lgT the first
criterion can be checked with the sphericity test of ch. 3.6.3.

Ebner's method has two advantages:

it courses no difficulties with the positive definiteness of the matrices and
it solves the problem of defining an appropriate coordinate system, as cri-
terion I is simply a S-transformation which may include the datum parameters,

Though one is forced to assume a covariance matrix, which is not changed - only
checked - by the analysis, this theory is worth to be investigated further.

5. Examples

The following examples show an application of the theory of ch. 3.. The data con-
sist of p = 76 successive images of a film of the OEEPE Oberschwaben test (Acker-
mann, 1973). The estimation of the covariance matrix and its principal component
analysis have been published by Reustlen (1980). His results are compared with
those of the variance component estimation showing a high agreement which can be
explained by the predominant influence of the varying scale factor.

A
5.1 Approximation of a 5x5 submatrix of (

We begin with an approximation of a small submatrix to show the influence of dif-
ferent Jordan algebras and a preceding S-transformation onto the estimation pro-

cess. Fig. 2 shows the covariance matrix of the x-coordinates of the 5 points in
the first row.

[43.875 19.193 -4.205 -19.149 -36.967]
13.909 1.076 -7.406 -17.698
9.470 5.138 3.104

16.610 20.599 (51.1)

_symmetrica1 46.851}

Fig. 2 Estimated Covariance Matrix of Image Coordinates
(Submatrix of Q)
Three types of spanning sets are used as basis matrices

a.) the set B(9), consisting of the 9 matrices given in example 6 (ch. 3.3)

b.) the set B(5), consisting of the 5 matrices,using the vectors <5 from
example 3: B(5) = {£i£§|i=1,...5}.

c.) the set B(4), consisting of only 4 matrices, also using the vectors <4 from
example 3: B(4) = {51£§|i=1,...4}. This set, containing matrices with rank
defekt d>1, is intended to show an application of the extended theorem 2
in Pukelsheim, Styan (1979), which enables us to approximate covariance
matrices having a given rank deficiency.

The approximation of the matrix (51.1) with the set B(9) resulted in the
matrix given in fig. 3
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(45.363 19.896 -0.550 -18.824 -36.967
15.260 3.107 -7.406 -18.824

9.470 3.107 -0.550 (51.2)
15.260 19.896
symmetrical 45.36%

Fig. 3 Approximation of Covariance Matrix from fig. 2
using eq. (342.1)

The variance components  are §T=(44.01,8.94,-14.91,10.37,-20.45,-3.01,0.03,38.32)
which contain negative values. Nevertheless, the matrix (51.2) is p.d. and has the
desired structure, being symmetrical also with respect to the co-diagonal.
Variance component estimation using B(9) is just averaging the corresponding co-
variances, e.g. 45.363=(43.875+46.851)/2. Obviously the approximation is extreme-
1y good, which is proved by the quotient criterion k = 1.54,

In order to eliminate a possibly hidden datum parameter we transform the matrix
(51.1) with a S-transformation using the S-matrix S = I - ES e B(9), which eli-
minates a common shift. The quality of the approximation with the 3 sets are
found in table 2.

set k Table 2

B(9) | 1.44 Quality of Approximation of 5x5 matrix
B(5) | 1.88 ) ,

B(4) 1.88 after a S-transformation

Remark :
- the S-transformation does not influence the quality of the approximation
very much, -
- the structure of the matrix allows a good approximation with already 5
basis matrices,
- as the rank of the matrix after the transformation is only 4, ommitting
the Tast basis matrix (i.e. the unit matrix) has no influence on the appro-
ximation.
The reason for this resu]t is the predominant effect of the scale variation, re-
presented by ! = czc; , c2 = (210 -1 -2).

. . A Iy
5.2 Approximation of Exx and ny

The 25x25 submatrices éxx and éyy were approximated without preceeding S-transfor-
amtion, as this would have complicated the construction of the spanning set. Thus
no variance component estimation in the strict sense is applied, because the
matrices are not Wishart distributed.

Different Jordan algebras were applied according to eq. (34.2). The basic sets
Bx and By for V and Vy and the corresponding quot1ents k are given in table 3.
The quality of the approx1mat1on is moderate for C and differs significantly
from the high quality of Eyy. On the other hand the refinement of the Jordan
algebra By leads Eo a significantly higher improvement (lines 1 and 3) of the
approximation of C . than the refinement of B, {(lines 1 and 2). This seems to

suggest, that éxx has a more complicated structure than §yy and is more influ-



B B k=X _ /A,
X y max’ “min | v Table 3
Cyx Eyy
uality of approximation of C,_ and C
1| (5)|(5)| 25.1 8.83 | 25 ? e PP XX Y
2 | (9)](5) | 28.1 g.58 | 45 | using different sets for a variance
3 1(5)|(9) ] 19.8 8.88 | 45 | component estimation and number v of
4 1(9)](9)| 18.4 8.97 | 81 | free parameters.

enced by the y-coordinate of a point than by the x-coordinate. A physical expla-
nation could be the transport of the film in x-direction, which might lead to an
unhomogeneous deformation being unsymmetric in y-direction. This would also ex-
plain the good approximation of gyy.
The Tast line shows that a good approximation can be achieved though no Jordan
algebra is used, as B(9) is not commutative. The value k = 8.97 for the approxi-
mation of Eyy is the largest in that column. This can be explaind by the difference
between the object function of the approximation (least squares) and of the eva-
luation function (quotient of eigenvalues).

The evaluation is supplemented by two statistical tests. It is assumed that EXX
and C are regular Wishart distributed matrices and the approximations obtained
with Bx = B(5) and By = B(9) (table 3, line 3) are given matrices. Though this
assumption is not valid the tests give valuable information about the approxi-
mation. The first test agains HO: éxx = Exx (eq. 362.1) leads to a rejection of
Ho’ whereas the second test against Ho: Qxx = g2 Exx (&g unknown) does not suggest
a rejection (cf. table 4). The same holds true ?or the approximation of C . .

The results indicate that under a further (moderate) relaxation of the hypotheses
the approximation would also be accepted

oA l) .A_Z
H: € =¢ H: C=o2C
A _ 2 _
Cou | 266 > Fo 00p = 1.26(230 < xF gop = 251
A
- 2 =
Eyy 1.34 > FO.OOI = 1,26(137 < X3.001 = 251

Table 4 Tests of Quality

1)
cf. Koch, 1980, p. 138.

5.3 Separation of Exx and Eyy

The separation of T , ~and Eyy into Kronecker products i based on the SVD of i.
The eigenvalues of T are given in table 5.

Tox 833.736 0.548 | 0.135 | 0.005 | 0.0004

A

Iyy 561.127 9.322 | 0.313|0.022 | 0.0002

Table 5 Eigenvalues of the Variance Components ixx and iy

Yy
of the Approximated Matrices Exx and Eyy

The spectra show a significance dominance of the largest eigenvalues in both ca-
ses. The relative small 2nd eigenvalue of Ixx allows a separation of Exx =
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iix ® éix which is p.d. (eq. 342.5). However the separation of éyy leads to an
indefinite matrix Ex . Obviously the 2nd eigenvalue of iyy contains information
which is not neglectable. However the interpretaion of the corresponding variance

matrix was not possible.

5.4 Composition of C

The further separation of éxx and éyy therefore uses only the components of éix’

é{x’ é;y and éiy belonging to the largest eigenvalues of these matrices. The ei-
genvectors are given in table 6.

y -y -y ty
L S Eyy Eyy

L b < d Table 6
2,318 2.650 4.392 1.418 Eigenvalues a, b, c and d of the

2.318 1.333 2.200 1.471
2.318 0.000 0.000 1.385
2,318 | -1.333 | -2.200 1.471
2.318 | -2.650 | -4.392 1.418

submatrices generating C

an & WnN =

They reveal a simple structure, which was already given in example 8 (ch. 3.3).
If one assumes that Ex can be derived by using this structure, we obtain the

matrix
} [ET o ET’ b7 o QTJ

y

T ® T T
T T

—- -
1]

®
®

la o
jla o
o |
la [o

®
®

lo [
|lo o

¢ =

(o |
[ o
o |o
lo |o

Because of symmetry, it only depends on 3x4=12 different elements to be compared
with the 1275 elements of the whole matrix. é describes a variation of the scale
of a 25 point grid. Introducind independent equally weighted measuring errors with
yariance c§= (me)z, which has been estimated from double meésurements, enables
an evaluation of g + ai_{, asr(§)= 1 making a comparison of C and § not meaning-
ful. The quality of the approximation seems to be not acceptable, as k = 309. But
the principle component analysis gives no better results.

/X,

5.5 Principal component analysis of 6 +

30

The principal component analysis of ﬁ yields

the broad spectrum shown in fig. 4. The first
eigenvalue is dominant. On the other side

there are also very small eigenvalues. The

first two components are sketched in fig. § 20
and 6 (next page)., They show the already
mentioned scale variation and a variation

of the lTongitudinal tilt ¢ (rotation around

the y-axis) including a cylindrical defor-

mation. Both effects can be explained by .
the construction of either the camera or
the copy-machine. 51 -,
Fig. 4  Spectrum of C, /io = 31, 21 Ttteeen
/Nyig = 0.25 M "— : : S
15 10 20 30 40 50
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‘\y
1 ym  —
4y
X X
P
-
Fig. 5 1st Component of § Fig. 6 2nd Component of §

A comparison of this scale variation with that obtained by variance components
reveals only a small difference of both vectors. The test of the lst component of
C + og I against g yields k = 301 (instead of 309). The vectors do not differ
more than 7 % in length and direction. This is astonishing the more,as the appro-
ximation process using variance components seemed to loose a lot of information
compared with the principal component analysis, and shows the power of the sepa-
ration method. However, the ability to interprete also the second component (cf.
fig. 6), which was not possible using variance components, demonstrates the higher
flexibility to reveal hidden effects.

6. Discussion

The application of mulivariate analysis for the estimation of covariance matrices
of photogrammetric image coordinates required an adaption of the mathematical
tools. The concept of the special Jordan algebra, guaranteeing the positive defi-
niteness of the estimated covariance matrix, turned out to be an adequate method
for this type of investigation. The results of the variance component estimation
and the principal component analysis show a great coincidence. Thus the variance
component estimation process in connection with the Jordan algebras is able to
detect structures even if they are as complex as in this case.

The investigation, however, leaves some questions open:

1. The results have to be confirmed by further research using different data,
different stochastical models, i. e. different sets of basis matrices and possi-
bly different algorithms. This includes the estimation of the correlation matrix
R between the images and the influence of R onto the estimation of C.

2. The estimation of Evv takes carf of the special definition of the coordinate
system. A direct approximation of gvv would have been theoretically more satisfy-
ing, but was not tried as the 2nd.theorem of Pukelsheim and Styan (1979, not
cited) does not guarantee the approximated matrix having the same null space as
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Evv“An approximation method should be found which is able to handle singular
matrices without the detour of approximating a substitute matrix with different
rank. Perhaps this problem can be circumvented either by using the S-transforma-
tion with QR in the proof of theorem 1 or by Ebner's method, which simultaneously
offers a statistical- test.

3. The separation of a covariance matrix into Kronecker products leads to the
serious problem of decomposing the matrix i, which here was tried to solve by a
singular value decomposition . This {5 the sore spot in the decomposition of §, as
the original guarantee for C to be p.d. is lost. There might be, however,
possibilities to approximate i by a matrix of rank 1, which keeps the guarantee

of positive definiteness for the corresponding approximation é of E.

4. The assumption in theorem 2, that the basis matrices should span a special
Jordan algebra, is only a necessary one. The basis matrices of the length depen-
dent variance of distances not meeting this condition Teave doubts about the
necessity af the supposed condition.

5. The link of variance component estimation with the estimation of covariance
functions needs further research. Only-in the case of Fourier analysis an inter-
polation method for covariances exists. In this context special focus should be

laid onto the approximation of singular covariance matrices by using covariance
functions.

6. The methods discussed in this paper also could be used to estimate and appro-
ximate covariance matrices of geodetic observations. An examplie is the répeated
measurement of distances or hight differences to points which are spread over the
horizon in various distances. In this cése no net adjustment is necessary and the

influence of direction and distance onto the variance covariance matrix can be
separated.
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Appendix A: Proof of V = 9A<£ QB
Given: E(L) =AX+ 1 B » D
Proof: 1. Substitution:W =V -

GMM given: L + W= A X, D(vecL) =R e C
N Yo on 1 - T
Least squ§res (LS) so]ut}on W=-DyL, D(veck) =R®D, CDy
2. GMM given: W -V =-YB', D(vec) :=R®C,
LS solution: ¢ e
vecV = veck - (B @ 1) vec1= /’
- %n pr) - (%?EE(JR-? é;(R @eccwé (B ®NI)) (R @ Cy, ) )veck
= veck - vec
- vecH - vec(c ¢t W B (8] R} B-)—W?VR )
——
=W
= (el -8 @ R'B)T B R e 1) vec
= (Dg © 1) vech = W D]
- T
3. With W = - D, L follows V Da L_QB g.e.d.

Appendix B: Proof of
B := (ﬁieéje...ei\k)o(ﬁi.sé\j.o...eﬂk.)eB7

Rearranging yields
B = @ie%e.neéw(&.e%.en.eAJ

+ (A @AJ.. ®...0A,) (A @AJ. ®...0A)

= (ﬁi 51., @Aj AJ.. ® ... eﬁkﬁk’) + (5_1.. 5_1. eﬁj. Aj ® ... eﬂk. Ak)
Now assume only B1 to be non commutative, then

B (51. 51., ®A. Aj' ® ... eﬂk Ak.) + (A., Ai @Aj Aj' ® ... Qﬂkﬁk')

J
= (5_1. Ai'+ﬂi'ﬂi)eﬂj Aj'e“'@Ak-k‘ q.e.d.
v e \.ﬂ-—J g_Y__J
e B eB e B

1 m n
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