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W. Forstner

1
RELIABILITY AND DISCERNABILITY OF EXTENDED GAUSS-MARKOY MODELS

Summary

The reliability of estimated parameters can be described by the sensitivity of
detecting errors in the mathematical model and by the influence of nondetectable
model errors on the parameters. The reliability theory of Baarda is extended in
two directions: a) the alternative hypothesis may depend on a parameter vector.
This leads to reliability measures which depend on the direction of the parameter
vector. b) The ability to distinguish two alternative hypothesis can be described
by the probability of choosing a wrong alternative. This error of III. type at
the same time can serve for an evaluation of a nonstochastic correlation coeffi-
cient.

1. Introduction

1.1 Recently the methods of evaluating mathematical models in geodesy and photo-
grammetry by means of statistical testing procedures have been developed intensi-
vely. The evaluation of the adjustment results is meant to be objectified as

much as possible in order to enable automatic preparation of decisions.

The first step is done by the mathematical formulation of problems occuring 1in
practice and in science, i. e. hypothesis are stated and optimal tests are kept
ready to check them. The sensitivity of the tests to distinguish the nullhypo-
thesis, the model on which the evaluation is based, from the different alterna-
tive hypothesis then only depends on the design of the experiment, i. e. the de-
sign matrix and the assumed stochastical properties of the observations, and it
can therefore serve for an optimization to reach the highest possible separabi-
Tity of the null- and the alternative hypothesis.

Finally the quality of the estimated parameters mainly depends on the effect of
non-detected model errors on the result.

1.2 Baarda's fundamental studies on parameter estimation and reliability deal
with this problem area. The concept of his theory is essentially based on two
important ideas:

1} The alternative hypothesis is parameterized. Thus there is in fact a set of
alternatives depending on one parameter. This idea gives way to far-reaching
generalizations of the theory and leads to the second idea.

2) He does not inquire the probability by which the nullhypothesis and the
alternative hypothesis can be separated, i. e, the power of the test as this
is done in statistics: but he presets a required lower bound of the power of
the test and then derives a (in general) lower bound for the parameter. Thus
a statement on the least distance of the null- and the alternative hypothe-
sis, which can just be proved, is obtained.

1} English version of the German manuscript, extended by section 3.6
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Motivation for the development of this theory was the gross error detection prob-
lem together with the definition of the controllability of observations and the
determination of the effects of nondetectable gross errors onto the coordinates
of geodetic nets. The formulation of the theory was kept general enough to treat
also systematic errors in the observations.

1.3 0On the other hand the theory contains several serious restrictions:

a) The observations are assumed to be normally distributed. Thus models for de-
viations from the normal distribution cannot be treated . In practical applica-
tion this restriction does not lead to serious difficulties, except in cases
e. g. where an extremely asymetric distribution is to be expected.

b) The covariance matrix of the observations is assumed to be known. This con-
cerns the structure of the matrix, i. e. the weight coefficients as well as
the variance factor Gé' While errors in the stochastical model hardly in-
fluence the estimation of the parameters they have a direct influence on all
measures of precision and reliability. Thus the hitherto unsolved problem of

the evaluation of quality measures is touched.

c) The alternative hypothesis may depend on one parameter. Thus only single
gross errors or a single systematic error can be treated. This restriction is
the farthest reaching one and has caused doubts whether the theory is apt for
practice.

c) As the theory is based on a single alternative hypothesis, several alterna-
tives have to be considered successively one after the other. Therefore no
information on the separability of different alternative hypothesis, e. g.
on the locatability of gross errors, is obtainable.

Meanwhile several studies have reduced these restrictions. This primarily con-
cernes the assumption that the variance factor cg should be known. If ci is un-
known, a t-test can be used (cf. Kriger, 1976). The t-statistic proposed by
Thompson (1934) and Pope (1975) is functionally dependent on the t-statistic,
thus both tests are fully equivalent (cf. Heck, 1980). Using the t-test leads

to a small modification of the theory, namely a change of the non-centrality para-
meter A = 6% (cf. Forstner, 1980). The extension of the theory on alternative
hypothesis, depending on more than one parameter up to now has been applied only
to two-dimensional problems or only to the controllability of points, i. e. the
determinability of additional parameters (cf. Mierlo, 1980; Pelzer, 1980; Koch,
1981; Stefanovic, 1978). At last numerous publications, especially in the field
of photogrammetric point determination, the separability of additional parameters
was treated with using the correlation coefficients of the test-statistics (cf.
Griin, 1978; Jacobsen, 1980; Mauelshagen, 1977). Though the correlation coeffi-
cient is decisive for the discernability of different alternative hypothesis,
still objective criteria are missing. V. Mierlo's studies on the socalled wrong
alarm in deformation measurement application (1975, 1979) are the first ones
showing a possibility of describina the separability by the probability of making
a wrong decision between the alternatives.
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1.4 This study tries to find a statistically founded evaluation of the separa-
bility of two alternatives with the help of the correlation coefficient of the
corresponding test statistics. Thus the notion of reliability is extended and
the evaluation of a nonstochastical correlation coefficient becomes possible.

The study is first based on the assumptions, that both alternative hypothesis
are one dimensional and are tested independently using an optimal test.

An extension towards two alternatives depending on more than one parameter is
possible and uses the eigenvalues of the covariance matrix of the standardized
estimators for the parameters.

The case, that the alternatives are jointly tested, is also discussed. This
leads to the more dimensional test wellknown from the general testing theory.
This test can also be interpreted as a test of one alternative depending on a
parameter vector s, rather than a scalar parameter. The measures for the sensi-
tivity of the test and for the reliability of the result then become functions
of the parameter vector s.

Thus the above mentioned restrictions 1 c¢) and d), namely, that only one dimen-
sional alternatives can be treated and that informations on the discernability
are available, are repealed.

1.5 The questions posed in the preceeding section shall be explained by an
example.

The deformation of the cantilever of fig. 1,
L
which is fixed at point 1, is to be deter- f

mined by measuring the heights of 5 points.
It is expected that the cantilever may sink

compared with the given point A, that it may e P >
incline round point 1 or it may bend off
(cf. fig. la,b,c). The symmetrical design Fig. 1
allows a variation of the Tlocation of points Cantilever with
2 and 4, which both have the distance a from reference point A
point 3.

a.) sag b.) inclination c.) bend
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Let us first assume, that we have only to discern sag and bend on one side and
gross errors and deformations on the other side. We find out that the distance a
should be approximately 0,7 to reach a high separability of gross errors and de-
formations. But just detectable deformations can only be separated with 70 %
probability, i. e. with probability 30 % we will conclude that the cantilever is
deformed, though in reality it is sunk.
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Therefore we assume, that for reasons of the stability of the cantilever only
the bend has to be examined. The estimation of the auxiliary parameters s, and
s, for the sag and the inclination can be tested against the null hypothesis
using a two dimensional test.

But then we are interested in the influence of nondetected sags or inclinations
onto the determination of the bend. This influence describes the (external) re-
Tiability of the estimated bend and depends on the relation, i. e. the ratio of
the auxiliary parameters s, and s,.

We will treat first the theory for this second problem dealing with the test of
more-dimensional alternative hypothesis, as it immediately follows from the al-
ready existing theory. Developping a criterium for the separability of two alter-

natives the geometrical interpretation of the test (according to Tienstra, 1956)
will be used.

2. 0n the evaluation of parameter estimation using multi-dimensional tests

2.1 The mathematical model

Let be

| ><>

T4y =A% +3

3, P (1)
the linear or linearized model with the nx1 vector 1 of observations, the nxu
design matrix A with rk(A) = u, the uxl vector x of the unknown parameters, the
nxl vector v of the residuals and a nxl vector a, of constants. The nxn matrix P

of the weights is given by P = Ug_gd, where C is the covariance matrix of the
observations. Eg.(l) describes the classical GauB-Markov-model.

The null hypothesis (~= true value)
Hot  E(1[H ) = AX (2)

is to be tested against the alternative hypothesis
A

—~

Hy: E(1IH,) = AX + Te (3)
with
fé = Te(s) = H Ts = HS v(s) » 5] =1 (4)

In this formula the nxl vector Eé contains the true influence of the p parameters
5?1 onto the observations 1. The nxp matrix H is assumed to be given, rk(H) = p.
It describes the space of the multi-dimensional alternative hypothesis Ha‘

Eq. (4) contains a second notation for the causing parameter vector Eé. It is
more convenient in the following discussion. The vector is subdivided into the
direction s with |s| = 1 and the length v(s). The length thus is a function of
the direction. The condition |E| = 1 is not necessary, but only serves for a
better illustration; for deviations could be absorbed by v(s).
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2.2 Estimation and testing of parameters

[

From eq. (1) we obtain the least squares estimation
- APANTTARI (5)

for the unknowns x. The corresponding sum of the squared residuals is

a= (1-AX)'P(1-A%) . (6)
If the alternative is Ha is true, the estimation is biased by

W= @PAHTTARHT (7)
For testing the alternative Ha the adjustment can be subdivided in two steps.

~
In the first step one determines estimates Vs for the additional parameters Vs
in the extended model

T+yv=AE+H® | (8)
with their weight matrix
Pog = Qg =H' PH-H PA( PATAPH=HPOQ,PH (9
(Q,y cf. eq. (29)) one obtains
G =P (H'PT-H PA(APATA PRI (10)
The corresponding sum of squared residuals is
ap = (1-AX-HTE)'P(1-AK-HTs) . (11)
The test of the alternative Ha is achieved by the adjustment of the second step:
E(78) =0 or. s +v =0, P - (12)

Backsubstitution of the estimation 52 into the (here not given) normal equations
of the model eq. (8) results in thé—;ame estimators g for the unknowns x as

eq. (5).

The sum of the squared residuals of the second step is

Y P
- ]
Q, = Vs Ess Vs . (13)

As the steps are independent one obtains with eqs. (6) and (11)

Q=9 +a. . (14)

For the test of the parameters 53 one can use the test statistic (r = n-u)
T —7—)—92/p ~ F! 2 15)
= s - N 6 .
5‘32 (Y‘.-p (p r p ) (

It follows a noncentral Fisher distribution with p and r-p degrees of freedom.
The noncentrality parameter x» = §2

2 _NI — 2 —NZ 1 2
§%(s) =vs' Py ¥s / o2 =Vi(s) 8" Pgg 5/ of (16)

depends on the geometry (gss) and on the true value Eé = V(i) «s of the vector vs.
If the null hypothesis is true, T follows a central Fisher-distribution. For a
preset significance level § = l-a the null hypothesis Ho will be rejected if

T > F(a, p, n=p).
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2.3 Determinability of the parameters ig
Even if the test eq. (15) does not lead to the rejection of the null hypothesis
model errors may stay undetected. The probability of this type Il error is

1 - g(s) = P(T < F(a, p, r-p)|H (8(s)) (17)
According to Baarda, now a lower bound v03 for the parameter gé can be determined,

which can be detected just with a given probability g(s), which in general may
depend on the direction of s. From o and 50(5) follows a Tower bound

§2(s) = 8%(a, 8,(s)) (18)
for the noncentrality parameter &82(s). From eq. (16) one obtains a lower bound
vo(g) for the Tength v(s) of the parameter Vs

v (s) =9 8. (s)/ Vs' P, .5 . (19)
With eq. (4)
vs =V (s)s=o0 6(s)/ /s"Pgs s (20)

circumscribes an area of vectors vs, which cannot be discovered by the test
eq. (15). Only model errors vs with v(s) > vo(i) can be found by the test with
a probability g > 30(5}. If 60(5} =8 is chosen independently from s eq. (20)
describes the ellipse of boundary values.

Remark: As the preset lTower bound for the power Bo(i) of the test can be chosen
dependent on the direction of the vector Vs, different alternatives can be di-
stinguished according to their importance, one reason might be the different
effect of non-detected deformations.

2.4 The reliability of the estimator x

The effect of non-detectable model errors (eq.(20)) onto the estimated unknowns X
(eq. (5)) is

vx(s) = (A" P AT AR H S T (s) . (21)

olS
In eqg. (21) voxj(i) is the range depending on the direction s up to which ﬁj
might be falsified by undetected model errors. To acquire a simpler formula we
determine the length 30(5) of this influence vector

5,(s) = |, x(s)| = /v x'(s) A" P A ¥ x(s) / ¢, (22)

— = —p=\=

If we define

51 _ 1
Poo - Qs -H P H (23)

being the weight matrix of the parameters iﬁ in an adjustment without unknowns i,
then using eq. (9) we obtain a formula suited for practical application

5,(s) = 5, (s) [ =88 = (24)

o}
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The values s' ESS s and s' Bss $ in the numerator of eq. (24) have the dimension
of a weight (cf. the above discussion after eq. (4)). The weight S PSs s of the

adjusted parameters VS in an adjustment with fixed x is larger than in an adjust-
ment in which also x is estimated. The loss of precision of gg Just is needed for

the determination of X (cf. eq.(9)).

In total analogy to the onedimensional case here too the influence Eof(i) of a
non-detectable model error v,5 on an arbitrary function f = e'R of the unknown

parameters g can be determined using the sensitivity parameter S;(g):

v f(s) =e v x(s)=e' - (A'PA) . (A"PHS) « 7 (5)

o

and with Cauchy-Schwarz's inequality:

5\&' (AP AL \/s'H'PA(A'PA)'lA'PHs v o 6. (s) /5T P s

follows

v.f(s) =6 (s) « o

< 8,(8) + o (25)

where op is the standard deviation of the function f.

In case 5,(s) = 6, the area, given by eq. (24), is the quotient of two ellipses
given in polar coordinates, and therefore no ellipse in general (cf. example
section 2). Function EO(E) is the multi-dimensional extension of Baarda's

measure 6%1 = A,; for the external reliability.

2.5 Simplified evaluation of the external reliability

To acquire a simplified evaluation of 30{3) we determine the directions t. of s,
in which small changes of s do not lead to a change of SO(E). These are, among
others, the vectors vt anf Eoip’ which have the largest and the smallest
effect onto the parameters x resp.

In the special case 50(5) = 6, one obtains the vectors t; as the solutions of
the general eigenvalue problem:

(Pgs = Pgs) t = (82/82) P ot . (26)

The generally complicated figure Eo(s) can thus be interpreted by means of p
vectors t, which generally do not coincide with the unit vectors

&; = (0, 0,..., 1,..., 0)". The vectors t linearily depend on the unit vectors e
and together with the values ﬁo(ii) fully describe the external reliability of
the system with respect to the assumed alternative hypothesis.

2.6 Example on external reliability

The example treated in the introduction is supposed to illustrate this kind of
evaluation.

The 5 points are assumed to have distances of 1 m. The measured heights 1f
(i =1,...,5) at the positions z; = i-1 are to concejve a parabolie bend z2?.x
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(x unknown). Moreover a sag vs, and an inclination Z; * Vs, are expected. Thus

the extended model according to eg. (8) is

] _ 2 - N P
iV T I X+ TS 4 zo-Vs .
It lTeads to the design matrices
A'= (014916 wundH' = (31330

The observations are assumed to be of equal precision and uncorrelated (P = I).
For the analysis we need the matrices

435 270) - (2.542 1.525)

_ 510 1
Pes = (10 30)  und Pgg = 375 (270 310 1.525 1.751

In Fig. 2 the boundary ellipse gos/co according to eq. (20) 1is shown. The high

correlation coefficient -73% and the nearly equally good determinability of the
N AN

parameters Vs, and vs leads to an ellipse, whose large semiaxis fairly coinci-

des with the diagonal. The high dependence of the determinability on the direc-

tion clearly can be recognized; the ratio of the semiaxis is about 2.6.
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\
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Fig. 2 Fig. 3
Boundary ellipse v s for vs. Sensitivity area §_(s). The influence of

of nondetectable model errors V,s

Parameters lying within the n
onto X is inside the range of &, (s) » ay.

ellipse are not detectable.

a,h
A a
by
///,5;77 Fig. 4
] , ,‘fffm >7 New transformed parameters h; and h,
,»fgf’ts 4 for the evaluation of R.
./-

Fig. 3 shows the effect § (s) of nondetectable model errors onto the determina-
tion of the bend X. 0bv1ous1y the form of 5 (s) differs from an ellipse. More-
over, model errors with vsl/vs2 = -10/3 (i. e. _1 = (10, -3)//109) do not in-
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fluence the estimate X at all, whereas model errors with 631/532 = -1/2 (i. e.
t, = (1, -2)//5) have a very strong effect on X as 30(32) =5 e In this case
in eq. (25) even the sign of equality is valid, i. e. Fig. 3 reflects the real

influence of nondetectable model errors and not only an upper bound.

AN AN
The diagram Fig. 4 shows the new parameters vt, and vt,, derived from the eigen-
vectors t.. The corresponding design matrix H' = ('}? ;{ ;g ;é 1%) shows that

the deformations 5?1 and ﬁ?z and also ??1 and X are orthogonal.

The solution of the general eigenvalue problem eq. (26) thus leads to a partial
orthogonalization of the design matrix (A H). Hence, the evaluation of the ex-
ternal reliability is simplified, as only a few parameters are needed.

This simplification, however, only is possible, if the physical interpretability
of the alternative hypothesis is not important. Otherwise an orthogonalization

of the parameters is not wanted, as the separation of the physical effects is
intended. The separation can be difficult or even impossible under given condi-
tions and then leads to high correlations between the parameters of the different
alternative hypothesis. One has no longer to do with testing a single moredimen-
sional alternative but rather with the selection of one out of several - possibly
moredimensional - alternatives.

In the following chapter the case of the separation of two onedimensional alter-
native hypothesis' will be investigated and then will be extended towards two
moredimensional alternative hypothesis'.

3. 0On the separability of alternative hypothesis

3.1 Set up and test of alternative hypothesis

Given two alternative hypothesis each depending on one parameter:
Hai: E(1[Haq) = E(L[H,) + hy 7555 i=1,2 . (27)

The optimal test for the independent evaluation uses the test statistics

wi = hi Py / (o Yhi P Quy P hi) i=1,2 (28)

with -1

|3

(A" P A) ~ A

(29)

L]

Qyy = 8-
if o, is given.

For a preset significance level 1- a, Hyj will be rejected if [wi| > k(ay). If
both hypothesis are tested and both test statistics exceed the critical value in
practice one will reject H, in favour of the alternative whose test statistic is
the larger one, in case one expects the test statistics to influence each other.

In this case we must be ready to come to a wrong decision, i. e. that we reject
the really proper alternative and accept the other. This type of wrong decision

is called a type III error according to standard terminology (cf. Hawkes, 1980).
The problem is similar to the one of classification, where one has to choose bet-
ween several classes based on a measured feature and where the quality of tHe
decision is described by the probability of choosing a wrong class. The approach
to analyse the phenomen of "false alarm" proposed by v. Mierlo (1975) is different
to the one used upon, as there a procedure of two independent steps is used.
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3.2 Erroneous decisions choosing one of two alternatives.

The possibilities of choosing between two alternatives are shown in tab. 1 toge-
ther with the corresponding probabilites for the case that both alternatives are
not true at the same time.

Table 1 Decisions when testing two alternative hypothesis
(choosing one of two)

result of the test
"o Ha1 Ha2
|W1E<k= [W21<k ‘W1J>k= 3W1|>|W2| [W2‘>k= ]W2|>1W1|
unknown H correct decision type I error type I error
reality _ o ' !
L - ag %01 %02
Hal type II error correct decision type III error
- | ] "
1 -8, B11 12
Ha2 type II error type III error correct decision
-8 21 B22

The notation for the probabilities for I. and Il. type errors are adapted. The
probabilities for type III errors are designated with v'. The prime ' marks the
joint test in contrast to the separate test, which usually is applied. yiz is the
probability of choosing Hzp though Hy; is right.

For the determination of the probabilities ®ij0 Bij
interpretation of the test (cf. Tienstra, 1956).

and Yij We use a geometric

3.3 Geometric interpretation of the test
The test statistics eq. (28) are normally distributed with

oy = 1 (30)

The correlation coefficient of the test statistics is

hy PQ,, Ph
p1p = = cos(hy, hp) = cos egp (31)
'hi P Phy hy P P hy

Qv Qv
and can be interpreted as the cosine of the angle between the vectors h; and hp
with respect to the metric P Q,,P . Analogously with v = Q,y P v one obtains
the test statistics w; of eq. (28):

h: P Q P v
—i = Xyy L L NTP v
Wi = 1 v 7 VNPV Cos(ﬂi’ i} = ‘1‘ cos ey, (32)
9 Yhi P Qyy P By o

where e; are the angles between the residual vector v and the vectors h

i gt
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Fig. 5 shows the relations according to eq. (30)-(32) in the plane of the vectors
bl and EZ‘ The test statistic W, is the

=}

length of the projection of the vector
v =1 -1 having Tength |v| = WPV /o,
on the vector h;. The scale of the axis
is standardized to 1. The angle between
the axis h, and h, is €1p- If the null-
hypothesis is true, Vsy = Vs, = 0 and

one obtains an unbiased result i for the > by
adjusted observations. The joint proba- ]
bility density of W, and w, is given by Fig. 5
Geometrical interpretation
] ) > of the test statistic Wy
o(ups Wp) = o= exp (= (wy + W)/ 2) (33)
i

in the orthogonal coordinate system hl and Ez l ﬁl of this projection (cf. Baarda,
1968).

For the decision about H, 1 one only uses w;. The acceptance area A = {lj{wll <k}
is the stripe orthogonal to the hl-axis shown in fig. 6. From the one dimensional
marginal distribution one derives the probabilites in the one dimensional case.

The joint test is shown in fig. 7 and 8.

N Fl) i P “
1 j: | \ s
&, f21 Vet f2 Y
1 ! \
\
"
h R £
M N
\ ,;':L
A\ - -
R e R
H 1 - XA x 2 "
to Ry L : mr ~\—\—~r—";| LA
/ r IH /’/ N
k B k ”:';4 i /’,, R
Iy '\\\Q\
N
v / %
A hY
AY
\
Ay
Fig. 6 Fig. 7
Two dimensional diagram of the On the geometric interpretation of
acceptance area A of the single the combined test against two
test against Hy;. From the marginal alternatives Hyp and Hyp.

density ¢(wy) one derives the proba-
bility oy, for the type I error in
the one dimensional case.
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' 1
R,,«u,53/¢L

4
_____________ sl _._....-A_._I s i T B
, 2 4= ao‘o:‘f'nﬂ*. , =

R4 ,dn:’ﬁ;

Fig. 8a Fig. &b
Acceptance and rejection areas Rejection area R% for the joint
A' and R' for a joint test of

two alternatives

test of two alternatives

1-a) =P (Hy correctly accepted) y" =P (H,, incorrectly accepted
12
al, = P (Hy rejected in favour of H, ;) without hint H_, being
al, = P (H, rejected in favour of Ha2) true)

1 'Bio =P (Halrejected in favour of Hy,)

Bi, = P (Hyycorrectly accepted)
Yi, = p (Halrejected in favour of HaZ)

The following statements can be veryfied using fig. 7:

]wl > k|, the null hypothesis will be rejected.

The decision in favour of H_; is based on |w;|>~ |w,[. As the test statistics
are nearly equal the decision is at least doubtful,

The bisectors i and f, of the axis hl and h2 are the boundary lines between
the rejection areas Ri and Ré (cf. Fig. 8). If 1 Ties in R;, H 1is rejected

in favour of Hai‘

As two alternatives are tested simultaneously, the probability aéo of rejec-
ting H0 is larger than the significance number o < °‘c|>1 + ‘152 = cxéc,. The acceptance
region A' is smaller than in the one dimensional case (cf. fig. 6 and 8).

For the same reason the probability of accepting Hal’ say, when testing both

. . . R : ;
Hal and HaZ’ is smaller than in the one dimensional case: By > By,

In case one uses the same critical value k for both single tests the probabi-

lites of erroneously rejecting an alternative are equal: yiz = yél
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3.4 Probabilities for type I, II and III errors

We are now prepared to determine the probabilites of erroneous decisions.
The probability for a type I error is given by the value under the density eqg.(33)
over the rejection areas Ri and Ré . E. g.

- {

aly = P(lwyl>ks|wyf>wp|[H ) = él ¢ df (34)

is the probability of incorrectly rejecting H0 in favour of Hal' For the determi-
nation of theprobabilities for type Il and III errors we assume H,, to be correct
and that the error ﬁél causes a shift of the density function ¢(w1,W2) by the
amount 8y~ The noncentral density then is given by

SCTRCI =2—1“exp(-((wl-61)2+ Wy /2y . (35)

The probability 1 'Bio of incorrectly accepting Ho’ though Ha1 holds can be
determined from

Ir
1 - Bio = P({w1|<k,iw2§<klﬁal(61)) =0 4 df . (36)
The probability yiz of choosing Ha2 instead of Hal is
i, = PUlwy Ik, lwpl>lwy | [Hy1(67)) = §i 4y of
12 2 > 172 1 alt”1 Ry "1 : (37)

The case must be expecially emphasized in which. [wy[<k and simultaneously |w,|>k
when Hal is true, as one erroneously is sure of having made a correct decision.
n

The corresponding rejection area ﬁz is shown in fig. 8b. The probability of this
special type III error is given by

I I
Yip = P(Lwl|<k,|w2[>k|ﬁa1) = Ry ¢ df . (38)

The probabilities of type I, II and II errors depend on

- the critical value k(a,)

- the noncentrality parameter & caused by the errors in the mathematical model
and

- the correlation coefficient 1o of the test statistics Wy and Wy

We are first interested in the power
g' = B'{“Os §, p) . (39)

of the combined test. For a proper evaluation, however, the probabilites
Yig = Yél = y' for a type IIIl error are important:

v' o=y (e, 85 0) . (40)

In case of very difficult and costly decisions we need the probabilities

YEZ = ygl = y" <choosing the wrong alternative and being sure to have decided
correctly.
In the appendix the functions 8', y' and y" are tabulated in dependence of

p and &. Fig. 9a shows «v'(a_ =100%, p,8). This is the case where we do not test
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H0 but solely decide between Hal and HaZ' In this special case g' =1 -yiz and
7{2 =1—a00= 0. If 6 =0 one obtains y' = 0.5 as expected. The probabilities of
type III errors decrease with increasing distance § between Ha and Ho’ thus

being always less than 50 %.

If the correlation coefficient is larger than 0.9 and if a model error leads to

§ = 4, in 19 of 100 cases one chooses the wrong alternative (y' = 0.19). On the
other side, if one requires a lower bound for the separability of 95 % (y'>0.95)
for model errors with § =3 the correlation coefficient must not be larger than
the upper bound Ve = 0.4. Finally, if a correlation coefficient cof 0.9 is given
and one reguires a separability of greater 90 % then the distance & between null
and alternative hypothesis must be Targer than 5.8.

Fig. 9b and c¢ show the probabilities y' and y" of type III errors for a = 5%,

j. e. k=1.96. The comparison of fig. 9a and 9b demonstrates that the probabi-
lities y' are smaller in case b); this is because type I errors prevent a wrong
decision for one of the two alternatives. Fig. 9¢ is superelevated by a factor
10, for the seemingly secure but erroneous decisions only occur with probabili-
ties y" < 5% = a_ . But all the same in 1 % of all cases this type of wrong de-
cision may occur if § ® 3.5. Finally fig. 9d shows, that the power of the joint
test decreases rapidly for correlation coefficients larger 0.9. Even model errors
with § =6 are detectable with a probability < 80 % if p =0.95.

For the evaluation of the reliability one may instead of the power g of the
single test also use the power 8' (eq.(39)) of the combined test, which again
leads to a lower bound s, for the noncentrality parameter. This bound can be
used to determine a lower bound V.81 of the parameter vs, which can be just
localized by the combined test with a preset probability B;- This lower bound
will be much larger than in the one dimensional case if high correlations are
present.

However, it seems to be more advantageous to use the probabilities 1-y' (or
1-+") to avoid a type III error for an evaluation. This probability might be re-
garded as a measure of the separability of the design with respect to the two
alternatives in concern. The separability decreases with increasing correlation
coefficient, i. e. with decreasing angle €1p- Thus, if we - in analogy to the
method for evaluating the determinability of the parameters - in addition to a
and By preset a minimum probability 1- yé for the separability between two al-
ternative hypothesis we obtain an upper bound v.e for the correlation coeffi-
cient §

> Yo) (41)

- 1 -
VoP vop(("a’ Byo Yo) - vo’o(ﬂ'o’ So )

o]

Correlation coefficients |p|> v,e lead to a worse, i. e. lower separability than
- 1
1 Y,
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a) type III error ', a =100 % b) type III error ', @ = 5%
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a =5%
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c) type IIl error «", o = 5% d) power of the test Bg', a, = 5%

Fig. 9 Probabilities «y', y" and 8' in dependency of the non-centrality
parameter & and the correlation coefficient p

3.5 Example for the separability of different alternative hypothesis

The above mentioned example is now supposed to illustrate the optimization of a
design with respect to the separability between different alternative hypothesis.

For the determination of deformations at the cantilever of fig. 1 the heights of
5 points are supposed to be measured. In contrast to the example in sect. 2.6
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the distance a of the points 2 and 4 from point 3 can be chosen. The mathematical
model of the null hypothesis is given by

o+ vy = x o, P=1

and only contains the datum parameter, i. e. the unknown height.

Now the distance a shall be determined in a way by which the following alterna-
tives can be separated as well as possible:

0 0 0

0 a-1 -(1l-a)2
= o | by By s| -1

0 -a-1 -(1+a)

-1 -2 -4
and

0 0

0 a2-1
hy = |- hg=1-1

0 a2-1

0 0

h, describes a gross error in the 5. observation, h, and h; describe the inclina-
tion and the bend. These three alternatives possibly can hardly be separated.

h, describes a gross error in the 3. observation which might not be discernable
from a parabola like sag (# bend), £5.

Fig. 10 shows the correlation coefficients in dependency of the value a, fig. 11
the corresponding probabilities 1-y', i. e. the separability for just detectable
gross errors or just determinable deformations (6O =4) using a critical value

k = 1.96 (cf. fig. 9).

The correlations between the gross error h; in the 5. observation and the deforma-
tions 92 and DB decrease with increasing a, whereas the correlation between the
gross error in the medium point {ﬂ4) and the sag strongly increases reaching

100 % for a = 1. Thus a distance a = 0.68 seems to be optimal for the separation
of gross and systematic errors. The probability y'= 8% of committing a type III
error, i. e. supposing a deformation though in reality a gross error is present

is sufficiently small.

The separability of the inclination h, and the bend h; however with 1-yy3< 75%
is not sufficient. A denser point distribution does not change the separability
really if one starts from‘just detectable deformations, i. e. if 60 is kept con-
stant. However, because of the higher precision of the parameter estimation
fixing the lower bound v,s = 9, 8, * Jﬁgg enables to choose a larger 8, which
increases the separability. For instance, if one uses 5 groups of 4 independent
points, the separability increases from 68 % to 80 %.
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3.6 On the separability of multidimensional hypothesis

In sec. 3.4 a measure for the separability of two one dimensional hypothesis was
introduced. It was based on the correlation coefficient Pqj of the test statistics
Y and Ej corresponding to the hypothesis Hal and Ha2' The geometric interpreta-
tion of the test showed 0ij to be the cosine of the angle between the vectors ﬂi
and ﬁj describing the influence of the original error sources onto the observa-
tions.

Based on this purely analytic analysis of the dependence between Hal and Ha2 we

will generalize the concept of separability towards multidimensional hypothesis.
The extension of the statistical measure, the probability of the type III error,

would complicate the line of thought, whereas the geometric generalization seems
to be sufficient for practical purposes.

Let us assume, that the model eq.(1) has to be tested against the two multi-dimen-
sional hypothesis

~_/ e _
Hay @ E(QIHG5) = E(1IHy) + Hy .3 T (42)

o(ﬂi) =N X pss rk(ﬂi) = p with Py and p, parameters resp.

-i)
It is assumed that the deformations H; v;5 are not already modeled by the un-

knowns x, i. e. that the colimn spaces col(A) and CO](ﬁi} have no common ele-
ments., Instead of evaluating

P12 = D(HI’WZ) = cos(ﬁl’hz) ’

we now use the maximum value

P1p = max cos(h;,h,) A = {(DI’hZ); hy € col(H;) (43)
: h, e col(H,)}

of the cosine of the angle €1, between twovectors h; and h, contained in the
column spaces co](ﬂl) and col(H,) resp.. This corresponds to the smallest
angle e;, between the vectors h, and h,, one describing a specific influence Hisy
of Hal’ the other a specific influence 52_52 of HaZ' The value P12 furtheron
still can be interpreted as a correlation coefficient, namely the maximum corre-
lation between the test statistics Wy and w, from eq.(32) but now h

and h

1 and 22 vary-
ing over all vectors fromed by h;=H

151 2= Hpsy
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With the generally nonsquare matrices P.. --_H_IEQW_P_E. (i,j e {1.2}) (cf. eq.(9)),

1J
i i s 1/2 s. and the norm |s.| = /st P. . we obtain
the standardization s, = Poy 584 S5 S; Py &5
for the square plzz:
2 = max cosz(h h,)
P12 A -1 =2
T 2
s, P S
_ max\:—l Z12 _2}
|51]122] - - /2 -/
with Pip = Pyy Pip Bop
51 P, 5,0
_ nax |2l T12 22
|§1H§2| (similar to Zurmiihl, sect. 13.6)
— —IZ
= max [A(BIZ)J
(cf. Schaffrin, et al., p. 285)
= max ia(Py, " Pyy) = max AMPoq Pi2)
2 -1 -1
thus:  p1p = Mmax A(Pyy Pyy Pyp Pop) (44)

where x(A) denotes the eigenvalue of A. The derivation of eq.(44) uses the singu-
lar value decomposition of the matrix P, = C; A C.Ié where C;r Ci = Irps Tp - rk(Pyz) -
The eigenvalues A of p12 can be obta1ned from the eigenvalues A2 of "P'l2 '1521 or

of Elng (cf. Schaffrin, Grafarend, Schmitt, 1977, Anhang 1, p.285) or from the
-1

- ; -1
similar matrix 321 P11 P12 P22 .

1

The evaluation of the separability, based on the eigenvalues of 321 Bﬁ 312 EEZ’

is done in two steps:

a) If at least one eigenvalue equals 1 then there exists at least one vector h
which is contained in both column spaces col(H;) and co](ﬁz); i. e. there
is at least one model error which is common to both alternative hypothesis.
If Po eigenvalues equal 1 then there is a group of Po additional parameters
common to H_, and Ha2' They of course prevent a separation of the two alter-
natives. But they provide a first important insight into the relation bet-
ween Hal and Hoo-

b) The second step of the evaluation consists in constructing 3 parameter groups
(cf. fig. 12):

1) p, common parameters s, with influence H;, s  onto the observations.
The matrix 512 has to fullfill the conditions co](ﬂlz) [0} col(ﬂl) and
co](ﬂlz) [of co](ﬂz), thuslf col(Hy,) = co](Hl) ) col(ﬂz). It can be ob-

. . -yz, B -1z, :
tained from H;, = H; P—ll_ Cio = Hy Ppg Cys where [y and C, contain
those p, eigenvectors of 312 =Cpa E; which correspond to the eigen-

values A = 1.

2) Py - P non common parameters s;l only described by H_ 4 with influence
ﬂlg1 onto the observations. The parameters s;1 are orthogonal to So0
thus H1,H; =0, and H) has to fullfill the condition col(H}C col(H).

3) Py - p, non common parameters 52 only described by H_, with influence
EZEZ onto the observations similar to sl(le Hy = 0,col (Hp) € col(H, )),
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The groups of the non common parameters El and EZ can now be evaluated by apply-
ing eq. (44) to the new set of non overlapping alternative hypothesis
H

E(1[H,;) = E(1|Hg) + Hy Ts i=1,2 (45)

ai’ i o

The situation is sketched in fig. 12 for H, = (h;;s hy5) and H, = (hy, hys),
the corresponding column spaces represented by planes. The column space of ﬂlZ
is the intersecting line. The maximum
correlation coefficient in this case
is identical with the cosine of the

angle €17 between the two planes.

Fig. 12

Geometrical representation of the
column spaces of two 2-dimensional
alternatives

cOS a1, = cos{El, EZ) =Py,

Example
With the vectors h., (i =1,..., 5) from the last example we form the matrices

hy, 4hy) and H h

Ho = '(_4’ 4h

5)

using a = % thus

0 0 0 0 0
o 1 1 0o 3
H1 = |10 2 4 and H2 = (1 4
- 0 3 9 - 0 3
1 4 16 0 0

Thus we want to discern between a gross error in observation 15, an inclination
and a bend on one side and a gross error in 13 and a sag on the other side.

The weight matrices Pi' are

J
4 10 50 410 -1 -10
Pyy= |10 50 200 3 Poy =|jp 79| 3 Pyp=| O O
50 200 870 -10 -70

The eigenvalues of

-1 -1
Po1 P11 Py Pyp =

0| —

1

{1 1
0 8]
Ao = 3

As the maximum eigenvalue equals 1 there is a common parameter belonging to Hat
and Ha2’ namely the parabolic term. The non common parameters lead to a maximum
correlation coefficient of 1o = /TE = 0.35 corresponding to an angle €17 =59.5Q
indicating a high separability, between the gross error in 15 and the inclination
on one side and the gross error in 13 on the other side.
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4. Discussion

The evaluation of the reliability of a network design can be based on the propo-
sed parametrization also applicable for more dimensional alternative hypothesis
and allow statements about the separability of different alternatives. Several

important problems of analytical photogrammetry can now be solved statistically
rigorous:

a) Additional parameters for the compensation of systematic image errors can be
chosen in a way which allows the separate evaluation with respect to the ex-
ternal reliability. This leads to sets of parameters being individual for
each block. The selection can be fully automized by comparing the go-va1ues
of the orthogonalized parameters with a preset upper bound.

b) The separability of systematic image errors and gross errors of the control
points can be determined and used for an optimization of the controel point
pattern.

c¢) Experiments for the identification of physical causes of systematic errors
can be designed with respect to the separability of the effects.

Both extensions of the theory can be completed and leave important problems for
further research.

d) The evaluation of the stochastical model may be based on the reliability of
the variance components.

e) The evaluation of the reljability of estimated covariance matrices can be
based on a parametrjzation of the alternative hypothesis using a matrix in-
stead of a parameter vector.

f) This vector needs not to be of finite dimension. For the evaluation of sto-
chastic process one might use a description of the alternative based on a
function.

In all cases one needs the central and non central distribution for the test sta-

tistics used for the evaluation. However, the transfer of the existing theoreti-

cal solution into practical procedures is at least as complicated as the set up
of the theory but surely more important.

- Fbrstner 20 -



- 99 -

References

Baarda, W.: Statistical Concepts in Geodesy. Netherl. Geodetic Comm., New Series
Vol. 2, No. 4, Delft 1967.

Baarda, W.: A Testing Procedure for Use in Geodetic Networks. Netherl. Geod. Comm.
New Series, Vol. 2, No. 5, Delft 1968.

Baarda, W.: Reliability and Precision of Networks. Pres. Paper to VIIth Int.
Course for Eng. Surveys of High Precision, Darmstadt 1876.

Forstner, W.: Evaluation of Block Adjustment Results. Pres. Paper to Comm. III,
ISP Congress, Hamburg 1980.

Grin, A.: Progress in Photogrammetric Point Determination by Compensation of
Systematic Errors and Detection of Gross Errors. Nachrichten aus dem
Karten- u. Vermessungswesen, Reihe II, Heft 36, Frankfurt a.M. 1978.

Hawkins, D.M, : Identification of Outliers. Chapman & Hall, London/Hew York 1980.

Heck, B.: Der EinfluB einzelner Beobachtungsfehler auf das Ergebnis einer Aus-
gleichung und die Suche nach AusreiBern in den Beobachtungen.
Allgemeine Vermessungsnachrichten, 1/ 1981, 17 - 34.

Jacobsen, K.: Attempt at Obtaining the Best Possible Accuracy in Bundle Block
Adjustment. ISP Congress, Comm. III, Hamburg 1980.

Keiser, 0.M. und Matthias, H.: Zur Fehlertheorie von MeBreihen mit pseudosyste-
matischen Fehlern. Mensuration, Photogrammétrie, Génie rural, 6/ 1981,
194 - 198.

Kriiger, H.: Statistische Verfahren zur Lokalisierung grober Beobachtungsfehler
in geoddtischen Netzen, dargestellt an Streckennetzen. Diss. Hannover,
1976.

Koch, K.R.: Deviations from the Null-Hypothesis to be detected by Statistical
Tests. Bulletin Géodésique 55 (1981). 41 - 48.

Mauelshagen, L.: Teilkalibrierung eines photogrammetrischen Systems mit variabler
PaBpunktanordnung und unterschiedlichen deterministischen Ansdtzen.
Deutsche Geod. Komm. Reihe C, Nr. 236, Minchen 1977.

Van Mierlo, J.: Statistical Analysis of Geodetic Networks designed for the
Detection of Crustal Movements. In: G.J. Borradaile, A.R. Ritsema,
H.E. Rondeel and 0.J. Simon (Editors), Progress in Geodynamics.
North-Helland, Amsterdam/New York 1975, 52 -61.

Van Mierlo, J.: Statistical Analysis of Geodetic Measurements for the Investiga-
tion of Crustal Movements. Tectonophysics, 52 (1979), 457 - 467.

Van Mierlo, J.: A Testing Procedure for Analytic Geodetic Deformation Measure-
ments. In: II. Internationales Symposium liber Deformationsmessungen
mit geoddtischen Methoden. Verlag Konrad Wittwer, Stuttgart 1980.

Pelzer, H.: Hypothesentests in der Ingenieurvermessung. Vortrag auf der Arbeits-
tagung der Arbeitsgruppe Theoretische Geoddsie der Deutschen Geod.
Kommission, Bonn 1980.

Schaffrin, B., Grafarend, E., Schmitt, G.: Kanonisches Design Geodatischer
Netze I., Manuscripta Geodaetica, Vol. 2, No. 4, Stuttgart 1977.

Stefanovic, P.: Blunders and Least Squares. ITC-Journal, 1978-1.

Tienstra, J.M.: Theory of the Adjustment of Normally Distributed Observations.
Amsterdam 1956.

Zurmiihl, R.: Matrizen. 4. Auflage, Springer, 1964.

- F&rstner 21 -



Appendix

values of B' = 1

1. Errors of II.

SAMMA® (RHO,DILTAY

0.00 © Ta
1.00 A 0.3353
0.59 \ 0.J863
0.93 1\ 0.0E&82
C.37 0.08528
0.96 0.0853
0.95 C.0848
0.54 0\ 2.0342
0.93 1\ 0.0835
0.92 1\ 0.0829
0.91 1\ 0.0822
C.9C 0.081¢
0.8C 0.074¢
0.70 1\ J.062C
0.460 0\ J0.0621
3.50 1\ J.0589
0.40 0.0526
0.30 1\ G.04r3
0.20 0.04069
0.10 1\ 0.0454
C.00 © 0.0%450

GAMMA' " (RH2,DELTA)

0.00

1.00 J.0C
3.%3% \ 0-21
0.93 1\ G.01
C.97 g.02
0.96 1\ .02
J.95 \ 004
0.94 0.02
J.93 1\ J.02
Ge92 N\ 0.03
0.91 1\ C.03
0.3 0.03
.80\ 0.03
0.70 1\ 0.04
0.63 1\ J.04
.50 1\ 0.04
C.se0 N\ D.04
0.30 J.04
0.20 1\ 0.04
0.10 0.04
0.30 © J.04

ZETA' (RHO,DELTA)

3C
13
33
L]
7%
4
0e
20
31
56
22
30
31
27
23
19
14

14

C.00 1 1.
1.00 1 J.085C
0.95 0.0545%
0.93 0.1018
0.97 Q.1G35
0.96 A 3.1036
0.95 \ 0.1113
G.94 J.1137
0493 1\ C.1159
0.92 1\ J.118C
0.91 J.1198
0.90 \ 0.121¢
0.80 ©\ J.1351
C.70 Ja1442
0.60 J.1510
0.52 1 0.1562
0.40 0.16352
C.30 G.1631
0.20 0.1651
0.70 0.16%4
0.00 A J.1658

only approximately

and

J.0233
2.0310
C.0331
0.03%47
2.0351
2.0372
0.0330
0.0338
0.0411
0.03%¢8
J.32357
2.0335
0.0304
0.0278
0.2259
0.0247
0.0244

0.3371
0.34e1
0.3540
J3.3612
C.3678
C.3739
0.3795
D.4213
Ja4432
J.4534
J.4827
J.4930
C.35004
0.5054
2.50234
0.5095

III.

type, k
3. 4.
0.4254 0.489¢
0.3376 0.3212
0.328% 0.3330
0.3070 0.32051
D.2832 2.2392
0.272¢ 2.2583
0.2589 0.2392
0.2462 0.2224
0.2345 0.2073
0.2238 0.1937
0.2139 0.1814
D.1420 0.0998
0.0979 0.0531
0.0684  0.0347
J.C431  0.0209
0.033% 0.0177
0.0242 g.0078
0.3175  D.0C49
0.0144 0.003%¢
0-.0133 0.0030
3. 4.
0.000C¢ C.o000
3.01C1  0.0020°
0.0125 0.0025
0.0144 0.0027
0.0155 0.0029
0.0163 0.0030C
0.0159 2.2031
0.0173 0.00%
0.2177 0.0C32
0.0179  0.0032
0.0181 0.0032
0.017% C.0030
0.0153  0.0027
0.0144 0.02023
J.0125  2.0019
D.0108 C.0016
0.0094 C.0C14
0.0084 0.0012
0.0077 Q.0011
0.0076 C.0011
3. ha
0.4255 0.6897
0.5032 0.6001
0.5347 0.05438
2.5582  2.0730
2.5776 0.7020
0.3942 0.724C
0.5088 0.7432
0.6220 0.7801
0.6339 0.7752
0.6449 02.7838
J.a855C C.8012
C.7247 3J.332¢
0.7693  0.9239
D.7348 3.9470
0.8132 0.%602
0.8277 5.9679
0.3380 (C.?723
D.3416  0.9749
0.3445 0.9733
2.3459 D.3772

- 100 -

0.4993
J.3614
0.3082
0.25698
0.2235
D.2143
J.1930
N.1746
0.1584
0.1442
D.1316
0.0568
0.0263
0.0126
0.3061
0.0030
2.0015s
0.00038
0.0004
0.0003

0.0000C
0.000C1
0.0002
J.0002
0.0002
0.0002
0.00202
2.0002
0-C00z2
C.0002
0.0002
0.0002
J.0002
0.0001
0.0C01
0.0001
0.0001
2.0001
0.0001
0.0ca1

0.6375
0.6908
G.7292
0.7593
J0.7847
0.3060
0.8245
0.3406
048548
0.3675
0.%422
0.9727
0.9863
0.9923
Ja9%64
0.9949
0.9547
0.9945
0.9951

S T 3. N 10.
0.4999 0.4999 0.4998 0.4998 (£.4998
0.3357 0.3103 0.2858 0.2623 0.2398
0.2742 0.2420 0.2119 0.1841 0.1587
0.2312 0.1956 0.1636 0.1352 0.1103
0.1981 0.1611 0.123% 0.1015 0.0786
0.1714 02.1342 0.1030 0.0774 0.0569
0.1493 0.1127 0.0829 0.0595 (0.0416
0.1308 0.0952 0.0672 0.0461 0.0307
0.11517 0.0808 0.0548 0.0359 0.0228
0.1015 0.0438 0.0448 0.0281 0.0149
C.0899 0.0538 0.0368 0.0221 0.0127
0.0289% 0.0134 0.0057 0.0022 0.0008
0.0101 0.0034 0.0010 0.0002 0.0001
0.0036 0.0009 0.0002 0.0000 0.0000
.C013 0.0002 0.0000 0.00C0 0.0000
0.0005 0.Q0001 0.0000 0.0000 0.0000
0.0002 0.0000 0.00CC 0Q.0C00 0.0000
0.C001 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0Q.0000 O0.02CO0
0.00C0 0.Q0000 0.0000 0.0000 0.0000

6. 7 3. 9. 10.
0.0000 0.0000 0Q.00CC 0.0000 0.00CO0
0.0000 0.0000 0.000C 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0C.COOC
0.000C 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0Q.000QC 0Q.0000C
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0C00C 0.0000 0.000C 0.00C0
0.0000 0.0000 0.0000 0.0000 0.00GO0
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 ©C.0000 0.0000 0.0000 0.00CO
0.0000 0.0CDO 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0C00
0.0000 0.00CC 0.000C 0.0CO0 0.0000
2.0000 0.0000 0.0000 0.0000 0Q.0000
0.0000 0.0000 0.0000 ©.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.2000 0.0000 0.0000
0.0000 0C.0C00 C.0000 0Q.00C0OC 0.0000

ba 7. 8. 9. 10.
0.5001 0.5001 - 0.5002 0.5002 0.5002
0.4643 0.4897 0.7142 0.7377 0.7602
0.7257 0.7580 0.7831 0.8159 0.8413
0.7688 0.8044 0.3364 0.8648 0.8897
0.8019 0.8339 0.87117 0.3985 0.9214
0.8286 0.3658 0.89%70 0.9226 0.9431
0.3506 0.8873 0.9171 0.9%405 0.9584
0.8692 0.9048 0.9328 0.9539 0.9693
0.3849 0.9192 0.9452 0.9641 0.9772
0.3984 0.9312 0.9552 0.9719 0.9831
0.7101 0.9412 0.9632 0.9779 0.9873
0.9711 0.9846 0.9943 0.9978 0.9992
0.98%9 0.9986 0.9990 0.9998 0.9999
C.9942 0.5991 0.9998 1.000Q 1.0000
0.9979 0.99%4 0.9999 1.0000 1.0000
0.9974 0.9939 0.9998 1.0000 1.0000
0.39461 0.9980 0.9996 1.0000 1.0000
0.9948 0.9973 0.9995 1.0000 1.0000
0.9942 0.9971 0.9996 1.0001 1.0001
0.9945 0.9976 1.0003 1.0009 1.0010
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2. Errors of 1II.

GAMMA' (RHO,DZLTAD

0.CO Ta
1.C00 O 3.0298
0.99 A\ J.0309
0.93 0.031C
0.97 g.C309
C.96 1\ 0.0327
C.%5 0.0333
0.94 A\ 0.3333
C.53 1\ 03300
0.%2 0.02%3
0.91 0.0295
0.90 J.329¢
0.40 \ 0.0258
0.73 0.0225
0.60 0.019¢4
0.50 \ J. 0147
C.4GC O T.C154
0.30 1\ 0.0125
0.20 0.0112
0.10 N C.01C4
0.0C © c.0101

GAMMA' ' (RHC,DELTA)

0.C0 1a
1.0C 1\ J.02C38
C.99 A\ 0.00%1
C.98 A\ 0.C032
0.97 3.0097
0.96 \ 0.35108
0.95 \ 3.0117
C.94 0.C124
0.53 0.0131
Ca92 0.C13¢
.91 J.0140
C.90 J.0144
0.20 J.01s2
0.70 J0.01481
C.60 O 3.0152
C.3C 0.0140
C.60 G.0127
G.30 1\ 2.01153
0.20 © G.213¢
0.10 J.013cC
0.0C © J.00939

SETA'(RmJ,DELTA)
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and III. type, k = 2.56
2. 3. b S. b 7. 8. 9. 10.
0.1439  0.335C 044625 0.4%62 0.4997 044999 D.4998 0.4998 0.4998
2.1341 0.2343 (0.3613 0.3594 0.3356 0.3103 0.2858 0.2623 0.2398
2.1235 0.2617 C.3203 0.3064 0.2742 0.2420 0.2119 0.1841 0.1587
0.1237 2442 0.2299  0.2682 0.2311 0.1956 0.1636 0.1352 0.1103
0.1194 042294 0.2652 0.2380 0.1980 0.1611 0.1289 0.1015 0.0786
9.1153  0.21564 C.2442 0.2130 0.1713 0.1342 0.1030 0.0774 0.0569
J.111¢6  0.2049 2.2259 0.1917 0.1493 0.1127 0.0829 0.0595 0.0416
0.108C Q0.1944  0.2097 N.1734 0.1308 0Q.0952 0.0672 0.04%1 0.0307
J.10486 0.1847 3.1952 Q0.1573 Q0.1150 0.080% 0.0548 0.0359 0.0223
2.10164  2.175& 0.1822 0.1431 041015 0.0688 0.0448 0.0281 0.016%
0.0983 J.1675 0.1703 0.1305 0.0898 0.0538 0.0358 0.0221 0.0127
0.2731 0.1073 0.0920 0.0567 0.0239 0.0134 0.0057 0.0022 0.0008
2.0545 0.0707 0.0522 0.0258 0.0100 0.0034 0.0010 0.0002 0.0001
0.0404 2.0447 0.0300 0.0122 0.0036 0.0009 0.0002 ©.0000 0.0C00
2.2297 0.03C6 90.2173 D.0C058 0.0013 0.0002 ©.0000 0.0000 040000
2.0214 0.0178 C2.0099 0.0028 0.0005 0.0CO1 0.0000 0Q.0000 J.000Q
0.0156 0.0126 0.0055 0.0013 0.0002 0.2000 0.0000 0.0000 0.0000
C.0115 0.0030 90.0031 02.0006 0.0001 0.0000 0.0000 0.0000 ©.0C00C
2.2092 0.0055 0.0019 0.0003 02.0000 0.000C 0.0000 Q.00C00 0.0000
0.3034 0.0C48 0.0015 ©0.00C2 0.0000 0.0000 0.00C0 0.0000 0.0000
2a 3. 4u 5. 5. 7. ] 9. 10.
2.0000 90.23000 0.0060C Q.0000 O0.0COC 0.0000 0.000Q0 0©.0000 O0.000C
0.9159 0.0156 0.005¢6 0.0€07 0.0000 0.0000 0.0000 0.C000 0.0COCO
2.2207 0.01%é 0.0059 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000
2.0237 0.0219 0.0076 0.0010 0.0000 0.0000 0Q.0000 0.0000 0Q.0000
0.0258 0.0234 C.0079 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
0.0274 0.0244 0.0082 0.0010 0.0008 0.0000 0.0030 0.0000 0.0000
0.C28% 0.0251 0.0083 0.0010 ©0.0000 0.0000 0.0000 0C.0000 0.GC00
J.0295 0.0256 0.00%4 0.001C 0.0000 0.0200C 0.0000 o0.000C 0.0000
J.0321 0.D258 C.CO84 0.0010 O0.0000 0.0000 0.0000 0.0000 O0.0000
0.0306 0.J240 0.0084 0.0010 90.0000 0.0000 0.00CQ0 0.0COD 0.0000
0.2310 0.£25C 0.00%3 0.3010 0.000C 0.0000 0.0000 0.0000 3.0000
0.23C86 0.0237 0.0C72 0.C0008 0.0000 0.0000 0.C0C0O 0.0000C G.000C
0.0271 0.0198 0,008 0.0007 9Q.0000 0.0000 0.0000 0.0000 0.0000
0.0229 0.015%8 0.0045 0.0005 0.0000 0.0000 0.0000 0Q.0000 0.0000
2.0137 3.0122 0.2034 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
2.014%  0.2052 0.0024 0.0003 2.0000 0.0000 0.0000 0.0000 0.0000
0.2118 3.00%7 ©05.2017 0.3002 0.0000 0.0000 0.000C 0.0000 0.0000
0.00%4 0.004% 0.00t2 G.0001 O0.0CCCO Q0.0000 0.0000 0.0000 0.0000
J.0080 0.0038 0§.0009 0.0C001 Q.0000 0.0000 0.0000 0.0000 0.000Q
9.0075 0.0035 0.0028 0.0001 0.0000 Q.0000 0.0000 0.0000 0.0000
$.00 © 1. 2. 3. b 5. 5o 7. 8. 9. 10.
1.00 v 0.0258 0.1439 0.3357 0.4626 0.4944 0.5000 0.5001 0.5002 0.5002 0Q.5002
0.99 V' C.0348 0.1696 0.4013 0.5694 2.6340 0.46641 0.4397 0.7142 0.7377 0.7602
0.98 \  0.035% 2.1830 0.4279 0.5117 0.4871 0.7256 0.7530 0.7881 0.8159 0.8413
0.97 V' 0.0333 0.1878 (Q.4478 0.4427 0.7254 0.7636 0.8044 0.3364 0.3648 0.3897
0.96 % 0.0396 02.1542 0.4641 D.6&79 0.7557 0.8017 0.3339 0.3711 0.8985 0.9214
0.95 V' 0.0407 C.1998 D0.4780 0.6891 C.7837 C.8284 0.3658 0.3970 J.9226 0.9431
0.94 \ 0.0417 0.2047 0.4903 2.7075 225020 90.3505 0.3873 0.37171 0.9405 0.9534
0.93 v J.042¢6 0.2092 0.5012 0.7237 0.3203 20.2690 0.%048 0.9322 0.9539 0.9693
072 \  0.2434  0.2132 0.5111 0.7332 0.8364 0.3847 0.9192 0.7452 0.7641 0.9772
.91 v 2.044%1 2.2170 0.5202 0.7513 2.3505 (C.3983 0.9312 0.9552 0.39719 0.9831
0.90 v 2.0443 2.2204 D0.3235 9.7831 0.3631 0.9099 0.94712 0.95632 0.9779 0.9873
0480 \ 0.3495F 2.2453 0.5834 0.3403 0.9374 0.9709 0.9866 0.9943 0.9978 3.9992
0.70 \  J.0532 2.2604 GC.5191 C.8737 2.9675 0.7897 0.9966 0.9990 0.9998 0.9999
0.60 \  0.0554 0.2722 0.6391 0.3995 '2.9810 0.9961 0.9991 0.9998 1.0000 1.0000
0.50 \  2.0254% 2.2755 0.6316 0.3111 0.9872 0.9983 0.9994 0.9996 0.99$8 1.0000
0.40 V' 0.2357§% 3.2811 0.359%& 2.9176 0.9931 0.9987 0.9984 0.9933 0.9993 0.9999
0.30 v 0.2526 0.283% 0.6841 J.9212 0.9914 0.9985 0.9948 0.9984 0.99385 0.9998
0.20 A 0.05%0 2.2856 .0.685% 0.9232 0.992C 0.9982 0.9955 0.9948 0.9578 0.9596
C.10 V  2.0592 0.2256 0.4636 0.9262 0.992F 0.9981 0.7948 0.9941 0.9975 0.9996
C.00 v 0.03%3 0.2389 0.563% 0.9246 0.9926 2.9983 0.5949 0.9940 0.9975 0.9998
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3. Errors of II. and III. type, k = 3.00

GAMMA® (RHO,DELTA)
0.00 1. 2. 3. 4. 5. ba 7. g. 9. 10.
1.00 V' 0.0114 0.0793 0.2500 0.420% 0.4885 0.4992 0.4995 0.4998 C.4998 0.4998
0.99 v 0.0120 ©.074% 0.2140 0.3299 0.3541 0.3353 0.3103 0.2353 G.2623 0.2398
0.98 ' 0.0121 ©€.G719 0.1571 (.2924 0.3019 0.2739 0.2420 0.211% 0,1341 0.1587
0.97 v 0.0121 C.0593 0.1338 0.2644 0.2642 0.2309 0.1956 0.1636 C€.1352 0.1103
0.96 V' 0.0120 C.006% (.1724 0.2415 0.2343 0.197% 0.1611 0.1289 0£.1015 0.07856
0.95 v 0.0119 0.0644 0.1623 0.2221 0.2095 D0.1711 0.1342 0.1030 0.0774 0.056%
0.94 \ 0.011% 0.0622 0.1533 0.2051 0.1585 0.1491 0.1127 0.0829 0.0595 0.0416
0.93 % C.0117 0.0607 G.1450 0.1901 0.1703 0.130¢ 0.0952 0.0672 C.0461 0.0307
G.92 V' 0.0116 0.0581 0.137e¢ 0.1764 0.1545 0.114% 0.0808 0.0548 0.0359 0.0228
0.91 v 0.0115 0.0561 0.1304 O.1544 0.1405 0.1013 0.0683 0.0448 C.0281 0.016%
0.90 V' 0.0113 0.0543 €.1239 0.1534 0.1280 0.0%97 0.058% 0.0368 0.0221 0.0127
0.80 \ 0.0098 0.0385 C.0764¢ 0.0806 0.0544 0.0288 0.0134 0.0057 0.0022 0.0002
0-70 v 0.0082 0.0276 0.0479 0.0442 0.0246 0.0100 0.0034 0.0610 G6.0002 0.0001
0.60 A 0.0067 0.0194 0.0299 0.0243 G.0%14 0.063¢ 0.0009 0.0002 0.0000 0.0000
0.50 A 0.0055 0.0733 0.0183 0.0133 0.0053 0.0013 0.0002 0.0000 0.0000 0.0000
0.40 \ 0.0045 0.008% (©.0109 0.0071 0.0024 0.0005 0.0001 0.0000 0.0000 0.0000
6.30 \  0.0037 (€.005° 0.0063 0.0036 0.0011 0.0002 0.0000 0.0000 0.0000 O0.0000
0.20 ' G.0031 0.0039 0.0035 0.001%8 0.6005 0.0061 0.0000 0.0000 0.0000 0.0000
0.10 ' 6.0028 0.0028 0.0021 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 v 0.0027 0.0024 0.0016¢ 0.0007 0.0001 0.,0000 0.0000 0.0000 €.0000 ©.0000

GAMMA'* (RHO,DELTA)
0.00 \ 1. 2. 3. 4. 5. 6. 7. 8. 5. 10.
1.00 A 0.0000 0.0000 ©.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €.0000 0.0000
0.99 A 0.0028 0.0113 0.0170 0.0095 0.0020 0.00062 0.0000 0.0000 GC.0000 0.0000
0.98 \  0.0037 0.014e 0.0213 0.0116 0.0023 0.0002 0.0000 0.0000 C€.0000 €.0000
0.97 v 0.0043 0.01¢6 0.0237 0.0126 0.0025 0.0002 0.0000 0.0000 GC.0000 O0.0000
d.96 % 0.0045 0.0180 0.6251 0.0132 0.0026 0.0002 0.0000 C.0000 C€.0000 ©.0000
0.95 % 0.0052 0.018° 0.0261 0.0135 0.0026 0.0002 0.0000 0.0000 G6.0000 0.0000
0.94 \  0.0055 0.0196 0.0265 0.0136 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000
0.93 \ 0.0058 0.02091 C€.02¢% 0.013s 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000
0.¥2 v 0.0060 0.0205 0.06270 ©0.0135 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000
0.91 \  0.006Z 0.0207 0.0273 0.0134 0.0325 0.0002 0.0000 0.0000 0.0000 0.0000
0.90 \  6.0063 0.0202 0.026% 0.0132 0.0025 0.000Z 0.0000 0.0000 0.0000 0.0000
0.80 \  0.0067 0.0194 0.022¢ 0.0106 0.001% 0.0001 0.0000 0.0000 0.0000 0.0000
0.70 ' 0.0064 0.01¢1 G.p177 0.0072 0.0014 0.0001 0.0000 0.0000 0.0000 0.0000
0.60 \  0.0057 0.012¢ G£.0130 0.0056 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000
0.50 v 0.004° G.0095 0.0092 0.0038 0.0006 0.0000 0.0000 0.0000 G.000G O0.0000
0.40 ' 0.0041 0.006° (.0062 0.0025 0.0004 0.0000 0.0000 0.0000 C.0000 G.0000
0.30 v 0.0035 €.0049 0.0040 0.0015 0.0002 0.0000 0.0060 G.0000 0.0000 0.0000
G.20 N €.0030 0.G034 €.0025 0.0009 0.0061 0.0000 0.0000 0.0000 C.00C0 0.0000
G.10 A 0.0027 ©.0026 ©.0015 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 O0.0000
0.0G6 v 0.002¢ 0©.0323 0.0014 0.0004 0.0001 0.0000 0.0000 0.0000 C€.0000 0.0000

BETA' (RHO,DELTA)
0.00 \ 1. 2. 1. 4o 5, 6. 7. 5. 9. 10.
1.00 v 0.0114 0.0793 0.2500 0.4207 0.4287 0.4994 0.5001 0.5002 0.5002 0.5002
0.99 \  0.0135 0.0950 0.3020 0.5210 0.6251 0.6635 0.6897 0.7142 0.7377 0.7602
0.98 \ 0.0144 0.1013 0.2242 0.5605 0.6777 0.724% 0.7580 0.7881 0.8159 0.8413
0.97 A 0.0151 0.1060 0.3399 0.58%96 0.7156 0.767% 0.8043 0.8364 0.8648 0.8397
0.96 % 0.0156 0.71098 0.3523 C.é6130 0.7456 0.5010 0.8389 0.8711 0.8985 0.9214
0.95 A 0.0161 0.1132 0.3637 0.6327 0.7703 0.8277 0.8656 0.8970 0.9226 0.9431
0.94 V' 0.0165 0.1161 0.3733 0.649% 0.7913 0.8497 0.8873 0.9171 C.9405 0.9584
G-93 \  0.0165 0.1137 0.3319 0.6649 0.8095 0.8482 0.9048 0.9328 0.9539 0.9693
0.92 A 0.0172 0.1211 0.3896 0.6783 0.8253 0.88340 0.9192 0.9452 0.9641 0.9772
0.91 \ 0.0175 0.1233 0.3966 0,6903 0.8393 0.8975 0.9312 D0.9552 0.9719 0.9831
0.90 \  0.0175 0.1252 0.4030 0.7012 0.8517 0.9092 0.9412 0.9632 G0.9779 0.9873
0.80 V' 0.0192 ©0.1392 C.4464 0.7713 0.9247 0.9700 0.9865 0.9943 0.9978 0.9992
0.70 v 0.0210 0.1471 0.4597 0.8050 0.9540 0.9885 0.9966 0.9990 0.9998 0.9999
§.60 N 0.0217 0.151° Q.4831 0.8226 0.9688 0.9951 0.9991 0.999f 1.0000 1.0000
0.50 A 0.0222 0.1549 0.4%0% 0.831° 0.9726 0.9974 0.9997 0.9998 0.9997 0.9950
0.40 A 0.0224 D0.1566 0.4953 0.8367 0.9752 0.9982 0.99$7 0.9990 GC.9984 0.9991
0.30 \ 0.0226 0.1575 0.4977 0.8392 0.9764 0.9984 0.9993 0.9974 C.9960 0.997%
9.20 \ 0.0227 0.1582 0.4990 0.8404 O0.976% 0.9985 0,9991 0.9564 (.9942 0.95966
0.10 v 0.0227 0.15%4 0.4%96 0.8410 G.9771 0.998B6 0.9990 0.9957 0.9935 0.9962
0.00 v 0.0223 0§.1535 0.49%97 0.2412 0.9772 0.9986 0.9991 0.9560 0.9934 0.9960
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4, Errors of II. and III. type, = 3.29

GAMMA® (RHO,DELTA)
G.00 \ 1. 2. I, 4. 5. 6. 7. 8. 9. 10.
1.00 \  0.0055 G.0493 0.1929 0.3305 0.4781 0.4982 0.4998 0.4998 0.4998 0.4998
0.99 \  0.0059 C.0470 0.1663 0.2995 0.346% 0.3346 0.3103 0.2858 0.2623 0.2398
0.98 \  0.0055% G.045% 0.1532 0.2654 0.2956 0.2734 0.2419 0.2119 0.1841 0.1587
0.97 \  0.0059% 0.0434 0.1427 0.2397 0.2586 0.2304 0.1956 0.1636 0.1352 0.1103
0.96 A 0.0059 G.0413 C.133s 0.2187 0.2292 0.1974 0.14611 G.1289 0.1015 0.0786
0.95 \  0.0052 0.0403 0.1256 G.2008 0.2049 0.1707 0.1342 0.1030 0.0774 0.0569
0.94 \  0.0058 0.C38° 0.1184 0.1552 0.1842 0.1483 0.1127 0.0329 0.0595 0.0416
0.93 % 0.0357 G.0375 0.1113 0.1713 0.16£T 0.1303 0.0952 0.0672 0.0461 0.0307
0.92 \  G.0057 0.0361 0.1057 0.1589 0.1507 0.1146 0.0807 0.0542 C.0359 0.0228
0.91 \  ©.005% 0.034° 0.1000 0.1476 0.1369 0.1011 0.0683 0.0448 (.0281 0.0169
0.0 \  0.0055 0.033% 0.0%48 0.1374 0.1246 0.0%94 G.0588 0.036% 0.0221 0.0127
0.50 \  0.0047 0.0234 0.056s 0.0705 0.0524 0,0286 0.0134 0.0057 C.0022 0.0008
0.70 \  0.0032 C.0160 0.0342 0.0374 0.0233 0.0099 0.003% 0.0010 G.0002 0.0001
0.66 \  0.G0356 0©.0103 0.6204. 0.019% (0.0105. 0.0035 0.0009 0.0002 €.0000 0.0000
0.50 \  ©.0024 0.057% 0.0113 0.0103 C.0047 0.0013 0.0002 0.0000 ©.0000 0.0000
C.40 \  0.0019 0.0045 0.036e 0.0052 0.0021 0.0905 0.0001 0.0000 <C.0000 0.0000
5.30 \  G.0015 0.0923 0.0034 0.0925 0.000% 0.0002 0.0000 0.0000 ©.0000 0.0000
G.20 \  G.0012 0.0017 0.0312 ©.001%1 0.0003 0.0001 0.0000 0.0000 C.0000 0.0000
6.10 \  0.0010 ©.0011 G.0012 0.0005 ©0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.006 \  ©.001C ©.000% G.G307 0©.0703 0.0001 0.0000 0.0000 0.0000 C.0000 0.0000

GAMMA®' " (RHO,DELTA?
0.00 \ 7. 2. 3. 4. 5. 6. 7. g. 9. 10.
1.60 \  0.0000 G6.0000 0.0000 0.0000 0.000C 0.0000 0.0000 0.0000 C.0000 ©.0000
G.99 \  0.0015 ©.0080 0.0163 0.0122 0.0034 0.0003 G6.0000 0.0000 ©.0000 0.0000
0.98 \  0.002C 0.0104 ©.0203 0.0147 0.0040 0.0004 0.0000 0.0000 0.0000 0.0000
0.97 \  0.0023 0.0118 0.0224 G.0159 0.0042 0.0004 0.0000 0.0000 0.0000 0.0000
G.96 \  0.0026 0.0127 0.0237 0.0165 0.0043 0.0004 0.0000 0.0000 0.0000 0.0000
0.95 \  G.0025 0.0133 0.0244 0.0168 0.0043 0.0004 0.0000 0.0000 0.0000 0.0000
0.94 \  0.002% 0.01382 0.024% 0.016% 0.0043 0.0004 0.0000 0.0000 0.0000 0.0000
0.93 \  0.0030 0.0141 0.0250 0.0168% 0.0043 0.0004 0.0000 0.0000 0.0000 0.0000
0.92 \  0.0031 0.0143 0.0250 0.0166 0.0042 0.0004 06.0000 0.0000 0.0000 0.0000
0-91 \  0.003Z 0.0144 0.0243 0.0164 0.0041 0,0006 0.0000 0.0000 0.0000 0.0000
0.90 \  0.0023 0.0144 0.0246 0.0161 GC.0040 G.0004 0.0000 0.0000 0.0000 0.0000
0.80 \  0.0034 0.012& 0.019% 0.0122 0.0029 0.0003 0.0000 0.0000 0.0000 0.0000
6.70 \  0.0031 0.0102 0.014%6 0.G085 0.0020 0.0002 0.0000 0.0000 0.0000 0.0000
0.60 \  0.0026 0.0076 0.0101 0.0057 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000
6.50 \  0.002z 0.0054 0.0067 0.0036 0.0008 0.0001 0.0000 0.0000 G.0000 0.0000
0.40 \  0.0018 0.0037 0.0042 0.0021 0.0005 0.0000 0.0000 0.0000 C.0000 0.0000
0.30 \  G.0014 0.0624 0.0025 0.0012 0©.0003 0.0000 0.0000 0.0000 0.0000 0.0000
0.20 \ 0.0012 0.0015 0.0014 0.0004 0.000% 0.0000 0.0000 0.0000 C.0000 0.0000
0.10 \  6.0010 0.0011 0.0008 0.0003 0.000% 0.0000 0.0000 0.0000 0.000% 0.0000
0.00 \ G.0010 0.0009 0.0006 0.0002 ©.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BETA® (RHO,DELTA)
0.00 \ 1. 2. 3. L. 5. 6. 7. 8. 9. 10.
1.00 \  G.0055 GC.0493 ©0.1930 0.3306 0.4783 0.4984 0,.5001 0.5002 0.5002 0.5002
0.99 \  0.0066 0.0596 0.2359 0.4738 0.612% 0.6623 0.6896 0.7142 0.7377 0.7602
0.98 A 0.0071 0.063%8 G.2530 D0.5105 0.6647 0.7237 0.7580 0.7881 0.8159 0.8413
0.97 \  0.0074 C.0669 GC.2657 0.5373 0.7020 0.7666 0.8043 0.8364 0.8648 0.8857
0.96 \  0.0077 0.05%4 G.2760 0.5560 0.7315 0.7997 O0.B388 0.8710 0.8985 C.9214
0.95 \  0.0079 0.0715 0.2847 0.5772 0.7558 0.8263 0.8557 0.8970 0.9226 0.9431
0.94 \  0.0081 0.0734 0.2924 0.592° 0.7765 0.8483 0.88573 0.9171 0.9405 0.9584
5.93 \  0.0083 0.0751 0.2991 0.6067 O0.7943 0.8668 0.9048 0.9328 0.953% 0.9693
0.92 \  0.0085 0.0765 0.3952 0.6129 0.8099 0.8825 0.9192 0.9452 0.9641 0.9772
0.91 \  0.0086 0.0780 0.3107 0.6297 0.8236 0.8960 0.9311 0.9552 0.9719 0.9831
0.90 \  0.0088 0.0793 0.3157 0.6398 0.8357 0.9076 0.9412 0.9632 0.9779 0.9373
0.80 \ 0.0095 0.0580 0.3492 0.7028 0.906% 0.9683 0.9865 0.9943 0.9978 0.9992
0.70 \  C.0103 0.0927 0.3663 0.7323 0.9350 0.9869 0.9966 0.9990 0.9998 0.9999
0.60 \  0.0106 0.0953 0.375%5 0.7470 0.9471 0.9°32 0.9990 0.9998 1.0000 1.0000
£.50 \  0.0103 G0.09£° 0.3807 0.7544 0.9524 0.9954 0.9997 (C.999% 0.999% 0.9998
0.40 \  0.0109 0.0977 0.3834 0.7581 0.9548 0.9962 0.9998 0.9996 C€.9987 0.9982
6.30 \  0.0110 0.0982 0.3843 0.7599 0.9557 0.9965 0.9998 0.9991 0.9965 0.9952
0.20 \  0.0110 0.0984 0.3855 0.7607 0.9561 0.9966 0.9997 0.9985 0.9946 0.9931
5.10 \  G.0110 0.0985 0.3357 0.7610 0.9563 0.9966 0.9998 0.9986 0.9%6 0.9922
0.00 \ 0.0110 O0.0925 0.3858 0.7611 0.9564 0.9967 0.9998 0.9984 0.9941 0.9923
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