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André Fischer� and Thomas H. Kolbe� and Felicitas Lang�

Institut für Informatik I�/III�, Institut für Photogrammetrie�, Universität Bonn
e-mail: andre@cs.uni-bonn.de, tk@cs.uni-bonn.de, Felicitas.Lang@ipb.uni-bonn.de

Keywords: building modeling, multi image correspondence analysis, mid-level feature
aggregates, aspect hierarchies, constraint logic programming.

Abstract

We propose a model-based approach to automated 3D extraction of buildings from aerial images.
The semantics of the concept building is used to control and to evaluate building extraction in
all stages of the process. The semantics is encoded by means of generic 3D object modeling,
which describes thematic and geometric constraints on the spatial structure of buildings, and of
2D image modeling, which integrates sensor and illumination modeling to describe the appearance
of buildings specific for the given aerial imagery. 3D object and 2D image modeling are tightly
coupled within a multi-layered framework which contains an is-part-of-hierarchy of 3D building
parts and their corresponding image descriptions. The overall strategy follows the paradigm of
hypotheses generation and verification and combines bottom-up and top-down processes. Due to
the explicit representation of well defined processing states in terms of model-based 2D and 3D
descriptions at all levels of modeling and data aggregation our approach reveals a great potential
for a reliable building extraction.

1 Introduction

Due to the fact that more than about 50% of the world population live in urban or suburban
environments the automation of 3D building extraction is an issue of high importance and
shows an increasing need for various applications including geo-information systems,
town planning or environmental related investigations.
Aerial images contain on the one hand a certain amount of information not relevant for the
given task of building extraction like vegetation, cars and building details. On the other
hand there is a loss of relevant information due to occlusions, low contrast or disadvan-
tagous perspective. To compensate for these properties of image data as well as for being
able to handle the overwhelming complexity of building types and building structures, a
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promising concept of automated building extraction from aerial images must incorporate
a sufficiently complete model of the objects of interest and their relations within the whole
process of image interpretation and object reconstruction (cf. Suetens et al. 1992).

Such a strong and complete modeling approach seems not to be available up to now as
the acquisition of spatial data for geo-information systems etc. today still is mainly done
by human operators. Therefore, the representation of domain specific semantics is still a
crucial subject of discussion and research in 3D building extraction.

We propose a model-based approach to automated 3D extraction of buildings from aerial
images. The semantics of the concept building is used to control and to evaluate building
extraction in all stages of the process. It is encoded by means of a generic 3D object
model, which describes thematic and geometric constraints on the spatial appearances of
buildings, and a 2D image model, which integrates sensor and illumination modeling to
describe the projective appearances of buildings specific for the given aerial imagery.

1.1 Related work

Related work on 3D building extraction — or in general on 3D scene reconstruction —
reveals different modeling schemes. Polyhedral models show a long tradition as approxi-
mative object descriptions (e.g. Clowes 1971, Huffman 1971, Waltz 1975, Sugihara 1986,
Kanatani 1990, Heyden 1994). Obviously polyhedral descriptions are too general for the
use within 3D building extraction and therefore move the burden of building modeling
on additional representation schemes to represent and organize domain specific heuristics
and constraints like in the MOSAIC system (cf. Herman and Kanade 1987) or in the ap-
proach of Braun 1994. Parameterized models are restricted to describe the most common
building types in the sense of prototypes (cf. McKeown 1990, Quam and Strat 1991, Lang
and Förstner 1996a,Lin et al. 1994a, Lin et al. 1994b, Lin et al. 1995) but show a lack to
represent variations and combinations of their shapes as well as other relations. Prismatic
models can describe arbitrary complex polygonal ground plans of buildings, but reveal
the strong restriction to buildings with only flat roofs (cf. Weidner and Förstner 1995,
Weidner 1996). CAD models are used to describe objects with fixed geometry and topol-
ogy in object recognition tasks, especially for controlling industrial processes (cf. Hansen
and Henderson 1993, Flynn and Jain 1991, Ikeuchi and Flynn 1995, Munkelt 1995). The
use of CAD models in building extraction is therefore restricted to the identification of a
priori known buildings (cf. Sester and Förstner 1989, Schickler 1993, Huertas et al. 1995).
Generic modeling approaches promise on the one hand the greatest modeling power, but
on the other hand demand effective constraints and heuristics to restrict modeling to build-
ing specific shapes. Fua and Hanson 1987 employ simple box-type primitives but propose
an explicit representation of legal primitive combinations to more complex building ag-
gregates. The approaches of Dickinson et al. 1992 and Bergevin and Levine 1993 are from
outstanding importance due to the integration of 3D generic object models and an ex-
plicit modeling of 2D projective object appearances within a recognition-by-components
strategy (cf. Biederman 1987). Both approaches employ volumetric primitives instead of
simple box-types but neglect the description of elaborated schemes for domain dependent
primitive combinations. Bignone et al. 1996 propose a generic roof model which assumes
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planar roof surfaces. Extracted 3D roof patches are grouped by an overall optimization
according to the simplicity, compactness and completeness of the resulting roof shape. To
complete the building shape vertical walls are assumed. This approach shows impressive
results on some test data but obviously shows no explicit modeling of building types and
building specific aggregation schemes. Groups of planar 3D patches optimized according
to the criteria of simplicity, compactness and completeness are not necessarily real roof
shapes.

1.2 Overview

In Braun et al. 1995 we proposed in detail the concepts and processes which have to be
taken into account for a sufficient complete modeling framework for 3D building extrac-
tion. This modeling framework integrates interrelations between image data and model
descriptions at different aggregation levels and in terms of corresponding 3D object and
2D projective object descriptions. Within this paper now we present a strategy for a well
defined path from the unstructured image data to the model-based and highly structured
3D reconstruction of buildings.

The overall strategy follows the paradigm of hypotheses generation and verification
and combines bottom-up (data-driven) and top-down (model-driven) processes. Domain
knowledge constraints even the early stages of hypotheses generation due to an elaborated
is-part-of-hierarchy of 3D building parts and their corresponding projective descriptions.
The reconstruction process is carried out already for local 2D feature aggregates to allow
an early domain specific classification as 3D local building feature aggregates. A step-
wise and strongly model-driven aggregation process combines 3D local building feature
aggregates to well defined parameterized 3D building parts and then to more complex 3D
building aggregates. The resulting complex 3D building hypotheses and their components
are back projected into the images to allow a component-based and robust hypothesis ver-
ification applying constraint solving techniques (cf. Kolbe et al. 1996).

Due to the explicit representation of well defined processing states in terms of model-
based 2D and 3D descriptions at all levels of modeling and data aggregation our approach
reveals a great potential for a reliable building extraction.

2 Concept

In this section we present the proposed building model and discuss its implications on the
developed strategy.

2.1 Models

For coping with the complexity of natural scenes we propose an application specific mod-
eling of the domain buildings. The general concept has been presented in Braun et al.
1995. It contains a close interaction of bottom-up and top-down strategies which is fun-
damental for interpretation tasks dealing with complex image data and models.
A crucial aspect of the approach is the explicit separation of object, sensor and image
model in order to reach parsimony in modeling. We start with modeling the 3D-objects
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Fig. 1: Building model: The different semantic levels of the part-of hierarchy are shown in vertical
direction, the different levels of abstraction of the is-a hierarchy in horizontal direction, which is
only shown for the 3D-model. The 2D-image model describes the expected appearance of the
building in the different levels of the part-of hierarchy, which is indicated by not showing the
hidden lines.

leading to the object model. The sensor and the illumination model will transfer many
of the concepts from the object to the image model describing the expected appearance
of the objects. We now specify these models more detailed than in Braun et al. 1995 and
explain the decisive role of the semantics.

Object Model Buildings reveal a high variability in structure which suggests to represent
them as an aggregation of several simple building parts. This enables to cope with the
problems caused by occlusions, low contrast, noise and disturbances.

We therefore propose a multi-level part-of hierarchy (cf. figure 1). It reflects different
levels of the envisaged semantic abstraction. The primitives of each aggregation level are
specialized by an is-a hierarchy into subclasses.

Each primitive is described by its semantics, its geometry and possibly its physical prop-
erties. Its class membership and its relations to other primitives formally describes its
semantics. The geometry is described by pose and form parameters.

We at the moment employ four semantic levels for modeling complex buildings, which
seems to be sufficient for a large class of buildings.

The first level (feature level) contains features F , namely attributed points P , lines L

and regions R. Attributes for lines and regions, for instance, are the orientation classifi-
cations horizontal (h), oblique (o) and vertical (v). Regions have an additional attribute
describing its role: valid values among others are wall, roof and floor. In general the set
of parameters is divided into positional parameters on one hand, describing position and
orientation, and form parameters on the other hand like width, height and length.
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The second level (feature aggregate level) contains feature aggregates A which are in-
duced by points, lines and regions, and contain all their direct neighbors. Each aggregate
is defined by a feature graph, given by a set F � ff�� � � � � fkg of features and adjacency
relations R � F � F . A Corner C , for instance, contains one point and all its adjacent
lines and regions (cf. fig. 2).
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Fig. 2: A corner is a feature neighborhood of a point (left). Drawn as graph the arcs express the
adjacency relation (mid). Assuming no occlusions and disturbances its expected appearance in the
image reveals the same neighborhood relations between the corresponding 2D-features (right).

The third level (building part level) contains building parts P . Currently, they are defined
as corner graphs given by a set C � fc�� � � � � cng of corners and adjacency relations
R � C � C . They are parameterized volumetric objects. Each building part has at least
one so called plug face which is used for connecting building primitives to each other.
We discriminate terminals having exactly one plug face and connectors with two or more
plug faces (cf. figure 3).

Terminals: Connectors:

Fig. 3: Some examples of building parts. Plug faces, which are used to connect them, are drawn
dashed.

The fourth level (building level) contains complete buildings. Buildings are defined as
graphs with building parts as nodes, the arcs representing pairs of building parts connected
by corresponding plug faces. Thus, the most simple building consists of two connected
terminals.

Image Model The 2D image model describes the expected appearance of the building
at the same levels of aggregation as the corresponding 3D-structures.1 This guarantees
coherence of the representation of 2D- and 3D-primitives being the prerequisite for all
processes of 3D-reconstruction, aggregation, indexing and matching.

1Actually the image model contains the raster image as the lowest, say 0th level, from which the image
features are extracted. This lowest level is not shown as we do not explicitely refer to it.
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The image model on one hand contains all properties which are invariant under projection
and can be used as constraints. This especially holds for all thematic labels, neighborhood
and geometric relations. E. g. a 2D-corner, being a point induced image aggregate may
be labeled a gable corner, the neighborhood relation between two regions of a roof in
general can be expected to be transferred to a pair of image region, whereas – assuming
weak perspective – parallel 3D-roof lines map to parallel 2D-roof lines. Constraints of the
higher aggregation levels are transferred to the primitives of the lower ones, if necessary.
On the other hand all disturbing effects resulting from the illumination, the projection
and the feature extraction need to be modeled. This also holds for the appearance of the
model internal but not directly visible plug faces. These manifest themselves in local
image aggregates, which contain open ended lines and faces, as it occurs in the feature
aggregate level or in the building part level (cf. fig. 1 and 3).
The image model will be used for both, the multi view reconstruction of 3D-corners and
the 2D-verification of hypotheses of building parts or of complete buildings.
Observations and templates We now are able to describe the task of linking the seman-
tic model with the image data in detail.
As mentioned above, each primitive in the aggregation hierarchy is described by its se-
mantics and its geometry possibly including physical properties. The semantics is mani-
fested in the mutual relations between the different primitives or aggregates, which need
to reflect their relations in reality. Semantic modeling therefore consists of describing the
models of the primitives — either 3D or 2D — in terms of constraints on their attributes
and relations, either on the same or on another aggregation level.
Image interpretation can be seen as a level-by-level goal driven matching process of the
original sensor data with the model.
Original sensor data themselves do not contain any semantic information. They however
provide original or derived geometric and physical measures and implicitely show certain
relations. These have to be derived and organized in the same structure as the envis-
aged class, also in case they are aggregated. An soon as they are linked to primitives of
the model by a matching process (cf. below), they result in observations which have a
meaning and can be used in later steps of the analysis.
As at intermediate levels we obviously obtain only partially instantiated primitives we
distinguish two types of instances of the primitives, templates and observations (cf. fig 4):

1. Templates. Templates are partially instantiated classes.

Templates carry the semantics, which is given them during the modeling process.
These are constraints on relations to templates on the same level or on the lower
level. Uninstantiated attributes or relations in our context primarily refer to geo-
metric properties, but also to labels of parts of the aggregate, thus templates on the
lower level.

2. Observations. Observations are fully instantiated primitives.

Observations obtain their semantics from the template through the matching pro-
cess, especially by instantiation of mutual relations and relations to primitive obser-
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Fig. 4: Templates and observations as partially and fully instantiated primitives. Observations
result from image data by a matching process.

vations. Observations can be seen as interpreted image data at a certain level of the
aggregation hierarchy.

2.2 Strategy

We employ a combined, data-driven and model-driven strategy integrated in a matching
process (cf. Fig. 4). It always links two levels within the part-of-hierarchy: Corner
reconstruction links the feature and the feature aggregate level, reconstructing building
parts or buildings links the feature aggregate level with the building part or the building
level, whereas the verification step links the feature level with the building part or the
building level.

The matching consists of four steps:

1. Trigger: The matching is triggered by a selected template at the higher level e. g. a
corner, thus initiated by the semantic model. It can be seen as a set of goals. They
have the same structure, e. g. corner�type� geometry�, allowing to handle them
independently on the specific instance.

2. Prediction: The selected goals are used to predict a set of primitive templates on
the lower level. They also reveal the same structure and in addition are linked by a
set of compatibility relations, which are given by the aggregate template.

3. Grouping: Based on the predicted components the primitive observations on the
lower level, which play the role of the data in the matching process, are grouped.
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Groups thus are candidates for higher level aggregates. E. g. when looking for cor-
ners, point induced image structures are established. If strong positional knowledge
is available, e. g. when verifying buildings or building parts, grouping consists of
finding equivalent primitives, e. g. collinear straight line segments. The data struc-
ture of the groups is given by the aggregate template. However, no final interpre-
tation takes place as grouping not necessarily checks the mutual relations between
the primitives simultaneously.

4. Aggregation: The aggregate template is now matched to the found groups, estab-
lishing information at the higher level of the hierarchy. In this step all constraints on
the geometry, the radiometry and possibly on the semantics of the primitives at the
lower level are used. This way primitives contained in the groups may be excluded,
cf. Fig. 5, where primitive E is grouped but not aggregated. The matching transfers
the semantics of the templates, being part of the model, to the grouped data. This
way the groups are interpreted, leading to aggregates which have a specific mean-
ing within the model, e. g. labeling a corner as a gable corner. Using the part-of
hierarchy, also missing semantic labels for the primitives on the lower level of the
hierarchy are established, indexing them into one of the prespecified classes, e. g.
labeling a horizontal 3D-line segment of a vertex as gable point line(h).

2.3 The Procedure

The complete process can be described in the following way: Our input data are given
as digital raster images with multiple overlap. Further information about the aerial image
flight like exterior and interior camera orientation and time stamp are used. The start-
ing point of our analysis is the extraction of a polymorphic image description consisting
of points P �D, lines L�D and regions R�D and their mutual relations (cf. Förstner 1994,
Fuchs and Förstner 1995). It allows to derive point, line and region neighborhood aggre-
gates A�D, where vertices V �D are the most promising ones for starting our analysis.

8



Building

Viewparts

Vertices

Features 3D-Features

Corners

Buildingparts

3D2D

Views

Fig. 6: Information transfer within the whole pro-
cess. The close integration of 2D and 3D reasoning
is performed by an iteration loop. The dashed ar-
row marks the initialization step. 3D-reconstruction,
generation and verification of hypotheses for build-
ing parts and buildings is repeated. Verification is
based on generated views using matching on the fea-
ture level.

Our procedure consists of three main tasks, which are executed subsequently (cf. Fig. 6):
1) reconstruction of 3D corners: Since the expressiveness of 3D data is higher than that
of 2D data, we aim at an early transition from 2D to 3D in the reconstruction process,
this way reducing the overall number of future hypotheses. This is done by finding fea-
ture groups, namely vertices in the images, which may correspond to building corners.
Hypothesized 2D corners of different images are matched, leading to 3D corners.
2) generation of building hypotheses: The 3D corners now are taken to find building
parts, which can explain these corners. When there is needed more than one building part
to explain the 3D observations, the building parts are combined to a building. In this step
some components and parameters of the building parts may stay undetermined.
3) verification of building hypotheses: For verification the 3D building templates are
projected back into the different images, resulting in 2D views for buildings, or views of
building parts, (cf. Fig. 1). The predicted feature templates and their interrelationships
are then matched with the extracted image features and their relations. The matching
possibly determines free parameters of the template.

The successful sequence of matching steps results in an iteratively improved gain in
knowledge. The three steps are repeated until no further hypotheses can be generated:
The verified building hypotheses lead to predicted unobserved 2D primitives on the lower
levels, giving additional information for reconstructing previously undetected corners,
initiating a second iteration of 3D-reconstruction, generation of building hypotheses and
verification.

3 Realization

3.1 Reconstruction of 3D Corners

In this section we describe the procedure for 3D-reconstruction and interpretation on the
level of feature aggregates (cf. fig. 1). The reconstruction is based on local image ag-
gregates A�D, which can be directly derived from our polymorphic feature description.
We distinguish corners and vertices, corners being interpreted vertices. As for vertex
structures V �D, being the projections of 3D vertices V �D into the images, the imaging
geometry gives strong restrictions during the correspondence analysis, we focus on the
3D reconstruction of corners C�D.
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Corner Model Corners are specialized into different subclasses. Each corner is described
by the corner point, several lines and planar faces (cf. fig. 2). The partitioning of corners
is described by their line attribution, given by the semantic labels (h), (v) or (o) (cf. Gülch
1992). This description is further refined by distinguishing vertical and oblique lines due
to their slope into (v+), (v-), (o+) and (o-). Finally, different geometric constaints between
the corner components like e. g. symmetry and orthogonality are considered.
We also model corner pairs. The previous classification of single corners is used for
deriving restrictions like collinearity of lines and coplanarity of planes on compatible
corner pairs.
All these semantic attributed subclasses are collected in the set �C , one element for in-
stance being the quadruple f (h), (o-), (o-), symmetry (o-,o-) g, which corresponds to
the vertex at the ridge of a hip roof.

Construction of Corner Hypotheses Starting point for the analysis are the 2D ver-
tices V �D (cf. section 2.3). In the first step we generate 3D vertices. Selected tu-
ples of corresponding vertex structures form the basis for the transition to 3D-vertices
V �D � fv�D

�
� � � � � v�Dn g by a joint forward intersection of all corresponding 2D-vertices

v
�D � �v�D

�
� � � � � v�DN �. It is established by heuristically selecting a suitable sequence of

vertices, which are then evaluated. The correspondence analysis uses the epipolar ge-
ometry and the structural similarity of matching candidates. Relational matching of the
features F �D, which describe the vertex structures v�Di of the correspondence tuple v�D,
leads to a 3D Vertex v�D.

Establishing corner hypotheses uses the corner model in the following way. We inter-
pret the generated 3D vertices V �D by a first classification, leading to admissible corner
subclasses �C . First, the line attributation is used to obtain a subset ��

C of �C , which in
case the line attributations do not correspond to a valid corner description, is the empty
set. For each element of ��

C the geometric constraints, associated by the model, yield a
further reduced ���

C � ��

C , each element in ���

C being an admissable interpretation of the
vertex v�D. This way we obtain several corner hypotheses c�D.
This principle of domain reduction of possible interpretations is also applied for the gen-
eration of corner pairs �c�Di � c�Dj �.

Verification of Corner Hypotheses As the corner classification for each vertex v�D gen-
erally will be ambiguous, we perform a second rigorous classification by statistical anal-
ysis. This is an optimization problem for finding the best interpretation of the data. For
each hypothesis, we estimate the geometric (and probably radiometric) parameters by a
maximum likelihood parameter estimation. The functional model describes the relation
between observations and the unknown parameters for the unconstrained corner. Addi-
tionally hard and soft constraints ��D

�C
, given by the corner class �C , are introduced. The

result of the estimations are evaluated corner reconstructions c�D � c�D�v�D� �C�. As-
suming the same image feature observations, all possible corners are tested against the
unconstrained corner to decide for the optimal interpretation of the vertex data v�D.
Further details of the corner reconstruction approach can be found in (cf. Lang and
Förstner 1996b, Brunn et al. 1996).

The geometric constraints on single corners c�Di as well as on corner pairs �c�Dj � c�Dk �
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Fig. 7: Examples of 3D corner reconstruction. From left to right: feature aggregates marked in
one image, reconstructed 3D corners, corner graph showing the adjacency relations.

are fundamental for a geometrically improved and verified corner reconstruction. Those
corners C�D, which are accepted, are regarded as 3D-observations of the level feature
aggregates and form the basis for the 3D aggregation. The grouping of corners results
in a weighted graph G � �C�D� R� where the nodes are classified corners and the arcs
the adjacency relation. The weight of the arc expresses the conditional probability of
the adjacency relation as derived from the classification. This forms the basis for the
generation of building hypotheses as presented in the next chapter.
After the first iteration of the whole building reconstruction process, we use newly gener-
ated 2D corners C�D (cf. section 3.3), in addition to the original vertex data.

3.2 Generation of Building Hypotheses

Building hypotheses are generated from the observed corner graph G � �C�D� R� in a
two step process. First the corners are grouped and aggregated to building part templates.
In the second step these building part templates are grouped and aggrated to building
templates (cf. Fischer and Steinhage 1997).
Generation of building part templates Since building parts are defined by corner graphs
Gj , the generation of building part templates explaining the corner observations is done
by determination of maximal subsets C�D�

i � C�D that have a subgraph isomorphism
from �C�D�

i � R�� onto a Gj . That is, corner observations and templates must have the same
classifications and adjacency relations.
If a subgraph isomorphism of a �C�D�� R�� in a graph Gj of a building part p is found, the
elements of C�D� are aggregated to a new building part template �p.
Generation of building templates For the generation of building part templates struc-
tural and geometrical information are considered. In general not all building parts forming
a building have corner observations. Therefore it may be necessary to hypothesize build-
ing part templates without having actual observations for them.

11



Buildings are constructed by grouping building parts. Our generic model allows groups
of variable size as long as restrictions on pairs of building parts implied by the model are
satisfied.
The grouping task is defined by iterating the following steps. Starting with the set T� of
previously generated building part templates more complex templates are generated by
merging compatible pairs of building parts. Merging two parts implies the unification
of certain parameters and the introduction of a new length parameter (cf. fig. 8). Two
building parts may be merged, if their plug faces are of the same type and they have
compatible geometry. The latter is checked by parameter estimation. The previous step is
iterated until either all elements of T� are part of a complete building with no plug faces
or no new connections can be made.
If the first condition holds we are done, because the complete buildings in the final set
T contain all elements of T� and therefore explain all corner observations. Otherwise,
not every building part template in T� is part of a complete building in T . In order to
assign every element in T� to a complete building, new building part templates have to be
introduced for which there exist no observations. These parts must enable the construction
of new complete buildings, consisting of as few parts as possible. Every complete building
represents a building template, which is a valid aggregation of building parts.
For every building template a global parameter estimation considering all associated cor-
ner observations determines the degree of freedom for every parameter.
Generation of 2D view hierarchy For verification and determination of free parameters
of the generated building hypotheses, represented by the building templates, they have
to be matched with the observations in the image. In 2D, buildings are modeled by view
hierarchies. With respect to the fixed image geometry all topologically different aspects of
the buildings correspond to primitives on the highest level of the view hierarchy, defining
the 2D building templates. In contrast to aspect graphs the viewing direction is fixed,
but due to free parameters the object geometry is in general variable, which can lead
to different possible aspects. After the generation of the 2D building templates, they
are decomposed into primitives and their interrelationships on lower levels. A relation
between primitives on a higher level is transformed to a set of relations beween their
components on the lower level. Thereby semantic knowledge is propagated down through
every level of our aggregation hierarchy. For each image one view hierarchy is generated.

3.3 Verification of Building Hypotheses

The generation of 3D building hypotheses leads to different possible 2D views. Since
some parameters of the 3D building templates may still be free, there are free parameters
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Fig. 9: Examples of building part aggregation. From left to right: reconstructed 3D corners, best
matching building part hypotheses, aggregated building. Note that default values are used for free
parameters.

in the projected 2D views. Therefore the first task is to identify those views which match
the given observations. A match fixes free parameters of the corresponding template.
Since a match between template and observations considers objects and their interrela-
tionships this task is an instance of relational matching. We solve the resulting search
problem with constraint solving methods (cf. Meseguer 1989).

After the identification of the view, giving a semantic label to every matched feature ob-
servation, line fragments in the image are grouped according to the building template.
Then previously unobserved 2D corners are generated by robust estimations on inter-
sections of identified lines. These 2D corners are additional information that is used to
reconstruct further, previously undetected 3D corners in the next iteration of the whole
building reconstruction procedure.

The transformation of templates to a constraint satisfaction problem (CSP), the matching
and its implementation using constraint logic programming (CLP) (cf. van Hentenryck
1989, Jaffar and Maher 1994) is explained in detail in Kolbe et al. 1996.

Transformation of view hierarchies to sets of constraints A view hierarchy enumerates
the possible views for the building hypotheses with respect to one image. To evaluate
the correspondence to the originally extracted image features the matching between the
building templates and the observations is done on the lowest level of the hierarchy. The
entities considered for matching are objects of the three feature classes points, lines, and
regions and different relations, e. g. adjacency, line parallelism, region symmetry, and
region contrast. The line parallelism and region symmetry relations reflect the respective
3D properties in 2D. The region contrast relation classifies the intensity ratio between
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adjacent regions.

A building template there is represented by a set of features and a set of relations between
them. These relations may be regarded as a set of constraints which have to be satisfied
simultaneously by the corresponding objects. A consistent match is an identification of a
set of objects which satisfies all constraints. The decomposition of the matching problem
into the simultaneous satisfaction of different constraints leads to a structure which is
adequately represented by the translation of templates into conjunctions of constraints
where the features are represented by variables with restricted domains. The domain of
a variable depends on its associated model feature type, for instance line variables are
restricted to the set of line observations that were extracted from the image. Thus the first
constraint posed on a variable is the domain constraint. All other constraints are implied
by the corresponding relations of the building template.

For each view of a hierarchy one set of constraints will be generated representing the
building template.

Matching of constraint sets to the image data The matching is done seperately for
every image and view by searching for a valid assignment of extracted image features to
the variables of the corresponding CSP, such that all constraints are satisfied. Consistency
techniques exploit the structured representation of the matching problem as a constraint
network. The idea is that a constraint is used to restrict the domains of its variables and
that these reductions are propagated through the network.

Standard techniques for constraint solving (Mackworth 1977, Haralick and Elliott
1980, Dechter and Pearl 1988, van Hentenryck 1989) demand that a match satisifies ev-
ery constraint. Due to occlusions and disturbances in general neither every predicted
model feature of a view can be found nor all their incident constraints are satisfiable.
To cope with this problem we employ relaxation of constraints, allowing constraints to
be neglected. Our combination of consistency techniques and constraint relaxation fol-
lows in general the scheme described in Haralick and Shapiro 1993 for inexact matching.
As a language constraint logic programming provides hard constraints which are strictly
enforced. A soft constraint c�t�� � � � � tn��� with n � � arguments may be implemented
by a hard constraint c��t�� � � � � tn��� b� where c� is satisfied if the boolean b is true or c
is satisfied. The variable b with the domain ftrue� falseg may act as a communication
channel between the constraint and its environment. This environment may come to the
conclusion that c models an unobservable relation and relaxes c by instantiating b with
true.

The solution of the constraint satisfaction problem are the valid assignments of extracted
features to the variables. On the one hand these assignments determine the free geomet-
ric parameters of the feature templates and thus determine free parameters of the whole
building template. On the other hand, every assigned image feature is identified as a spe-
cific component of the building observation as defined by the building template. These
matched image features are given labels, denoting their semantics with respect to the
building model. Figure 10 shows on the left highlighted the image features that were
successfully matched with the building template for a saddle roof house.

Since lines in general are fragmented into several line image features, corresponding line
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Fig. 10: Left: Matched features, right: new 2D corners

features are grouped and fitted using the labeling information to determine the lines of the
building observation.

Generation of new 2D corners The solution of the CSP in general fixes further parame-
ters of the building template. It has to be noted, that free parameters may remain, if some
constraints had to be relaxed. Corners of the building template with fixed positions that
have no corresponding observation of a vertex structure in the image, finally are recon-
structed in 2D as illustrated by the right picture in figure 10 to provide new information
for the 3D corner reconstruction in the next iteration of the reconstruction process.

As mentioned above the loop of 3D-reconstruction and generation and verification of
building hypotheses will be terminated if no further hypotheses can be generated. After
the final verification step the parameters of the 3D-building model will be determined si-
multaneously based on the observed image features and taking all geometric and possibly
radiometric constraints into account.

3.4 Results

The actual result of the reconstruction procedure is presented for the international test
data set which was distributed for the Ascona Workshop 1995 on Automatic Extraction
of Man-Made Objects from Aerial and Space Images (cf. Grün et al. 1995). The image
scale is � � 	


 and we use a resolution with �
�m pixel size in contrast to Bignone et
al. 1996 who use �	�m. As building h12 is under construction, only 11 out of the 12
buildings which are contained in multiple images, are relevant for the analysis. To test the
feasibility of the concept in a first instance the number of building primitives is reduced to
2 different building part terminals and their possible connectors. To resolve the footprint
of the buildings, higher image resolution is necessary. Thus building heights can not be
determined automatically and therefore are set to fixed values. Figure 11 shows the result
after the first iteration loop (cf. Fig. 6). Results of the intermediate steps are listed in
Table 1 and reflect the following aspects of the different reasoning steps:
Reconstruction of 3D corners (I): The number of reconstructed corners RC on average
compounds �
 of the buildings corners (C), whereas � of them are incorrectely classi-
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Fig. 11: Visualization of
the reconstruction result
for the Ascona Datset af-
ter one iteration loop (cf.
Fig. 6) is performed. The
images contain 12 build-
ings in multiple overlap.
As building h12 is under
construction, we excluded
it from our analysis. We
are able to completely re-
construct 10 of the 11
buildings which were rel-
evant for the analysis.

fied. We are not able to completely reconstruct every corner, because not all corners are
observable in the symbolic image descriptions. An application indepent grouping as pre-
sented in Fuchs and Förstner 1995 may improve the initial symbolic image descriptions.
Possibly still remaining unreconstructed corners have to be identified during the verifi-
cation step of building hypotheses. The reason for incorrect classification is given by a
weak intersection geometry for the line reconstruction, which is not yet considered in the
modeling process. Neglecting the influence of the uncertainity of the line reconstruction,
the corner point is correctely reconstructed. Actually the identification of wrong corner
interpretations is performed by finding global inconsistencies during the generation of
building hypotheses. For building h10 the image resolution is not sufficient to success-
fully reconstruct any corner. The parameter estimation for correctely classified corners
using 4 images simultaneously achieves an accuracy of the reconstructed corner point
about �x � �y � ��cm and �z � ��	cm. The accuracy of the orientation of the corners
is about �� � 
��o while the reconstruction of the slope of the roof is by �sl � �o.

Generation of building hypotheses (II): The column BPH gives the number of building
part hypotheses which are generated for each of the reconstructed single corners. The
combination of these building parts results in the number BH of hypotheses of complete
buildings which are consistent with all reconstructed corners. If only one corner is given,
as it is the case for h2 and h7, the corresponding terminals are each completed to a closed
building hypothesis with a second terminal of the same type. For each of the BH building
hypotheses the view graph is generated. Currently the view graph of the best building
hypothesis is passed to the verification of building hypotheses. The decision which is the
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I II III
Building C RC CE BPH BH UV GV FP
h1 6 3 0 3/4/3 4 3 3/3/3/3 0
h2 6 1 0 3 2 5 5/5/-/- 0
h3 12 7 0 3/3/2/3/3/4/0 4 5 -/-/-/- 0
h4 6 3 0 4/3/3 4 3 3/3/3/3 0
h5 6 3 0 3/4/4 4 3 3/3/3/3 0
h6 6 3 1 3/0/4 4 4 4/4/4/4 0
h7 6 2 1 3/0 2 5 5/5/5/5 0
h8 6 3 0 3/3/4 4 3 3/3/3/3 0
h9 6 4 0 3/3/4/8 2 2 2/2/2/2 0
h10 10 0 - - - - - -
h11 6 2 0 3/3 4 4 4/4/1/0 0

C number of corners of the building
RC number of reconstructed corners
CE number of corner classification errors
BPH number of building part hypotheses

for each corner

BH number of building hypotheses
UV predicted corners
GV predicted and verified vertices

per image
FP remaining free parameters

Tab. 1: Detailed results of the intermediate reconstruction processes Reconstruction of 3D corners
(I), Generation of building hypotheses (II) and Verification of building hypotheses(III) for the
Ascona Dataset. 10 of the 11 buildings can be reconstructed as shown in column FP.

best one is given by using the Minimum Description Length criterium following Rissanen
1987.

Verification of building hypotheses(III): For each building in each image one view
graph being a building template is available and matched to the extracted image fea-
tures and mutual relations. Column UV lists the number of corners which were correctly
predicted during the generation of building hypotheses. The column GV shows for each
of the 4 images the number of correctly matched vertices. For �
 of the images a suc-
cessful matching is reached, 9 of the 10 generated building hypotheses could be verified
by successful matching in at least one image. Dashes in the table denote a break-off of
the analysis with complex or strongly underconstrained models, which can be resolved
using appriopriate heuristics to keep the search space down. As for the buildings h3 the
reconstructed corners already were sufficient to determine all parameters of the building
hypothesis, in 10 of the 11 examples the building is successfully reconstructed as shown
in the last column FP of the table.

4 Conclusions and Outlook

We have proposed a model-based approach to 3D building extraction from aerial images.
Our modeling concept reveals a tight coupling of generic 3D object modeling and an
explicit image model. Object and image model show corresponding part-of hierarchies
describing aggregation states within a recognition-by-components strategy.
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The procedure aims at a step by step increase of knowledge during the reasoning. As the
semantics of a model defines the maximum achievable knowledge about an actual scene
and its granularity determines the resolution for knowledge our model spans hierarchi-
cally from the smallest observable features to complex buildings and allows an adequate
evaluation of hypotheses and their immanent knowledge within the different reasoning
steps.
We have presented first experimental results on test data sets provided by the Landesver-
messungsamt Bonn and the ETH Zürich.
Currently we are investigating and developing on

� the measurement and propagation of uncertainty within the overall reconstruction
process;

� the extension of the current building modeling by more sophisticated knowledge
about buildings, esp. functional aspects.

� the derivation of domain dependent heuristics to constrain search spaces;

� the handling of incomplete observations within all processes and stages of hypothe-
ses generation and verification.

Especially we have to consider the integration of hard and soft constraints, i. e. logical and
statistical knowledge into the framework of constraint logic programming. Furthermore
the approach has to be compared to different automatic algorithms for segmentation, 3D
reconstruction and classical photogrammetry. In order to achieve this goal an attempt is
made to find a set of standardized notions about basic building models, parts of buildings
and classes of buildings to ease such comparisons on a conceptual level.
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Institut für Photogrammetrie, Universität Bonn.

Braun C., T. H. Kolbe, F. Lang, W. Schickler, V. Steinhage, A. B. Cremers, W. Förstner,
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