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ABSTRACT

This paper describes research on the extraction of urban structures from aerial images or high resolution satellite scenes
like the German MOMSO02 sensor. We aim at a separation of neighboring textured regions important for describing different
urban structures. It has been shown, that grey level segmentation alone is not sufficient to solve this problem. If we want
to use texture additionally, the development of a suitable representation of texture images is required. We use the scale
characteristics of the local autocovariance function, called SCAF, of the possibly multiband image function. The final result

of the process are texture edges.

1 INTRODUCTION

Texture is one of the most fundamental and at the same
time most interesting characteristics of visible surfaces in
the human perception process. Therefore, in pattern recog-
nition the analysis of textures is very important. Numerous
techniques for texture analysis have been proposed. They
can be mainly categorized as (Haralick and Shapiro, 1992):

1. Texture classification: For a given textured region, de-
cide, to which one out of a finite number of classes the
region belongs.

2. Texture synthesis: For a given textured region, deter-
mine a description or a model.

3. Texture segmentation: In a given image, which con-
tains many textured regions, determine the boundaries
between these regions.

The procedures developed for the solution of these prob-

lems can be subdivided into three categories: structural ap-

proaches, statistical approaches and filterbased approaches
(J.-P. de Beuaville and Langlais, 1994, Reed and du Buf,

1993, Shao and Férstner, 1994).

Structural approaches assume that textures contain de-

tectable primitive elements which generate the texture
in a regular or irregular manner, following certain con-
nection rules. Such approaches use e. g. so-called
texture grammars (Carlucci, 1976) or texture elements
(Julez and Bergen, 1983).
Due to the almost unlimited number of possible unit
patterns and the complexity of the rules, these proce-
dures have shown lower success in texture analysis
than the following two approaches.

Statistical approaches use statistical characteristics, deriv-
able from the images. These characteristics are often
sufficient for texture classification and segmentation,
without needing generation rules for the textures. They
can further be separated into approaches which use

¢ descriptions derivable directly from the images
such as variance, entropy or other values ob-
tained from the local pixel neighborhood, as e. g.
co-occurrences (Haralick, 1979) and

e model based descriptions, such as autoregres-
sive models, Markov or Gibbs random fields (An-
drey and Tarroux, 1996, Derin and Cole, 1986).

Statistical approaches usually refer to the image grid,
thus have difficulties in handling scale space proper-
ties.

Filter based approaches assume that the image function

can be described locally by its amplitude spectra. Ga-
bor wavelets have been the first choice together with
linear and nonlinear post processing steps to achieve
multi scale features in the different channels (A. C. Bovik
and Geisler, 1990, Bigiin and du Buf, 1992, Malik and
Perona, 1990). This class of approaches is motivated
by their similarity to the human visual system.
The advantage is that the filter responses for basic ge-
ometrical transformations are predictable and the fil-
ters work equally for natural scenes of different texture
types. However, there is no general approach for the
selection of a suitable filter bank and for the linkage of
different image channels.

2 MOTIVATION

We are interested in analyzing satellite and aerial images
especially for extracting urban structures. Therefore, we
need powerful techniques for image segmentation in the
presence of natural textures. Grey level or color segmen-
tation results often suffer from over or under segmentation.
Texture segmentation can reduce the amount of over seg-
mentation, mostly without the risk of under-segmentation.

Our first experiences with Gabor wavelets based on (Ma-
lik and Perona, 1990) demonstrated the feasibility of a fil-
ter based approach for texture edge extraction (Shao and
Forstner, 1994). Our approach used the edge detection
scheme in our feature extraction program FEX (Fuchs, 1998),
cf. Figure 1c). It exploits its ability to handle multichannel
images by taking the filter responses as a multichannel im-
age as input.

Due to the heavy algorithmic complexity, we develop a new
filter based scheme for deriving texture edges again us-
ing the edge extraction scheme of our feature extraction
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Figure 1: a) Aerial image b) Edge extraction result. Grey
level edges obtained with FEX. Observe the large number
of small edges in the textured areas. c) Texture edges from
(Shao and Forstner, 1994).

program FEX but with a newly developed filter bank. The
resulting multichannel image represents the Scale charac-
teristics of the local Autocovariance Function (SCAF) (cf.
Fig. 3). Thus, we apply FEX on a suitable representation of
texture instead of a grey level or color image for obtaining
texture edges.

We do not aim at a a complete representation of the tex-
tures. However, we achieve a separation of neighboring
textured areas, that is sufficiently good for the interpreta-
tion of aerial images.
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Figure 2: Extension of FEX by the scale characteristics of
the local autocovariance function (SCAF).

3 OVERVIEW

We want to give an overview of the individual steps of our
texture edge extraction scheme (cf. Fig.3).

First, we derive the scale characteristics of the local auto-
covariance function, (cf. section 4). This is the basic step
of our approach. These characteristics are derived in two
steps:

¢ the strength, direction and anisotropy of the texture are
derived from the square gradient of the image function
(4.2). They characterize the form of the local autocor-
relation function. This way we obtain three features of
the image texture at the highest resolution.

¢ the spatial frequency of these features is then deter-
mined using a Laplacian pyramid (4.3).

After a normalization step, we combine the pyramid levels
for all three texture features in a multichannel image (sec-
tion 4.4).

In the second step, we extract the texture edge (section5)
using the multichannel scheme known from our feature ex-
traction.
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Figure 3: Process to obtain SCAF ( scale characteristics of
the local autocovariance function) and the texture segmen-
tation from a grey level or multichannel image using FEX.

4 SCALE CHARACTERISTICS OF LOCAL
AUTOCOVARIANCE FUNCTION

This section explains in detail the steps for derivation of the
scale characteristics of the local autocovariance function.

4.1 Stochastic image model

To characterize the textures we have used the following im-
age model.

Starting from a fully partitioned image (I = J;-, S:) into
m segments S;, we assume that the ideal image function
within the segments is a weak stationary process f;(r, c) ~

N(ps, Ci), where p; = const and C; is the covariance
matrix of the image pixels within the segments (r rows, ¢
columns). We assume the covariance matrix to be repre-
sentable by a p. d. covariance function C(Ar, Ac), thus



International Archives of Photogrammetry and Remote Sensing,Vol. 32, Part 7-4-3 W6, Valladolid, Spain, 3-4 June, 1999

fixing the second moments of the distribution. The covari-
ance function can be assumed to be a decaying function
characterized by its value at zero Cy, (0,0) = o7%, being the
variance of f and the curvature C},(0,0) = Hy, at zero
being the Hessian of the covariance function.

The real image function g(r,c¢) = f(r,c) + n(r,c) is com-
posed of the true image signal f(r, ¢) and the noise n(r, c),
which is assumed to be white, n ~ N (0, o2).

The separation of the segments is based not only on their
expected value p;, as in classical segmentation procedures,
but also on their covariance structure.

For the characterization of the covariance function we use
the negative Hessian (—H,) of the autocovariance function
of g. Due to the moment theorem (Papoulis, 1984), it is
identical to the covariance matrix Tg of the gradient V,g of
the image function g over a window G;. The filter kernels
h(z) of the gradient V.g and the window G have width s
and ¢ (Fuchs, 1998). For the estimation of the negative
Hessian of the available image function g we thus obtain:

T.. = Gix(Veg Veg") =

A2 ~
O, ‘nggc
agrgc agc

grgc g2

We need to specify two scale parameters:

- H, (1)

1. Differentiation scale s: The image resolution in terms
of the sharpness of the edges defines the scale for the
differentiation kernel. E. g. the 3 x 3-Sobel kernels
correspond to the 3 x 3-Binomial kernel having scale

s =1//2.

2. Integration kernel ¢: The width of the expected edges
motivates the window size of the integration kernel.
Observe, that the edge extraction does not distinguish
between step and bar edges, thus also the expected
width of bar edges can be used for specifying the inte-
gration kernel ¢.

4.2 Texture parameters

The core of the representation is the characterization of the
local autocorrelation function, represented by the squared
gradient T'g of the autocovariance function. By analyzing
the eigenvalues \x of the matrix Ty, we obtain three local
features. These are (Forstner, 1991):

¢ the strength a (amplitude) of the texture. It represents
the local variation of the intensity function and is mea-
sured using the variance of gradients, being the trace
of the squared gradient: T'g:

a:trI‘_g:g_%—l—g_g:)\l -1—)\2

¢ the direction ¢ or the orientation of the texture. The
squared gradient is large in the direction of large in-
tensity variations, but small in directions with small in-
tensity variations, which in case of directed textures is
identical to the subjective perception of the orientation
of the texture. Instead of determining Gabor filters with

different orientations, thus sampling the radial variation
of the gradient, we directly determine the direction of
smallest variation, being the direction ¢ of the eigen-
vector of I'g corresponding to the smallest eigenvalue:
p = E arctan _29;‘%_
2 #-g2
The orientation lies in the range 0 < ¢ < w, thus at
pure edges the information on the direction of the gra-
dient is lost.

¢ the anisotropy ¢ (quality of direction) of the texture.
It indicates the angular variation of texture and edge
characteristics. The anisotropy can be measured by
the ratio v of eigenvalues A\; and X, or, equivalently by
the form factor:

4detTyg (Al—A2)2
= — = 1 _—
tr’Tg AL+ A

Isotropic, i. e. non-oriented, texture is characterized by
g = 1, whereas anisotropic, i. e. oriented, texture is
characterized by ¢ <« 1.

These three characteristic texture features are quite infor-
mative as can be seen in Fig. 4 and Fig. 5'. In the figures
the strength is coded from low values (white) to large val-
ues (black), the direction is coded from ¢ = —=/2 (white)
to ¢ = =/2 (black) and the anisotropy is coded from ¢ = 0
(white) to ¢ = 1 (black).

As the squared gradient of the given image function g in-
stead of the true image function f is used, we can expect
the properties of the texture to be recoverable only in im-
ages with low noise. An information preserving filtering cf.
(Forstner, 1991, Weidner, 1994) is useful as preprocessing
step to reduce noise without smoothing the edges.

4.3 Laplacian pyramid

The texture parameters discussed above describe texture
properties of a small image region, defined by the scale
parameters s and ¢ of the Gaussian windows in eq. (1).

However, textures contain interesting characteristics: they
are hierarchically structured. The texture parameters vary
within the local neighborhood. This gives rise to a scale
space analysis, which determines the variation of the tex-
ture features depending on the size of the local neighbor-
hood.

To use the complete information, contained in the image
signal, we perform a spectral decomposition of our texture
parameters.

To obtain a spatial scale decomposition, we use a Laplacian
image pyramid (Burt and Adelson, 1983) applied to all three
texture features. It separates the different spectral bands of
the texture image features. The basis of the generation of
an image ;(r, ¢) of the Laplacian pyramid is the difference
formation between two subsequent levels 7 and ¢ — 1 of the
Gaussian pyramid g;(r, c)

li(r,c) = gi(r,c) — gi—1(r,c)

'The used image “Avenches” belongs to the data set in
www.goed.ethz.ch/p02/projects/AMOBE/index.html
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Figure 4: Synthetical scenes:From top to bottom: (1) syn-
thetic images, left "Rosette”, right "bar codes”; (2) strength
a, (3) direction ¢ and (4) anisotropy q. All three texture mea-
sures computed using 3 x 3-Sobel as differentiation kernel,
with s = 0.7, and integration kernel t = 0.5.

Figure 5: Natural scenes:.From top to bottom: (1)
synthetic images, left "Avenches”, right "Pentagon”; (2)
strength a, (3) direction ¢ and (4) anisotropy q. All three
texture measures computed using 3 x 3-Sobel as differen-
tiation kernel, with s = 0.7, and integration kernel t = 0.5
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Figure 6: Scheme for generating the Laplacian box. Upper
row: generated Gaussian pyramid, lower row: generated
Laplacian pyramid.

The resampling factor k; for the Gaussian pyramid levels i
generated before is k; = 2°. Because we are interested
in an uniform size of all generated levels of the Laplacian
pyramid, our resampling factor differs to the factor used in
(Burt and Adelson, 1983). Due to the uniform size of the
generated images in the different levels, we call this stack
Laplacian box.

4.4 Normalization for generation a multichannel im-
age

In section 4.3 we discussed the use of the scale space in
order to obtain a rich image description. Our next step is
to specify this predicate. In the segmentation process we
use all generated resolution levels in parallel. Combining
all levels I; (0 < ¢ < N) of the Laplacian box of all texture
parameters, we get a multichannel image, thus we actually
stack the three Laplacian boxes.

In order to be able to fuse the different channels of the
Laplacian box, we need to normalize these channels.

For the normalization, we use the expected noise behavior
of the filter kernels of the Laplace box, which we determine
by analyzing the impulse response, based on the linearity
of the generation process:

If a filter h(r,c) is applied to an image g(r,c) with white
noise n(r,c) ~ N(0,07), the noise variance o2, of the re-
sulting image ¢'(r, ¢) = h(r,c) * n(r,c) is given by:

oo = ZZhQ(r,c) oo

Therefore the influence factor of the filter operation is the to-
tal of the squares of the filter coefficients. This corresponds
to the proposal of (Ballard and Rao, 1994) who take the
total energy of the filters. For our specific case, the analy-
sis of the impulse response of the levels I; of the Laplacian
box, generated using the binomial mask B. (Jdhne, 1989),
we get the normalization factor f;:

2
o
9i

fi === D Hno)

r,c

The normalization factors only depend on the used filter
mask. Fig. 7 shows all channels of the feature space for
the texture edge extraction.

Figure 7: Feature space for texture edge extraction. From
top to down the aerial image with strength, anisotropy and
direction of the texture respectively, and from left to right
the levels of the Laplacian box for each feature.

5 TEXTURE EDGE EXTRACTION
The final task is the extraction of texture edges.
5.1 Edge detection

We use the feature extraction program FEX to extract the
texture edges. This program analyzes the local autocovari-
ance function of a multichannel image g using the negative
Hessian Tg, in our specific case T'(SCAF). Using FEX
for edge detection, results in texture edges. These edges
separate neighboring textured areas depend on the user-
selectable parameters of FEX (resolution scale, scale for
lines and a significance level for internal statistical tests).

Alltogether, we need to specify five parameters:

1. The differentiation scale s;, needed for determining the
texture properties at the highest resolution.
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2. The integration scale ¢;, needed for determining the
texture properties at the highest resolution.

3. The number n; of the used pyramid levels.

4. The differentiation scale sz, needed for determining the
integrated squared gradient of the texture features.

5. The integration scale ¢», needed for determining the
integrated squared gradient of the texture features.

5.2 Choice of scale

One of the main and up to now unsolved problem is the
choice of suitable scales for texture edge extraction. This
is a general problem and to our knowledge has not been
solved satisfactory. The reason is that textures may appear
at very different scales. Though these scales may be identi-
fied by some automatic means it is not clear whether these
scales correspond to textures or macro structures which
the analyzing module wants to resolve. E. g. in the case
of the tile row 2 column 4 in Fig. 8 two interpretations are
possible: Either the tile is part of a textured region, where
the texture is quite regular and has long wave lengths, or
the tile may be interpreted as a composition of some few
homogeneous regions separated by lines.

That means, the user or the calling routine has to decide
which levels of the Laplacian box should be used to obtain
the required results. This strongly depends on the applica-
tion. This may be a severe problem in case of textures of
very different scale.

In our work this step was done interactively.

6 RESULTS

This section demonstrates the properties of the new texture
edge extraction scheme.

In all cases we compare the result of the texture edge ex-
traction with the grey level edge extraction from FEX.

The basic problem is the proper choice of the scale param-
eters.

For the first investigations presented below, we used the
Sobel operators as differentiation kernel for the determina-
tion of the texture parameters, thus fixed s; = 1/+/2.

6.1 Results from synthetic data

First, we present our results of the texture edge extraction
for synthetic data. The scales were selected such that the
feature extraction could rely on the intensity differences be-
tween the tiles. Obviously, this was quite successful in this
case. The texture edges, however, are a bit cleaner.

6.2 Results from natural scenes

In this section, we show the potential of our algorithm for
texture edge extraction of natural scenes. The results are
shown in Fig. 9.

In order to show the difference between grey level and tex-
ture edge extraction, and not to obtain intensity edges alone,
the integration scale ¢ is chosen larger in the texture edge

Figure 8: Results of texture edge extraction: Upper row)
collage of Brodatz-textures; lower row left) using intensity
alone (s = 5.0, t = 5.0); right) using the Laplacian box
(51 = 07, tl = 60, n; = 3, 89 = 50, t2 = 50)

extraction scheme. This is reasonable, as we want to group
several furrows into one field. Obviously, this reasoning
leads to quite satisfying results. Due to our special imple-
mentation, not all texture edges at the image borders are
captured.

6.3 Results from non-textured images

To achieve an improved method for image segmentation
we have to ensure, that our technique provides good re-
sults not only for textured images, but also for non-textured
images. Therefore, we applied our approach to some non-
textured images too. The results are shown in Fig. 10.
The result is satisfactory. The spurious texture edges in the
background can be explained, as no thresholding is per-
formed, in contrast to the procedure for grey level edge ex-
traction.

7 SUMMARY AND CONCLUSION

This paper presented a filter based approach for texture
edge extraction using the scale characteristics of the local
autocovariance function.

The approach was implemented and tested on synthetic
and natural scenes and shows some promising results. One
of the main problems is the choice of suitable scales for tex-
ture edge extraction. In our experiments this step was done
interactively.

To perform a qualitative evaluation, we have to compare
our algorithm with other approaches, as shown (Shao and
Forstner, 1994). Also more detailed aspects need to be
analyzed, e. g. the effect of the higher levels of the Lapla-
cian box on texture edge extraction and the ability to extract
edges at boundaries between textured and non-textured re-
gions.
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Figure 9: Results of edge extraction: Upper row) aerial im-
age, lower row left) using intensity alone (s = 2.0, t = 2.0),
right) using the Laplacian box ( s1 = 0.7,t1 = 2.0,n; =
37 §2 = 407 lo = 30)
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