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Abstract

There is a considerable interest in the computer vision and computer graphics
community to generate a suitable symbolic description of 2D curves. This paper
presents a new approach to generate a compact description by a nonparametric
segmentation algorithm. Important is that no thresholds are required to deter-
mine the segmentation, which best describes a 2D curve. The result is a symbolic
description by a set of features of different order. The emphasis is on the used
significance measure referring to the limits of an acceptable interpretableness of
the reachable segmentation results. The proposed algorithm has a number of in-
teresting properties: (1) independence of the segmentation from any parameters,
(2) invariance to geometric transformations, (3) simplicity, and (4) efficiency of
the segmentation algorithm.

1 Introduction

Segmentation of 2D curves is a common problem in computer vision and com-
puter graphics. Numerous techniques have been proposed for generating a gen-
eralized description of a curve, mainly based on localization of points at which
the 2D curve can be segmented, after which a 2D feature, mostly a straight line
is fitted to the 2D curve between adjacent points. One of the most popular and
effective algorithms is the algorithm simultaneously proposed by Duda and Hart
[3] and Douglas and Peuker [2]. The problem thereby is the use of a threshold
to control the recursive process of segmentation by determination the maximum
distance between the curve and the approximation. The threshold is subjective
and depends on a concrete application.

It was shown, that the approximation of a curve by a set of features of different
order can be more significant than the approximation by only one typ of features
(e. g. [16] and [17]). However, the determination of higher order representations is
difficult to realize because of the increased complexity to approximate the curve
by such a feature, the increased number of parameters and the ill-conditioned
nature of the problem. Additionally most of the known methods to approxi-
mate straight lines cannot easily be extended to other feature types because of
the specific nature of those methods. In [6] an approach is sketched to split a
curve recursively. The algorithm works nonparametric in contrast to alterna-
tive approaches (e. g. [8,9] and [12]). The segmentation is realized by comparing



so-called significance measures (SMs), which are defined as the ratio of the max-
imum deviation of the curve from the feature primitive that describes the curve
divided by the length of the feature primitive. That means the accepted devia-
tion increases with the length of the feature primitive. Note, the SM bases on a
pseudo—psychologiceﬂ model of perceptual significance.

The curve is splited into two at the point
of maximum deviation between the ap-
proximation and the curve. In fig. 1 the
recursive process is sketched. The final
representation is the set of straight lines
{f,g,e,k,l,i}. The approach proposed
in this paper follows an extension of this
idea of segmentation described in [10].
The authors proposed a technique for
segmenting 2D curves into straight lines
and elliptical arcs, with the disadvan-
tage of complete recursive subdivision to
form the binary tree. Then the whole
tree is traversed ascending to select the
best presentation of the curve by merg-
ing adjacent features and approximat-
ing the resulting part of the curve by a straight line or an elliptical arc. The
approach proposed in this paper overcomes the complete recursive subdivision
by using a very simple strategy to judge the actual curve segmentation with a
decision to continue or to terminate the process.

Fig. 1. Segmentation of a 2D curve by
straight lines

2 Overview of the method

Let a curve A = {a; = (#;,yi), ¢ € [1,n]} be given containing n connected points.
The goal of the segmentation is to generate a set of approximations describing
the curve best, whereby the set of possible approximations Hp consists of the
two feature primitives: straight line [ and elliptical arc e.

The curve is approximated simultaneously by the set of the two feature primi-
tives. Each approximation is splited at the points of maximum deviation posp,
T = {straight line 1, elliptical arc e}. The resulting curve segments are also ap-
proximated by the set of possible feature primitives. Now, the decision, if the
recursive process will be continued at this stage or terminated, bases on the sig-
nificance measures, calculated for every approximation. Before in the following
section the developed segmentation algorithm is described in details the sub-
stantial basics are sketched to approximate a straight line and an elliptical arc.
The equations can be deduced from the general equation F (z,a) = z - a, with
z=[ABCDFEF]and a= [J:2 zyy?ry l]T. The distance of a point a; to
the curve F (z,a) = 0 is called algebraic distance F (z,a;) = d;. A possible ap-
proach to determine an approximation is to minimize the sum of the algebraic
distances d; Vi € [1,n] in the sense of least squares:
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A=) F(za)’ — Min. (1)
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Note, a constraint must be formulated for the parameter vector z to avoid the
trivial solutionz = [0 0 0 0 0 0] and to guarantee, that any multiple of a solution
a represents the same approximation.

2.1 Approximation of straight lines

The general straight line is described implicitly by Dz 4+ Ey + F = 0. To avoid
the trivial solution the used constraint is D? + E? = 1. The advantage of this
constraint is that the algebraic distance is identically to the Euclidean distance.
Thus, the condition of invariance of the approximation in relation to geometrical
transformations is fulfilled. And, as a; and a,, are situated on the straight line?,
the solution is simple.

2.2 Approximation of elliptical arcs

The general elliptical arc is described implicitly by Az? + Bzxy + Cy* + Dz +
Ey+ F = 0. Due to the assumption concerning a; and a, two parameters, here
D and FE, can be determined directly.

Az} + Bepyn + Cyp + Dz + F
Yn

F =

A (22y1 — 2yn) + B (2ayny1 — 2190y1) + C (vay1 — yn¥i) + F (y1 — vn)
L1Yn — Tnl1

To avoid the trivial solution for the remaining parameters the formulation of a

constraint is necessary. Many authors suggest ||z||? = 1 or F = —1, Bookstein

[1] proposes A% + %B + C? = 1. Note, the use of such a constraint do not cause

necessarily something the approximation of elliptical arcs. But, if the constraint

(z)' Cz' = AC—4B =1 (2)

D =

with 2 = [A B C F] is used the numerical solution of the nonlinear equation
system describes the parameter set of the elliptical arc with a restriction, which
is optimal to the points a; € A, i € [1, n]. The approximation of an elliptical arc
is guaranteed. A is defined by

A= Y |A(2? +aioz; — aory:) + B (ziyi + broxi — bo1yi)
a;€EA
1€[1,n]

2

+C (y? + cromi — co1yi) + F (1 + fiow; — foﬂﬁ)] — Minimum
(3)

! The assumption that a; and a,, are situated on the approximation is motivated by the
objective that the set of approximated features, that means the symbolic description
of a curve, is connected.
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Note, the Euclidean distance of a point a; from an elliptical arc cannot be deter-
mined with direct methods. Thus an algebraic distance is used as approximation.
In [1] and [14] it was shown that the algebraic distance with the secondary con-
dition (eq. 2) is a) similar to the Euclidean distance and thus b) invariant in
relation to geometrical transformations.

In [1] and [4] a very simple approach is proposed to solve the resulting equation
system. The minimization is realized by solving the rank-deficient generalized
eigenvalue problem: Bz’ = ACz’ with the matrix B = UT U, the matrix

2} +aoz1 — a1y 23+ a0y —ao1yz ... T2 +a10%, — Ao1Yn T
z1y1 + brox1 — boryr  x2y2 + bioT2 — bory2 ... TnYn + br0Tn — bo1yn
B Y + clo®1 — co1y1 Y3 + crot2 — Co1y2 .- Y + C10%n — Co1Yn
1+ fioz1 — fornr 1+ fiozz — foryz --- 1+ fio%n — foryn

and the matrix C, which describes the constraint (eq. 2) respecting the matrix
form (z’)T Cz' = 1. The solution of the eigensystem gives four eigenvalues. Each
of the corresponding eigenvectors is a valid solution, but only one eigenvalue is
A; > 0. The corresponding eigenvector is the solution for the approximation of
an elliptical arc to the curve.

3 Segmentation algorithm

The principle structure of the algorithm is characterized as follows:

1. Approximate the curve by a straight line and an elliptical arc and calculate
for every approximation the significance measure SM

max ( min || x(a;) — x (hy) ||2>
SMor — devmax (.A,HT) _ ai€A \h;€HT (4)
T'= Tlength Hr) — length (Hr)

with



. Split the curve into either two or three at the points posp of maximum
deviation.
posz =argmay ( iy || (@) = x (1)) 5)

Normally, there are two different points posp, T € {l,e} and the curve is

splited into three. If pos; = pos, the curve is splited into two.

. Approximate every new curve segment by straight line and elliptical arc. It

can deduced from fig. 2, that generally 12 different decompositions of the

curve (dotted line) are possible.

. Calculate for every approximation the significance measure SM

. Use the calculated significance measures as criterion for the acceptance of

the current segmentation.

5.1 if the current segmentation is accepted select the combination of approxi-
mations, which describes the given curve segment best and continue with
step 2,

5.2 else store the last accepted segmentation and terminate the process.

pos;

Fig. 2. Set of all approximations for a curve

With respect to step b the decision if the process of segmentation is continued
or terminated is based on the evaluation of the significance measures of two
successive levels. Thereby, the used strategy to evaluate the current segmentation
at level [p] in context to the previous segmentation at level [p — 1] is of special
interest. In the following it is emphasis on the formulation of a suitable strategy,
which supports the selection of the best combination in the sense of an optimality
criterion.

Some possible strategies are sketched. A current segmentation for the curve is
accepted, if

(A) the lowest significance measure

bl _ [r]
M imin = (D.T) (D SMz )
is smaller than SMP~Y. Then the combination with the lowest and the

second lowest SM is selected. Note, the index T" determines the feature typ
(straight line [ or elliptical arc €) and the index D determines the curve



segment (D = 1, if (posy, pos;) or (posi,pose), D = 2, if (pos;, posy,) or
(pose, posy) and D = 0, if (pos;, pose) or (pose, pos;)).
(B) the lowest, arithmetically averaged significance measure

is smaller than SMP~1. The segmentation is continued with the curve
segments of the selected combination.
(C) the lowest, weighted averaged significance measure

Z (wT ‘D SM¥])

-l (D,T);

= m
mme 1,12 § :PT
(k:)

is smaller than SMP~1. The segmentation is continued with the curve
segments of the selected combination.

Extensive experiments led to the prediction that the ”quality” of segmentation is
only secondarily influenced by the selected strategy. Derived from this prediction
strategy (A) is selected due its simplicity.

4 Experiments

The experimental investigations are concentrated on the problem of evaluating
the proposed approach of segmentation a curve. Firstly, the performance of this
approach is characterized by a number of criteria such as geometry and topolog-
ical distortions. And secondly, the performance of the used significance measure
is examined regarding the usefulness to evaluate approximations of different fea-
ture types.

4.1 Performance characterization

One of the most practical interest in assessing segmentation algorithms has been
restricted to quantifying the deviation from the approximation to the curve. The
two most common measures are the compression ratio and the accuracy. Firstly,
Sarkar[11] combined the two measures as a ratio, producing a normalized figure of
merit. Similar formulations were given by Held et.al [5] and Rosin and West [10].
Lowe [7] assumed, that the accepted deviation between curve and approximation
increases. Another possibility (e. g. Rosin and West [10]) is to sum the normalized
maximum deviation from each approximated segment. Ventura and Chen [15]
assessed their algorithms with respect to a reference segmentation of an optimal
algorithm. The advantage is that it enables to compare approximations with



different numbers of segments. But remaining problems are, how to get the
reference segmentation of an optimal algorithm and the quantification of the
error.

This short overview shows, that the formulation of suitable criteria for the com-
parison with other approaches for segmenting a curve (e. g. [7,8,10] and [13])
becomes however somewhat more complex. The reason for it can be derived on
one hand from the different approaches, on the other hand factors like the con-
text which can be considered, the concrete task and the subjectivity influence
of the selection of the criteria as well as their evaluation.

A substantial feature of a first group, the classical approaches, to segmentation is
the integration of heuristics during the definition of concrete, for this type of seg-
mentation necessary thresholds. In contrast to this the approach proposed here
needs no control parameters. So an appropriate comparison becomes difficult
on this basis, since for the determination of the necessary thresholds frequently
complex heuristics are used.

The second group of approaches reduce itself to the approach proposed in [6].
The substantial features are the calculation of the significance measure for each
approximation and their suitable comparison at different approximation levels.
On the basis of this general structure the segmentation here represents a special
variation and an appropriate comparison of the procedures appears realizable.
The formulation of the criteria for the performance characterization follows as
far as possible the features defined by Rosin and West [10]:

(a) the number of approximated segments Hrp of the curve A

card (Hr) = 1 (6)

(b) the averaged accuracy of all approximated segments

ISE = % mzzjl (ISE),, = % mzzjl (devmax (A, %T)> (7)

(c) the minimal accuracy of all approximated segments, that means the maximal
deviation of all (accepted) approximations to the curve

2
ISE._ . = max ISE,, = max <devmax(A,7{T)> (8)

m=1,..., m=1,...,

(d) the averaged significance measure

S = %mi (M), (9)

and the two ratios of compactness FOM 1 and FOM 5



(e) the ratio between number of approximated segments card () and the num-
ber of all connected points of the curve card (A) multiplied by the averaged
accuracy ISE

card (Hr)

ard (A)
(e) the ratio between the number of parameters of all approximated segments

and the number of all connected points of the curve card (A) multiplied by
the averaged accuracy ISE

FOM, = . ISE (10)

ZHT card (Pr)

FOM = card (A)

- ISE (11)

The second ratio bases on the concept of minimum description length.

In table 1 the performance of the proposed approach to segment a curve is
characterized by the features described above. For comparison the results of
segmentation according to Rosin and West [10] and Lowe [7] are also entered
into the table.

test tmage strategy Hr ISE ISE in SM FOM. | FOM,
() (e

(A) 228 175] 1.3962] 6.4392] 0.1235] 33.3234] 174.8801

TENNIS Rosin/West || 207 58| 1.3542] 6.2534 0.1250 42.5968] 165.9745

585 — | 1.2521] 9.9611] 0.1286] 50.9951| 203.9805

Lowe — 403[ 3.1251| 50.9902| 0.4052| 40.3425| 282.3977

(A) 287 198 1.6129] 9.2980] 0.2148| 59.4853| 306.6994

ICCV32  Rosin/West || 623 77| 1.6270 7.5263| 0.2509] 72.7235| 352.9167

572 — | 1.6617| 6.3881] 0.2762| 84.5815| 338.3250

Lowe — 180| 3.1358| 17.0294| 0.1652| 15.3900| 107.7297

(A) 607 220] 1.0457| 9.2980| 0.1814| 110.9054| 532.8120

MUK_007 Rosin/West || 742 167| 1.0322| 8.7345| 0.1932| 114.4157| 543.6634

876 — | 0.9953| 6.3881[ 0.1825| 121.9529] 487.8117

Lowe — 289| 2.5785| 28.2843] 0.2946] 36.7892[ 257.5241

Table 1. Calculated values for the features card (Hr) Ml (1): number of straight lines
and (e): the number of elliptical arcs, ISE, ISE SM, FOM, and FOM , for the
three test images TENNIS, ICCV32 and MUK_007

min’

On the basis of the table 1 it can deduced that the segmentation of a 2D curve
with the proposed approach is comparable to a segmentation according to [7]
and [10]. The set of approximated segments describes the curve in an acceptable
quality. The values for the features SM, FOM | and FOM, are comparable, ex-
cept the segmentation of a 2D curve by only elliptical arcs with Lowe’s approach.
The ISE and the ISE i, are features, where the values differ significantly.
The efficiency of the proposed approach with the strategy (A4) is compared to the
approaches by Rosin and West and by Lowe in table 2. Here, the total number
of approximations (straight lines and elliptical arcs) to get the final symbolic
description is measured.



test image TENNIS ICCV32 MUK_007
strategy ) (e) ) (e) ) (e)
(A) 3844 3021 | 16565 1351 | 3319 1918
Rosin/West 8577 2537 | 65680 1832 | 4641 1281
3078 — 1895 — 1852 —
Lowe — 79| — 305 — 354

Table 2. Number of approximations to get the final symbolic description

It can be easily deduced, that using the proposed approach in the sum consider-
ably less approximations are needed than using the approach by Rosin and West.
This becomes very obvious, if the number of approximations of straight lines is
compared. One reason for this is the complete decomposition of a curves by Rosin
and West into a set of straight lines®. The total number of approximations of
straight lines is sometimes higher and the total number of approximations of el-
liptical arcs is significantly higher than the total number derived by the approach
of Lowe. Note: by the approach of Lowe segments are approximated by only one
feature primitive (here: straight lines or elliptical arcs) in the same time.

In the figures 3, 4 and 5 the appropriate results of the segmentation of the
iconic descriptions of the images TENNIS, ICCV32 and MUK_007 after the proposed
approach, the approach of Rosin and West and the approach of Lowe (straight
lines and elliptical arcs) are sketched.

4.2 Significance measure

The crucial measure to terminate or continue the curve segmentation is the sig-
nificance measure. In [7] it was shown that the significance measure can be used
for the evaluation of approximations of different feature types. The application
of the significance measure in case of a simultaneous approximation of different
feature types is verified in [10].

However, it is reasonable to assume from the results sketched in fig. 6, that
for the used significance measure the limits of an acceptable interpretableness
are visible. In the upper part of fig. 6b) the curve is approximated by only
one elliptical arc instead of two elliptical arcs connected by one straight line. It
can be assumed that the segmentation will be improved by applying an upper
threshold for the used criterion for the acceptance SM of an actual segmentation.
The result for applying such an upper threshold is sketched in fig. 6c).

The possibility to accept a suboptimal solution is higher than in the approaches
to segment a curve sketched in Rosin and West [10] and Lowe [7]. The reason
for this is the strategy connected with the curve decomposition. In contrast to
the proposed approach the segmentation described in [10] and [7] works with
only one current search direction and accordingly the probability is smaller that
segmentation adapts to a local minimum.

2 Note, the original software package of Rosin and West was used to generate compa-
rable results. The complete package including the used images TENNIS and ICCV32 is
available by ftp://ftp.brunel.ac.uk/CompSci/Paul.Rosin/curves/.
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Fig. 3. Segmentation of the test image TENNIS, (a) iconic description, (b) new ap-
proach, (c) Rosin/West, (d) Lowe (only straight lines) and (e¢) Lowe (only elliptical
arcs), gray: straight lines, black: elliptical arcs
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Fig. 4. Segmentation of the test image ICCV32, (a) iconic description, (b) new ap-
proach, (c) Rosin/West, (d) Lowe (only straight lines) and (e¢) Lowe (only elliptical
arcs), gray: straight lines, black: elliptical arcs
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Fig.5. Segmentation of the test image MUK_007, (a) iconic description, (b) new
approach, (c¢) Rosin/West, (d) Lowe (only straight lines) and (e) Lowe (only elliptical
arcs), gray: straight lines, black: elliptical arcs
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Fig. 6. Results of segmentation of 2D curves, (a) iconic description, (b) incorrect seg-
mentation, (c) corrected segmentation (by an additional restriction for the used crite-
rion SM), gray: straight lines, black: elliptical arcs

From these predictions it can be concluded that the incorrect segmentation of a
curve documented exemplary in the fig. 6 can be attributed to the nonparametric
formulation of curve segmentation.

5 Summary and Conclusions

On the basis of the results sketched in table 1, table 2 and the figures it can be
derived that the proposed approach can be used very well for the segmentation
of a curve.

The substantial qualitative difference to segmentation in accordance to [7] is
the simultaneous approximation of straight lines and elliptical arcs to a curve
and in accordance to [10] the modification of the strategy to be able to evaluate
several possible segmentations of a curve and the associated formulation of a
suitable rule to determine the best segmentation among those. The proposed
approach overcomes the disadvantage of the approach by [10] of determining the
complete binary tree. Here, only the necessary tree is determinated and so the
new approach is more efficient. Note: the problem of merging adjacent features
exists for all regarded approaches.

In summary: the proposed algorithm has a number of interesting properties:
(1) independence of the segmentation from any parameters, (2) invariance to
geometric transformations, (3) simplicity, and (4) efficiency of the segmentation
algorithm.
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