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Abstract. We present an irregular image pyramid which is derived from
multi-scale analysis of segmented watershed regions. Our framework is
based on the development of regions in the Gaussian scale-space, which
is represented by a region hierarchy graph. Using this structure, we are
able to determine geometrically precise borders of our segmented regions
using a region focusing. In order to handle the complexity, we select
only stable regions and regions resulting from a merging event, which
enables us to keep the hierarchical structure of the regions. Using this
framework, we are able to detect objects of various scales in an image.
Finally, the hierarchical structure is used for describing these detected
regions as aggregations of their parts. We investigate the usefulness of
the regions for interpreting images showing building facades with parts
like windows, balconies or entrances.

1 Introduction

The interpretation of images showing objects with a complex structure is a dif-
�cult task, especially if the object's components may repeat or vary a lot in
their appearance. As far as human perception is understood today, objects are
often recognized by analyzing their compositional structure, cf. [9]. Besides spa-
tial relations between object parts, the hierarchical structure of the components
is often helpful for recognizing an object or its parts. E. g. in aerial images of
buildings with a resolution of 10 cm per pixel, it is easier to classify dark image
parts as windows in the roof, if the building at whole has been recognized before.

Buildings are objects with parts of various scales. Depending on the view
point, terrestrial or aerial, the largest visible building parts are its facade or its
roof. Mid-scale entities are balconies, dormers or the building's entrance; and
small-scale parts are e. g. windows and window panes as window parts. We
restrict our focus on such parts, a further division down to the level of bricks or
tiles is not of our interest.

Recently, many compositional models have been proposed for the recognition
of natural and technical objects. E. g. in [6] a part-based recognition framework
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is proposed, where the image fragments have been put in a hierarchical order
to infer the category of the whole object after having classi�ed its parts. So
far, this approach has only been used for �nding the category of an object, but
it does not analyze the parts individually. This approach has been evaluated
on blurred, downsampled building images, cf. [13]. Without resizing the image,
the algorithm seems to work ine�ciently or even might fail at homogeneous
facades or on the repetitive patterns like bricks, because the fragments cannot
get grouped together easily. Thus, the approach is not easily applicable to the
domain of buildings.

Working on hyperspectral images, a hierarchical segmentation scheme for
geospatial objects as buildings has been recently proposed using morphological
operations, cf. [1]. Due to the low resolution of the images, the hierarchy can only
be used for detecting the object of the largest scale, but not its parts separately.

We work on segmented image regions at di�erent scales, where we derive a
region hierarchy from the analysis of the regions. So far, it is purely data-driven,
so that the general approach can be used in many domains. A short literature
review on multi-scale image analysis is given in sec. 2. Then, we present our own
multi-scale approach in sec. 3. For complexity reasons, we need to select regions
from the pyramid for further processes. We document this procedure in sec. 4.
The validation of our graphical representation is demonstrated in an experiment
on building images in sec. 5. Concluding, we summarize our contribution in
sec. 6.

2 Multi-scale Image Analysis

Although, the segmentation of images can be discussed in a very general way, we
have in our mind the segmentation of images showing man-made scenes. These
images usually show objects of various scales. With respect to the building do-
main, windows, balconies or facades can be such objects. For detecting them,
the image must be analyzed at several scales. The two most convenient frame-
works for multi-scale region detections are (a) segmentation in scale-space and
(b) irregular pyramids. Regarding scale-space techniques, the behaviour of seg-
mentation schemes have been studied, and the watershed segmentation is often
favored, even in di�erent domains, cf. e. g. [16], [8], [10] and [3].

We also evaluated the usability of watersheds for segmenting images of build-
ings. Thereby, our focus was the possibility to segment objects of di�erent scales.
In Gaussian scale-space, the smoothing with the circular �lter leads to rounded
edges and region borders in higher scales. We obtain similar result when us-
ing the morphological scale-space as proposed in [12]. Again, the shape of the
structural element emerges disturbingly at the higher scales. In the anisotropic
di�usion scheme, cf. [17], the region borders of highest contrast are preserved
longest, and therefore it can not be used for modeling aggregates of building
parts, where the strongest gradient appear at the border between e. g. bright
window frames and dark window panes.

Pyramids are a commonly used representation for scale-space structures, cf.
[14]. When working on the regular grid of image blocks, e. g. on pixel-level,



the use of a regular pyramid is supported by many advantages, e. g. access in
memory, adjacencies of blocks etc. In contrast to the regular grid, the number
of entities rapidly decreases when working on segmented image regions, which
also decreases the complexity of many further algorithms. Furthermore, the rep-
resentation of objects by (aggregated) regions is more precise in the shape of the
objects boundary than using rectangular blocks.

In the last years, di�erent pyramid frameworks have been proposed. With re-
spect to image segmentation, we would like to point out the stochastic pyramids,
cf. [15], and irregular pyramids as used in [10]. In both approaches, a hierarchy of
image regions is obtained by grouping them according to certain condition, e. g.
a homogeneity measure. With respect to buildings we often have the problem of
�nding such conditions, because we want to merge regions of similar appearance
on one hand and regions rich in contrast on the other hand. Thus we decided to
work on watershed regions in scale-space, and to use this scale-space structure
to derive a region hierarchy that forms an irregular pyramid.

3 Construction of the Irregular Pyramid

In this section, we present our multi-scale segmentation framework and the con-
struction of our region hierarchy graph (RHG). For receiving more precise region
boundaries, we applied an adaptation of the approach of [8].

3.1 Multi-scale Image Segmentation

Many di�erent segmentation algorithms were proposed since the age of digital
imagery has started. We decided to derive our segmentation from the watershed
boundaries on the image's gradient magnitude. Considering the segmentation of
man-made objects, we mostly �nd strong color edges between di�erent surfaces,
and so the borders of the watershed regions are often (nearly) identical with the
borders of the objects.

Our approach uses the Gaussian scale-space for obtaining regions in multi-
ple scales. We arranged the discrete scale-space layers logarithmically between
σ = 1 and σ = 16 with 10 layers in each octave, obtaining 41 layers. For each
scale σ, we convolve each image channel with a Gaussian �lter and obtain a
three-dimensional image space for each channel. Then we compute the com-
bined gradient magnitude of the color images. Since the watershed algorithm
is inclined to produce oversegmentation, we suppress many gradient minima by
resetting the gradient value at positions where the gradient is below the me-
dian of the gradient magnitude. So, those minima are removed which are mostly
caused by noise. The mathematical notation of this procedure is described in
more detail in [5]. As result of the watershed algorithm, we obtain a complete
partitioning of the image, where every image pixel belongs to exactly one region.

3.2 Region Hierarchy Graph

The result of the scale-space watershed procedure is a set of regions Rνσ where
ν is the index for the identifying label and σ speci�es the scale. The area of a



region |R| is the number of its pixels. Since the scale-space layers are ordered in
a sequence, we denote neighbored scales by their indices, i. e. σi and σi+1. Our
RHG is based on pair wise neighborhoods of scale and we de�ne two regions
Rνm,σi and Rνn,σi+1 of neighbored scales as adjacent in scale if their overlap is
maxized. Therefore, we determine the number of pixel positions which belong
to both regions |Rνm

σi
∩ Rνn

σi+1
|. Concluding, adjacency in scale of two regions of

neighbored scales is de�ned by the mapping

Rνm
σi
7→ Rνn

σi+1
⇔ |Rνm

σi
∩Rνn

σi+1
| > |Rνm

σi
∩Rνk

σi+1
| ∀ k 6= n, (1)

which de�nes an ordered binary relation between region, and the mapping sym-
bol 7→ re�ects the development of a region with increasing scale. Observe, no
threshold is necessary.

According to [14], there occur four events with region features in scale-space:
the merging of two or more regions into one, and the creation, the annihilation or
the split of a region. Our RHG re�ects only two of these events, the creation and
the merging. A creation-event is represented by a region of a higher layer that
is no target of the mapping-relation, and a merge-event is represented, if two or
more regions are mapped to the same region in the next layer. Equ. 1 avoids
that a region can disappear, because we always �nd a region in the next layer.
Furthermore, our mapping-relation avoids the occurrence of the split-event, be-
cause we always look for the (unique) maximum overlap. Our de�nition of the
region hierarchy leads to a simple RHG, which only consists of trees, where each
node (except in the highest scale) has exactly one leaving edge.

Note that the relation de�ned in equ. 1 is asymmetric. When expressing
region adjacency with decreasing scale, we take the inverted edges from the RHG.
Moreover, the relation is not transitive. Thus, the RHG may contain paths to
di�erent regions, if a scale-space layer has been skipped when constructing the
RHG. We show a scale-space with three layers and the corresponding RHG in
�g. 1.

Fig. 1. Segmentation in scale-space and its RHG. Regions from the same scale are
ordered horizontally, and the increasing scales are ordered vertically from bottom to
top. The edges between the nodes describe the development of the regions over scale.
The gray-�lled region has been created in the second layer.



3.3 Region Focusing

The Gaussian smoothing leads to blurred edges at larger scales, and corners
become rounder and rounder. Therefore, we perform an additional region focus-
ing, which is inspired by [18] and [2]. In [2], the existence of an edge has been
recognized in a large scale, but its speci�c geometric appearance was derived by
tracking it to the lowest available scale.

We improve the geometrical precision of our segmented regions by combining
information from the RHG with the initial image partition, i. e. the segmentation
at the lowest scale σ = 1. Taking the forest as a directed graph with arcs from
higher scale to lower scales we obtain the focused region at a level below a given
regions as the union of all regions reachable from the source region. Reaching the
initial image partition, we obtain regions R̂νn

σi
by merging all respective regions:

R̂νn
σi

= ∪kRνk
σ=1 with ∃ a path fromRνk

σ=1 toR
νn
σi
. (2)

In fact, our approach is an adaptation of the segmentation approach in [8].
There, a similar merging strategy for watershed regions has been proposed, where
the regions were merged on the basis of their tracked seed points, thus bottom
up, whereas our approach ist top down. The procedure in [8] is not suitable to
our segmentation scheme, because we have suppressed all minima in the gradient
image which are below its median, so we might analyze the development of a
huge number of seed point for a single region. Furthermore, our approach with
looking for the maximum overlap is also applicable, if a di�erent segmentation
is used than watershed regions. We visualize a result of our region focusing in
comparison with the original image partition in �g. 2.

Fig. 2. Image segmentation of an aerial image. Left: RGB image of a suburban scene in
Graz, Austria (provided by Vexcel Imaging GmbH). Middle: Original watershed regions
in scale σ = 35. Right: Region focusing with merged regions of scales σ = 12 (thin)
and σ = 35 (thick). Clearly, both segmentations of scale σ = 35 are not topologically
equivalent, because the newly created or split regions (and their borders) cannot get
tracked down to the initial partition by our region focusing.

Since we use the RHG for performing the region focusing, the RHG nearly
remains unchanged. We only delete all newly created regions from all scale-space
layers above the initial partition. Hence, the respective nodes and edges must be
removed from the RHG. Furthermore, all regions must be removed which only



develop from these newly created regions. The updated RHG of the example in
�g. 1 will contain all white nodes and the their connecting edges.

4 Selection of Regions from Irregular Pyramid

Up to this point, we only described the construction of our irregular image
pyramid, but we have not mentioned its complexity. On relatively small images
with a size of about 400× 600 pixels, the ground layer of our irregular pyramid
often contains 1500 or more regions, and their number decrease down to 10 to
30 in the highest layer. Assuming that the number of regions in a layer decreases
with a constant velocity, the complete pyramid contains over 30.000 regions.
Since most of these regions do not represent objects of interest, a selection of
regions seems to be helpful to reduce the complexity of further processes.

The integration of knowledge about the scene could later be done in this step,
e. g. one could choose regions with a major axis which leads in direction of the
most dominant vanishing points, or one could choose regions which represent
a repetitive pattern in the image, so that it might correspond to a window in
the image. But nevertheless, the search for such reasonable regions in the whole
pyramid is still a task with a very high complexity.

We have tested our algorithms by segmenting images showing man-made
scenes, preferably buildings. These objects mostly have clearly visible borders,
so that the according edges can be detected in several layers of the pyramids.
Therefore, we focus on stable regions in our irregular pyramid and de�ned a
stability measure ςm,i for a region Rνm

σi
to the adjacent region in the next scale-

space level i+ 1 by

ςm,i =
Rνm
σi
∩Rνn

σi+1

Rνm
σi ∪Rνn

σi+1

, (3)

where region Rνn
σi+1

is adjacent in scale to Rνm
σi

and, therefore, both regions are
connected by an edge in the RHG. Then we de�ne the stability measure ς of a
scale range with d scale-space levels by

ςm,i = max
k=0..d

{
min

j=i−d+k..i+k
ςm′,j

}
, (4)

wherem′ corresponds to the region of layer j that is connected to Rνm
σi

by a path.
We call all regions with ςm,i > t stable, where t is a threshold, e. g. t = 0.75.

If we �nd a stable region in our pyramid, than we will �nd at least d − 1
additional regions with a similar shape. All these regions can be represented by
the same region. This is the �rst step, when we reduce our pyramid. The stable
regions are not necessarily adjacent in scale to other stable regions. In fact, this
happens seldom. We are able to keep the information of the RHG, if we arrange
the stable regions in a hierarchical order and include the merging events, where
paths from two or more previously stable regions reach the same region of the
pyramid. Due to the limited space, we cannot go more into detail here, we present
a sketch of our method in �g. 3. Its result is a tree of stable regions (TSR), where
we inserted an additional root-node for describing the complete scene.



Fig. 3. Tree of stable regions: the layers of the
pyramid are arranged in a vertical order (going
upwards), each rectangle represents a node in the
TSR, the white ones correspond to stable regions,
the black ones the merging events from the RHG.
The horizontal extensions of the rectangles show
their spatial state, and the vertical extension cor-
responds with the range of stability. The idea of
this �gure is taken from the interval tree and its
representation as rectangular tessellation in [18].

5 Experiments

Our approach is very general, because we used only two assumptions for gener-
ating the TSR: the color-homogeneity of the objects and the color-heterogeneity
between them, and that the objects of interest are stable in scale-space or are
merged stable regions. Now, we want to present some results of our experiments.
Therefore, we analyzed the TSR of 123 facade images from six German cities:
Berlin, Bonn, Hamburg, Heidelberg, Karlsruhe and Munich, see �g. 4. These
buildings have a su�cient large variety with respect to their size, the architec-
tural style and the imaging conditions.

5.1 Manual Annotations

The ground truth of our experiments on facade images are hand-labeled an-
notations1. On one side, the annotation contains the polygonal borders of all
interesting objects that are visible in the scene. On the other side, part-of rela-
tionships have also been inserted in the annotations. An extract of the facade
ontology is shown in �g. 5.

5.2 Results

We investigate the coherence between our automatically segmented image re-
gions taken from the TSR and the manual annotations. Our experiment consists
of two tasks. First, we document the detection rate of the annotated objects, and
secondly, we test, if the hierarchical structure of the TSR re�ects the aggregation
structure of the annotated objects.

1 The images and their annotations were provided by the project eTraining for inter-
preting images of man-made scenes which is funded by the European Union. The
labeling of the data has been realized by more than ten people in two di�erent re-
search groups. To avoid inconsistencies within the labeled data, there was de�ned
an ontology for facade images with a list of objects that must be annotated and
their part-of relationships. A publication of the data is in preparation. Please visit
www.ipb.uni-bonn.de/etrims for further information.



Fig. 4. Left: Facade images from Berlin, Bonn, Hamburg, Heidelberg, Karlsruhe and
Munich (f. l. t. r.), showing the variety of our data set. Right: Two levels from the
irregular pyramid of the Hamburg image.

Fig. 5. Left: Facade image from Hamburg with manually annotated objects. Right:
Major classes and their part-of relationships from the de�ned building-scene ontology.

In the 1st test, we perform a similar evaluation as it is done in the PAS-
CAL challenge, cf. [7]. There, it is su�cient enough to map an automatically
segmented region to the ground truth region, if the quotient of the intersection
and the union of both regions is bigger than 0.5. So, we compute this quotient
for each region in the TSR with respect to all annotated objects. Then, the max-
imum quotient is taken for determining the class label of the segmented region.
If the ratio is above the threshold, then we call the object detectable. Otherwise,
we also look for partial detectability, i. e. if the segmented region is completely
included by an annotation. This partial detectability is relevant, e. g. if the ob-
ject is occluded by a car or by a tree. Furthermore, we do not expect to detect
complete facades, but our segmentation scheme could be used for analysis of
image extracts, i. e. the roof part or around balconies.

Regarding the 2nd experiment, our interest is, if the TSR re�ects the class
hierarchy. This would be the case, if e. g. a window -region includes window pane-



regions, i. e. they both are connected by a path upwards in the TSR. So, we only
focus on those annotated objects, which were (a) detectable or partially de-
tectable and (b) annotated as an aggregate. In this case, the annotation includes
a list of parts of this object. Then, we determine, whether we �nd other regions
in the TSR, which are (a) also at least partially detectable and (b) are connected
to the �rst region by a path upwards in the TSR. Then the upper region can
get described as an aggregate containing at least the lower one. Additionally, we
also check, whether not at least one but all parts of the aggregated object have
been found, i. e. if the list of detectable parts is complete. Our results are shown
in tab. 1.

class objects det. part. summed aggregates aggreg. compl. aggreg.

all 9201 58% 26% 84% 2303 48% 13%

balcony 285 31% 62% 93% 243 53% 13%
entrance 72 47% 38% 85% 57 26% 11%
facade 191 49% 46% 95% 172 74% 13%
roof 178 46% 46% 92% 89 51% 13%

window 2491 56% 33% 89% 1369 46% 12%
window pane 2765 68% 8% 76% 0 - -

Table 1. Results on detectabilty of building parts: 84% of the annotated objects have a
corresponding region in the TSR or are partially detectable. The columns are explained
in the surrounding text.

Note: the automatically segmented regions were only compared with the la-
beled data, no classi�cation step has been done so far. We have presented �rst
classi�cation results on the regions from the Gaussian scale-space in [4], where
we classi�ed segmented regions as e. g. windows with a recognition rate of 80%
using an Adaboost approach. With geometrically more precise image regions, we
expect to obtain even better results. Furthermore, the detected regions can be
inserted as hypotheses to a high-level image interpretation system as it has been
demonstrated in [11]. It uses initial detectors and scene interpretations of mid-
level systems to infer an image interpretation by means of arti�cial intelligence,
where new hypotheses must be veri�ed by new image evidence.

A similar experiment on aerial images showing buildings in the suburbs of
Graz, Austria, is in preparation. There, we expect even better results, because
the roof parts only contain relatively small parts which often merge with the
roof in our observed scale range.

6 Conclusion and Outlook

We presented a purely data-driven image segmentation framework for a multi-
scale image analysis, where regions of di�erent size are observable in di�erent
scales. A de�ned region hierarchy graph enables us to obtain geometrically sig-
ni�cantly more precise region boundary than we obtain by only working in the
Gaussian scale-space. Furthermore, the graph can be used for detecting struc-
tures of aggregates. So, far we only compared the segmented regions to the
annotated ground truth and did not present a classi�er for the regions.



In next steps, we will insert more knowledge about our domain, e. g. the re-
gions can be reshaped using detected edges. Then, the merging of region does not
only depend on the observations in scale-space, but also on the not-occurrence
of an edge. Therefore, we need a projection of the detected edges to the bor-
ders of the detected image regions in the lowest layer. Another way would be
a multiple-view image analysis, where 3D-information has been derived from a
stereo pair of images.

Our region hierarchy graph can further be used as the structure of a Bayesian
network, where each node is a stochastic variable on the set of classes. The part-
of relations between the regions are analogously taken to model the dependencies
between these stochastic variables. This will enable a simultaneous classi�cation
of all regions taking the partonomy into account.
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