
Multi-class ADTboost

Martin Drauschke

martin.drauschke@uni-bonn.de

TR-IGG-P-2008-06

8th August 2008

Technical Report Nr. 6, 2008

Department of Photogrammetry
Institute of Geodesy and Geoinformation

University of Bonn

Available at
http://www.ipb.uni-bonn.de/˜ martin/

Multi-class ADTboost

Martin Drauschke

martin.drauschke@uni-bonn.de

Abstract

This technical report gives a short review on boosting with alter-
nating decision trees (ADTboost), which has been proposed by Freund
& Mason (1999) and refined by De Comité et al. (2001). This approach
is designed for two-class problems, and we extend it towards multi-
class classification. The advantage of a multi-class boosting algorithm
is its usage in scene interpretation with various kinds of objects. In
these cases, two-class approaches will lead to several one class versus
background (the other classes) classifications, where we must solve
unappropriate results like ”always background” or ”two or more valid
classes” for a sample.

1 Introduction

Adaptive boosting (Adaboost) is a very successful classification framework
for two-class problems, where a strong classifier H is built by combining
several weak classifiers ht. The first weak classifier h1 is trained on equally
weighted samples. Then, the second weak classifier h2 focuses on the previ-
ously misclassified samples, i. e. the the weights of the samples have been
adjusted with respect of the classification success of the previous weak classi-
fier. This process continues until T weak classifiers ht have been trained. We
obtain the final strong classifier H by a majority vote of all weak classifiers.

The original Adaboost framework has been extended in several approaches
and for various applications. Freund & Mason (1999) proposed a boosting
scheme with alternating decision trees (ADTboost), which has been refined
by De Comité et al. (2001). Fig. 1 shows an alternating decision tree with
four weak classifiers. The tree contains two different kind of nodes, decision
nodes and prediction nodes. First represent the decisions of the weak clas-
sifiers ht and the second are used for the predictive values αt. Both kind of
nodes alternate on all paths from the root to a leaf.

ADTboost has three major advantages over Adaboost:

3

Figure 1: Alternating Decision Tree: Rectangular nodes represent the weak
classifiers, elliptic nodes the predictive values.

1. The weak classifiers ht can be aranged in a hierarchical order - the
alternating decision tree. The weak classifiers near the root are used
to define preconditions for weak classifiers underneath them. In fig.
1 the weak classifiers h1 and h3 define preconditions for h2 and h4,
respectively.

2. There are two predictive values α+
t and α−t . Thus, the (binary) deci-

sions of a weak classifier ht can be ranked depending on the direction
of the decision instead of finding one criterion for both directions.

3. With the root node, we model an additional predictive value α0, which
is derived from the ratio of the number of samples between both classes
and, therefore, it can be interpreted as a a prior classifier.

Notation. Before discussing the specific algorithms in more detail, we want
to formalize the problem and introduce our the most important entities of
our notation.

Given are N samples (xn, yn), where x is a real-valued feature vector x =
[f1, .., fD] of dimension D, and y encodes the class membership. Regarding
the two-class problems y ∈ {−1,+1}, and regarding the multi-class case
y ∈ {1, .., K} with K given classes.

For the boosting algorithms, we will use the following entities:

• IRD is the domain of x and IK is the domain of y,

• t is the index of the iteration, t = 1 . . . T ,

4

• wnt is the weight of n-th sample in t-th iteration,

• ht : IRD → IK,x 7→ ht(x) is the best weak classifier that has been
selected from the set of classifier candidates cj, j = 1 . . . Jt,

• h+
t and h−t are used for describing predicates which are based on the

weak classifiers: h+
t means ht(x) = +1 and h−t means ht(x) = −1,

• αt is the predictive value of ht

• H is the strong classifier, H : IRD → IK,x 7→ H(x)

Structure of the Technical Report. In this technical report, we first
give document the Adaboost and ADTboost algorithms for the two-class
problem. Then, we show, how the Adaboost algorithm has been modified for
multi-class problems by Zhu et al. (2006). Afterwards, we present our strat-
egy for an analogous modification of ADTboost. Finally, we demonstrate
our approach on a small example.

2 Two-class Adaboost and ADTboost

In this section we introduce the notion of Adaboost and ADTboost algo-
rithms for classifiaction of two-class problems and discuss their major steps.
Therefore, we skip the literary review on the early concept of boosting as
proposed by Schapire (1990) and the first proposal for Adaboost by Freund
& Schapire (1996) and present the improved version of Adaboost as pro-
posed by Schapire & Singer (1999). Regarding ADTboost, we refer to the
publications of Freund & Mason (1999) and De Comité et al. (2001).

2.1 Adaboost

The principle Adaboost algorithm is consists of a initialization step and an
iterative process, where the T weak classifiers ht are determined. The major
components of the algorithm are sketched in alg. 1.

More detailed, in each iteration we have set of Jt classifier candidates
cj. Based on the actual weights of the samples wt, we select the best clas-
sifier candidate as the t-th weak classifier ht. Therefore, Schapire & Singer

5

Algorithm 1 Adaboost algorithm, cf. (Schapire & Singer, 1999).

1: function Adaboost(T, (x1, y1) . . . (xN , yN))
2: wn1 = 1

N

3: for t = 1,. . . , T do
4: Determine best weak hypothesis ht using wt
5: Determine αt
6: Determine distribution wt+1

7: end for
8: return H with H(x) = sign (

∑
t αtht(x)).

9: end function

(1999) showed that the best criteria is discriminative power of the classifier
candidates cj, if it is defined by

Zj = 2
(√

W+(c+j)W−(c+j) +
√
W+(c−j)W−(c−j)

)
, (1)

with
W+(c+j) =

∑
n

wnt where cj(xn) = yn = +1 (2)

is the sum of weights of the true positive samples and

W−(c+j) =
∑
n

wnt where cj(xn) = +1 6= −1 = yn (3)

is the sum of weights of the false positive samples. Then, the best weak
classier is that candidate which minimizes Z:

ht = ct with t = argminjZj. (4)

When building the strong classifier H, is classification result is obtained by
a weighted sum of the results of the weak classifiers, and the weights are the
predictive values αt. We determine one predictive value αt for each weak
classifier ht. According to Schapire & Singer (1999), the optimal predictive
value αt is derived from the classification result rt of the weak classifier ht
and, therefore, it depends on the classifier’s success rate:

αt =
1

2
ln
(

1 + rt + ε

1− rt + ε

)
(5)

with

rt =
N∑
n=1

wnt ynht(xn). (6)

6

The product ynht(xn) is +1, if xn is correctly classified by ht, otherwise the
product is −1. If the error rate is 0.5 or higher, what is equivalent to rt ≤ 0,
then Adaboost stops. So it is guaranteed that the predictive value αt is
always positive. Updating the weights, Schapire & Singer (1999) propose:

wnt+1 = wnt exp (−αtynht(xn)) , (7)

and afterwards wt+1 is normalized again, so that wt forms a discrete distibu-
tion.

The nature of the considered weak classifiers is not further specified, and
might be chosen with respect to the distribution of the samples. Furthermore,
it is still an unanswered question, how to set the number T of weak classifiers,
that should get combined to build the strong classifier H.

2.2 ADTboost

The principle boosting algorithm with alternating decision trees, ADTboost,
is sketched in alg. 2. It is similar to the proposal by Freund & Mason (1999).

Algorithm 2 Principle ADTboost algorithm.

1: function ADTboost(T, (x1, y1) . . . (xN , yN))
2: Initialize set of preconditions P = {T}
3: Determine α0

4: wn1 = 1
N

5: for t = 1,. . . , T do
6: Determine best weak hypothesis ht : IRD → {−1, 0,+1} using wt
7: Determine the predictive values α+

t and α−t
8: Update set of preconditions P
9: Determine wt+1

10: end for
11: return H with H(x) = sign (

∑
t αtht(x)).

12: end function

Each weak classifier ht consists of precondition pt and a classifier ct.
Therefore, we decompose ht = pt ∧ ct and redefine the weak classifiers:

ht(xn) =

+1 if pt(xn) = true and ct(xn) = +1

0 if pt(xn) = false
−1 if pt(xn) = true and ct(xn) = −1

 (8)

The preconditions are used to model the hierarchical structure of the
alternating decision tree. Therefore, we define a set of preconditions P which

7

initially contains the T-condition which is always true. If a weak classifier
contains the T-condition as its precondition, the decision node with the weak
classifier is a direct child of the root. In each iteration, where the weak
classifier ht has been selected, the update of the set of preconditions P is
done by

Pt+1 = Pt ∪
{
h+
t

}
∪
{
h−t
}
. (9)

For selecting a weak classifier ht in the t-th iteration, we need to search
for the best one over all preconditions pi ∈ P , i = 1 . . . |P | = 2t− 1, and over
all classifier candidates cj, j = 1 . . . Jt. Freund & Mason (1999) propose to
select that classifier candidate cj under precondition pi which minimizes the
function

Zi,j = 2
√
W+(pi ∧ c+j)W−(pi ∧ c+j)+

2
√
W+(pi ∧ c−j)W−(pi ∧ c−j) +W (¬pi)

(10)

where W+ are the summed weights of the true positive samples etc. and
W (¬pi) is the sum of weights of all samples which do not fulfill pi. Then the
weak classifier ht is defined by

ht = pt1 ∧ ct2 with (t1, t2) = argmini,jZi,j. (11)

Besides the hierarchy of the weak classifiers, the usage of two predic-
tive values is another advantage of ADTboost. Both decisions of the weak
classifier h+

t and h−t are evaluated separately. Then we obtain

α+
t =

1

2
log

W+(pt1 ∧ ct2)
W−(pt1 ∧ ct2)

and (12)

α−t =
1

2
log

W+(pt1 ∧ ¬ct2)
W−(pt1 ∧ ¬ct2)

. (13)

The update of the weights at the end of each iteration is done analogously
to Adaboost. If the sample does not fulfill the precondition of the weak
classifier, so ht(xn) = 0, then its weight wnt+1 remains unchanged, otherwise
it gets in- or decreased, depending on the determined predictive value and
the sample’s target.

2.3 A small example

In (Drauschke, 2008), we studied the steps of the Adaboost and ADTboost
algorithms, respectively. Therefore, we generated a synthetic data set with
two features, and chose some threshold classifier candidates for building the

8

strong classifiers with both methods. After four iterations, ADTboost re-
turned a strong classifier with 0% classification error, while the strong Ad-
aboost classifier did not fall below 32% classification error. Due to the choice
of the weak classifiers, the resulting alternating decision tree of ADTboost
can be interpretated as a k − 2-tree. We visualized these results in fig. 2.

Figure 2: Feature space partitioning by weak classifiers (left: Adaboost,
right: k-d-tree of ADTboost).

3 Multi-class Adaboost

In the previous section, we introduced the Adaboost algorithm as designed
for binary classification problems. In practise, there are many problems
with several classes, so there is an demand to extend Adaboost to multi-
class problems. Schapire & Singer (1999) proposed to solve the problem by
reducing it to a binary problem again.

Therefore, the number of samples is enlarged in the following way. If
there are given N different samples with targets in K different classes with
labels k = 1 . . . K, there are constructed N ∗ K many new samples (x′, y′)
with the feature vectors

x′nk = [xn, k] (14)

and targets

y′nk =

{
+1 if yn = k
−1 if yn 6= k

}
(15)

This approach leads to explosion of number of samples. If you have a
data set with 10, 000 samples from 100 classes, then you will have to deal
with 1 million newly constructed samples. Furthermore, the following results

H([xn, k]) = −1∀k

9

and
H([xn, k1]) = +1 = H([xn, k2])

lead to discussions about the usability of the approach.
In this section we will present the multi-class Adaboost algorithm of Zhu

et al. (2006), and then we discuss and interprete its procedures.

3.1 Zhu’s multi-class Adaboost algorithm

In a technical report, Zhu et al. (2006) proposed a multi-class Adaboost
algorithm, which is presented in alg. 3.

Algorithm 3 Multi-class Adaboost algorithm, cf. (Zhu et al., 2006).

1: function MultiClassAdaboost(T, (x1, y1) . . . (xN , yN))
2: wn1 = 1

N

3: for t = 1,. . . , T do
4: Determine best weak hypothesis ht using wt
5: Determine error rt
6: Determine αt
7: Determine distribution wt+1

8: end for
9: return H with H(x) = arg maxk

∑
t αtII (ht(x) = k).

10: end function

Zhu et al. (2006) demand to obtain only positive predictive values αt,
what is, from their point of view, the major difference to the original al-
gorithm for two-class problems. Therefore, they re-define the error rate rt
by

rt =
∑
n

wnt II (yn 6= ht(xn)) /
∑
n

wn
t (16)

determine the predictive value αt by

αt = log
1− rt
rt

+ log(K − 1). (17)

Furthermore, each weak classifier ht is only accepted, if it reaches an error
rate that is below (K − 1)/K.

The update of the weights is done by

wnt+1 = wnt II (yn 6= ht(xn)) . (18)

In the two-class algorithm by Schapire & Singer (1999), the weights have
always been normalized with the constraint

∑
nw

n
t = 1∀t, so that they form

10

a discrete distribution. Here, Zhu et al. (2006) have relaxed this constraint
and do not perform a normalization of the weights afterwards. Therefore,
they need a normalization term in equ. 16. In our point of view, there is no
argument, why the weight should not form a discrete distribution, and since
our weak classifier (as presented in section 5.1) will use this normalization,
we propose to normalize the weights additionally.

3.2 Discussion of the Zhu’s proposal

In this part, we want to discuss some of the steps of the multi-class Adaboost
algorithm by Zhu et al. (2006).

3.2.1 Strong classifier H

The first point is the construction of the strong classifier H. Its definition in
the two-class variant of Adaboost by Schapire & Singer (1999)

H(x) = sign

(∑
t

αtht(x)

)
(19)

has been consequently generalized by Zhu et al. (2006). The sign-function
is limited to the binary case, where the one class is encodes by +1 and the
other by −1. Grouping the αt with respect to their classification result, we
obtain a reformulation for equ. 19 with

H(x) = arg max
k

∑
t

αtII (ht(x) = k) , k = {−1,+1} , (20)

where II is the indicator function which returns 1, if its argument is true,
and 0, if its argument is false. Now, the generalization towards multi-class
classification is very simple, because we only have to extend the domain of
k.

3.2.2 Selecting the weak classifier ht

Zhu et al. (2006) do not mention anything about how they select the best
weak classifier. They only document that they ”fit a classifier [...] to the
training data using” wnt . So, we assume that they have a deterministic pro-
cedure that delivers exactly one possible classifier candidate cj.

Thereby, the generalization of the Z-function is not so difficult. Equ. 1
contains a sum of two square roots, and each root-term can be interpretated
as geometric mean. The first one is the geometric mean of the true and false

11

positives, and the second one of the true and false negatives. We define the
generalized term by √

Wk(ckj)W6=k(c
k
j) (21)

where
Wk(c

k
j) =

∑
n

wnt II (ht(x) = k = yn) (22)

and
W6=k(c

k
j) =

∑
n

wnt II (ht(x) = k 6= yn) . (23)

So, we replace the classification result (true or false) by the class representa-
tive k and determine the correctly and misclassified samples with respect to
k. Then, the Z-function should consider all classes, and therefore, we define
it by

Zj = 2

(∑
k

√
Wk(ckj)W 6=k(c

k
j)

)
. (24)

3.2.3 Predictive value αt

Zhu et al. (2006) demand all predictive values to be positive. If we have
given a very bad classifier with r = (K−1)/K−ε with ε > 0, then we obtain
together with equ. 17

lim
ε→0

α = log
K − 1

K2
+ log(K − 1) = log

(K − 1)2

K2
< 0, (25)

so that the predicitive value should additionally be set by

αt = max {0, αt} . (26)

4 Multi-class ADTboost

In the previous section, we presented the approach of Zhu et al. (2006) for
a multi-class Adaboost algorithm, discussed it, and proposed some minor
improvements. Now we want to discuss its adaptation for generalizing the
two-class ADTboost algorithm.

4.1 Preliminary considerations

In section 1, we listed the three major advantages of ADTboost over Ad-
aboost. When generalizing ADTboost towards multi-class problems, these
advantages must persist. These are the hierarchical structure in an alter-
nating decision tree, the distinction into two predictive values, and the ”a
priori” classification by the predictive value α0.

12

4.1.1 Defining the hierarchical structure

The alternating decision tree by Freund & Mason (1999) used binary condi-
tions to model a tree using the weak classifiers ht. Originally, these conditions
were simple predicates like f1 < 5. Since each of these conditions is treated
as a weak classifier, the more general formulation (including the precondi-
tions) has been made in equ. 8. So, we can easily adapt it regarding multiple
decisions:

ht(xn) =

{
0 if pt(xn) = false
k if pt(xn) = true and ct(xn) = k

}
(27)

This requires that no class is represented by 0. And K different outputs of ht
besides 0 should yield in K different predictive values αt, so that the second
advantage of ADTboost remains.

4.1.2 Defining the predictive values

If we define a alternating decision tree with multiple decisions in each decision
node, we need to define multiple predictive values as well. In the two-class
case, cf. equ. 12, we interpretated α+

t as measure, how good is the classifier to
recognize the positive samples in the data set. This will lead to K predictive
values αkt which we may define by

αkt =
1

2
log

Wk(h
k
t) + ε

W6=k(hkt) + ε
, (28)

where hkt is the short notation of the condition ht(x) = k and Wk and W 6=k
are defined as in equ. 22 and 23. This formula does not guarantee positive
αkt , so we must adapt the determination of the predictive values once more.

αkt =
1

2
log

Wk(h
k
t) +W6=k(h

k
t) + ε

W 6=k(hkt) + ε
(29)

ensures that αkt > 0∀k.

4.1.3 Defining α0

In the two-class case, we interpreted the value α0 in the root node of the
alternating decision tree as a ”a priori” classification, since it is defined,
according to Freund & Mason (1999) by

α0 =
1

2
log

W+(T)

W−(T)
. (30)

13

Similar to the other predictive values αt, t ≥ 1, α0 should be defined as a
K-dimensional vector. The probability that a sample belongs to class k will
correspond the the k-th value of α0, if we define it by

αk0 =
1

2
log

Wk(T) +W 6=k(T)

W 6=k(T)
. (31)

4.1.4 Strong classifier H

H(x) = arg max
k
α0 +

∑
t

z (32)

where z is a K-dimensional vector with

zk = αkt II (ht(x) = k) . (33)

4.2 Proposal for a multi-class ADTboost algorithm

Now, everything is prepared, so that we can present our algorithm for a
multi-class ADTboost, cf. alg. 4.

Algorithm 4 Multi-class ADTboost algorithm.

1: function MultiClassADTboost(T, (x1, y1) . . . (xN , yN))
2: Initialize set of preconditions P = {T}
3: Determine α0

4: wn1 = 1
N

5: for t = 1,. . . , T do
6: Determine best weak hypothesis ht : IRD → IK ∪ {0} using wt
7: Determine the predictive values αkt
8: Update set of preconditions P
9: Determine wt+1

10: end for
11: return H according to equ. 32.
12: end function

In each iteration, we select the best weak classifier by choosing the com-
bination of precondition pi and classifier candidate cj that cause the minimal
value for the Z-function, which is defined by

Zi,j = 2

(∑
k

√
Wk(pi ∧ ckj)W6=k(pi ∧ ckj)

)
+W (¬pi) (34)

We adopted the factor 2 in front of the sum, because we did not see any
reason why we should change the weights between both components of Z.

14

Since we insert K decisions with each new decision node (weak classifier
ht) in the tree, we also have to extend the set of preconditions P by the K
new elements hkt . The update of the weights is taken from the multi-class
Adaboost algorithm as stays unchanged as proposed in equ. 18. Again, if the
precondition pt of the weak classifier ht is not fulfilled by x, then ht returns
a 0 and the weight of the sample remains unchanged.

Last, we want to mention the updating of the weights. On the one side, we
need normalized weights due to our choice of weak classifier, cf. section 5.1.
On the other side, the weights of the samples that do not fulfill the chosen
weak classifiers precondition keep their amount. This leads to a normalization
constraint after updating the weights, where only the changed weights should
be considered. We start the updating process with the condition

∑
nw

n
t = 1.

The weak classifier ht divides the set of samples into two subsets, the one
with the samples that fulfill the classifiers precondition, and the other with
the samples that do not. The weights of the samples from the first subset
get changed according to equ. 18, and the weights of the others remain
unchanged. Then we re-normalize the weights of the samples of the first set
(the one where the weights have been changed) such, that the weights wnt+1

form a discrete distribution with
∑
nw

n
t+1 = 1.

5 Realization and Demonstration

In this section, we want to document how we realized ADTboost and demon-
strate its performance at the same example where we have studied the two-
class algorithm.

5.1 Weak classifiers

The ADTboost algorithm has already been formulated in the previous sec-
tion. There is only one detail open, which we now want to present: the
nature of our weak classifiers.

When studying the two-class algorithms, cf. (Drauschke & Förstner,
2008), we used simple threshold classifiers. Therefore, we determined the
best possible threshold θd for each feature fd, and then we searched for the
best classifier as described in the previous sections. This is only a successful
technique, if the data is separable binarily, otherwise it will lead to too many
classification errors. Fig. 3 shows histograms of a single feature’s occur-
rences, where the data is taken from the UCI machine learning repository,
cf. (Asuncion & Newman, 2007). The example from the ringnorm data set
shows two feature frequencies where each can get approximated well by a

15

Gaussian function. If we could use both intersections for the determination
of class borders, then we would obtain significantly better classification re-
sults. The example from the image data set shows distributions which could
be modeled by mixtures of Gaussian functions, where we would prefer even
more thresholds.

Figure 3: Histograms of a single feature with respect to two classes (red and
blue), taken from the data sets ringnorm and image.

For our study of the multi-class ADTboost algorithm, we choose classifier
candidates cj which are different from the single thresholds θd. Now, we
determine a MAP classification for each feature with respect to the samples
weights. The principle of the classifier is as follows. First, we determine
class-specific histograms k with respect to the samples weights, where the
bins of all K histograms have the same ranges. So, we may determine the
superior class of each histogram’s bin. The algorithms has as inputs the
number of bins B, N samples (fn, yn) (only a single feature per sample) and
the weight of each sample wn. Then the algorithm returns list with B class
indices. The algorithm is presented in alg 5.

If we would normalize each histogram k, so that
∑
b k(b) = 1, then the

histograms k represent Likelihood functions p(f |k). Then we only would
obtain a real MAP classification, if we determine the a priori probabilities
p(k) for each of the K classes. We obtain the Likelihood function by

p(fd|k) =
k∑

yn=k wn
, (35)

and the divisor is equal to the a priori probability p(k). We obtain

p(k) =
∑
yn=k

wn, if
∑
n

wn = 1. (36)

16

Algorithm 5 MAP classification algorithm.

1: function MAPClassiciation(B, (fd1, y1) . . . (fdN , yN), (w1 . . . wN))
2: Initialize field F with B elements
3: for k = 1,. . . , K do
4: Initialize histogram k for each class with B bins
5: end for
6: for n = 1,. . . , N do
7: Determine class index k of sample (fdn, yn)
8: Determine histogram’s bin b of sample (fdn, yn)
9: Add wn to k(b)

10: end for
11: for b = 1,. . . , B do
12: Determine maximally occured class κ = arg maxk k(b)
13: Set F (b) = κ
14: end for
15: return F
16: end function

So, our classification scheme is based on data that is proportional to the a
posteriori probability p(k|f), and therefore we call it MAP.

In fig. 4, we present again a histogram of a feature with respect to the
two classes. For each bin, we determined the superior class, and we encoded
this result by a colored dot on top of the according bar.

We use histograms with B bins, so we obtain a classifier which is equiv-
alent to the classification with maximally B − 1 thresholds, which could be
modeled by a decision tree.

Although, we presented the MAP classification with respect to two class
problems, it is easily adaptable to multi-class problems. We demonstrate an
example with three classes in the next part.

5.2 Demonstration at synthetic dataset

We changed our synthetic data set which we briefly introduced in section 2.3
to a multi-class example. Therefore, we defined the samples (xn, yn) by

yn =

1 (red) - if fn1 < 0.4 and fn2 > 0.4
3 (green) - fn1 > 0.6 and fn2 < 0.6
2 (blue) - else

 (37)

and visualized the data set in fig. 5. We generated 10000 training samples
and 5000 test samples by an uniform distribution over [0, 1] × [0, 1]. The

17

Figure 4: MAP classification based on histogram of a single feature with
respect to two classes (red and blue), taken from the data set ringnorm.

training set contains 2285 samples from class 1, 5333 samples from the second
class and 2, 382 samples from class 3.

Figure 5: Synthetic dataset with three non-overlapping classes: class 1 is
shown in red, class 2 in blue and class 3 in green.

We chose 11 bins for our histograms. The first bin covers 0 ≤ f ≤ 0.1,
and then the other follow, and we have the borders between the classes, 0.4
and 0.6, exactly between two bins, so that we have minimal overlap of the
classes for each bin. For the α0 we obtain

α0 = [0.26, 0.76, 0.27] (38)

In the first iteration, we only have one precondition T, which is fulfilled
by all samples. So, we perorm a MAP-classification on all samples. The his-
tograms of both features including the visualization of the MAP-classification

18

results are shown in fig. 6. The histogram with respect to feature f1 shows
the two bins with the data 0.4 ≤ f1 < 0.5 and 0.5 ≤ f1 < 0.6 filled only with
data from class 2, and in the other bins the classes 1 and 3 dominate over the
samples of class 2. The histogram with respect to the other feature, f2, shows
a MAP-classification result which is based on relatively close decisions. So,
it is no surprise that the first classification becomes the first weak classifier
h1. As predictive values we obtain

α1
1 = 0.59 α2

1 = 3.00 α3
1 = 0.61. (39)

Totally, 33.10% of the test data got wrongly classified by ADTboost, which
combines the prediction α0 with the result of the weak classifier h1.

Figure 6: ADTboost: 1st iteration, classifier candidates c1 and c2 using
features f1 and f2, respectively.

In the 2nd iteration, we have four possible preconditions for our new
classifier candidates, namely p1 : T, p2 : h1

1, p3 : h2
1 and p4 : h3

1. At each
of these four positions at the alternating decision tree we look for the best
MAP-classifier. Therefore, we just select the classifier with the lowest error
rate on those samples which fulfill the specific precondition. Then we need
to compare the errors with respect to the preconditions. Therefore, we de-
termined the Z-values according to to equ. 34, where we just ignored the
second index:

Z1 = 1.69 Z2 = 1.20 Z3 = 1.75 Z4 = 1.15. (40)

So, we selected the best classifier candidate c2 at the fourth precondition
and obtain as second weak classifier h2 = h3

1 ∧ c2, where c2 is the MAP-
classifier on feature f2. We show this MAP-classifier in fig. 7, left. Due to
the precondition p4 : h1(x) = 3, which is equivalent to f1 > 0.6, there are

19

no samples which belong to class 1, and the error rate of only the second
classifier is 0%. We obtain for the predictive values

α1
2 = 0.0 α2

2 = 3.69 α3
2 = 4.99. (41)

The total error of the ADTboost, which combines the prediction α0 with the
results of the first two weak classifiers h1 and h2, is 16.32% of the test data.

Figure 7: ADTboost: Best MAP-classifiers at 2nd (left) and 3rd (right) iter-
ation, respectively. Both use the feature f2, but have different preconditions.

In the 3rd iteration, we have seven possible preconditions for our new
classifier candidates. The four one from the previous iteration and, addition-
ally, p5 : h1

2, p6 : h2
2 and p7 : h3

2. Now, the best classifier candidate is chosen
in combination with precondition p2 : h1

1, which is visualized in fig. 7, right.
We obtain the following predictive values

α1
3 = 4.98 α2

3 = 5.16 α3
3 = 0.0, (42)

which leads to a total error rate of 0.0% of the test data set, if all three weak
classifiers are combined together and with the initial predictive values α0.

The resulting alternating decision tree is visualized in fig. 8. It shows a
ternary tree, because we work with three classes and arranged the precon-
ditions with respect to the number of classes. Small predictive values, e. g.
α < 1.0, sinalize that the specific weak classifier performs with a high error
rate; big predictive values, e. g. α > 2.0 show that the error rate is very low
for a specific decision.

Now, we want to demonstrate, how some feature vectors will get classified.
Therefore, we determine the results of ADTboost for nine selected points
P1 = [0.25, 0.25], P2 = [0.25, 0.5], P3 = [0.25, 0.75], P4 = [0.5, 0.25], P5 =
[0.5, 0.5], P6 = [0.5, 0.75], P7 = [0.75, 0.25], P8 = [0.75, 0.5], P9 = [0.75, 0.75].
For a correct classification, the points P4 and P7 should get classified as

20

Figure 8: Resulting alternating decision tree after three iterations of ADT-
boost on the synthetic data set with three classes.

class 1, the points P1, P2, P5, P8 and P9 should be identified as members of
class 2, and if the points P3 and P6 belong to class 3.

H(P1) = arg max [0.26 + 0.59, 0.76 + 5.16, 0.27] = 2
H(P2) = arg max [0.26, 0.76 + 3.00, 0.27] = 2
H(P3) = arg max [0.26, 0.76, 0.27 + 0.61 + 4.99] = 3
H(P4) = arg max [0.26 + 0.59 + 4.98, 0.76, 0.27] = 1
H(P5) = arg max [0.26, 0.76 + 3.00, 0.27] = 2
H(P6) = arg max [0.26, 0.76, 0.27 + 0.61 + 4.99] = 3
H(P7) = arg max [0.26 + 0.59 + 4.98, 0.76, 0.27] = 1
H(P8) = arg max [0.26, 0.76 + 3.00, 0.27] = 2
H(P9) = arg max [0.26, 0.76 + 3.69, 0.27 + 0.61] = 2

(43)

All nine test points are correctly classified by ADTboost after three itera-
tions. In our small example, the test points P1 and P9 are the only two points
which would get misclassified, if we would stop the training after the first
iteration. And after the second iteration, only P1 would still get misclassified.

References

Asuncion, A., & Newman, D.J. 2007. UCI Machine Learning Repository.

21

De Comité, F., Gilleron, R., & Tommasi, M. 2001. Learning Multi-
label Alternating Decision Trees and Applications. Pages 195–210 of:
Proc. CAP 2001.

Drauschke, M. 2008. Feature Subset Selection with Adaboost and ADT-
boost. Tech. rept. Department of Photogrammetry, University of Bonn.

Drauschke, M., & Förstner, W. 2008. Comparison of Adaboost and
ADTboost for Feature Subset Selection. In: Proc. 8th PRIS 2008.

Freund, Y., & Mason, L. 1999. The Alternating Decision Tree Learning
Algorithm. Pages 124–133 of: Proc. 16th ICML.

Freund, Y., & Schapire, R. E. 1996. Experiments with a new boosting
algorithm. Pages 148–156 of: Proc. 13th ICML.

Schapire, R. E. 1990. The strength of weak learnability. Machine Learning,
5(2), 197–227.

Schapire, R. E., & Singer, Y. 1999. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3), 297–336.

Zhu, Ji, Rosset, Saharon, Zou, Hui, & Hastie, Trevor. 2006 (Jan-
uary). Multi-class AdaBoost. submitted in 2005, not published yet.

22

