Description of Stable Regions IPM

Martin Drauschke

martin.drauschke@uni-bonn.de

TR-1GG-P-2008-03
18th March 2008

“e-igg

Technical Report Nr. 3, 2008

Department of Photogrammetry
Institute of Geodesy and Geoinformation
University of Bonn

Available at
http://www.ipb.uni-bonn.de/~ martin/






Desription of Stable Regions IPM

Martin Drauschke

martin.drauschke@uni-bonn.de

Abstract

The Stable Regions Image Processing Module is a low-level region
detector. It delivers image parts of interest without any further in-
terpretation. These image parts are all regions of an image which do
not change much over a certain range in scale space of the image.
The output of this IPM is a list of polygons of any shape and their
rectangular bounding boxes, which both are saved into an xml-file.

Contents

1 Introduction 3

2 Detection of Stable Regions 4
2.1 Segmentation and Scale-Space Hierarchy. . . . . . . . ... .. 4
2.2 Stability of Regions. . . . . ... ... 5

3 Functionality of Stable Regions IPM 7
3.1 TImage Description . . . . . . . ... .. .. ... ... .. 7
3.2 Principle of the Stable Regions Detection . . . . . . . ... .. 8
3.3 Functionality of Interface Functions . . . . . . . .. .. .. .. 9
3.4 System Parameters . . . . .. ... .. .. ... . ... .... 10
3.5 System Properties and Complexity . . . . . .. ... ... .. 13
3.6 Error Statements . . . . . ... .. .. L. 15

4 Examples 17

1 Introduction

The Stable Regions IPM is written by Martin Drauschke from Department
of Photogrammetry, Institute of Geodesy and Geoinformation, University
Bonn. It is based on first experiments on image regions in scale space, cf.
[Drauschke et al., 2006]. The work for the first version of the implementation



was done within the project ” Ontological Scales for automated detection, effi-
cient processing and fast visualization of landscape models” which is founded
by the German Research Council. Due to the complexity of the calculations,
some programme routines had to optimized and re-structured. The work for
the second version was done within the project ”e-Training for Interpreting
Images of Man-Made Scenes” which is founded by the European Union.

As a low-level detector, it can be integrated into the framework of SCENIC.
Therefore, we implemented routines for setting up the IPM and for choosing
the systems parameters. The output of the IPM is a list of image regions
which are represented by their boundary and described by polygons. These
regions may have any shape, especially they may have holes. For easier in-
tegration into SCENIC we also return the rectangular bounding box of each
polygon. So far, we only detect stable regions. There is no semantic inter-
pretation of these regions yet. Thus, the user should take the output of the
IPM as a list of ”interesting image parts” only.

This report contains four chapters. In chapter 2, we describe mathemat-
ically the detection procedure of the stable regions. The chapter 3 is more
technically, there we present the functionality of the IPM and introduce all
implemented functions. Finally, in chapter 4 we document the work by pre-
senting some examples.

2 Detection of Stable Regions

This section is taken from the project review ”"D2.1: Compositional hierar-
chies in Bayesian Networks”, submitted on May 21st 2007 to Commission
Services of the eTRIMS project.

2.1 Segmentation and Scale-Space Hierarchy.

Scale space analysis has been intensively studied, cf. e. g. [Alvarez et al., 1993,
Lindeberg, 1994, Florack & Kuijper, 2000, Kuiper et al., 2003]. We build
the Gaussian scale-space of the original image I(x,y) with N = 41 loga-
rithmically ordered scales o; = 2 and ¢ € [—0.5,3]. Thus, we obtain 10
small scales below 1, and the other scales between 1 and 8 in steps of a tenth
octave. The gradients are used as an input for a watershed algorithm that
returns a partitioning with regions R”?, v = 1, ... for each layer of the image’s
scale-space with scale o, cf. [Drauschke et al., 2006].

The adjacencies of regions within one scale-space layer are already spec-
ified by the partitioning. Additionally, we need a well defined neighbour-



hood for regions of different scale-space layers. We define the across-scale-
neighbourhood by a region mapping. Let o; and 0,1, two adjacent scale-space
layers, then region R"1- is adjacent to a region R*72:?+1  if there is no other
region in layer o;,; that shares more pixel with R*1-% than R"2:7+1 does.
More precisely,

RYi1:% 1y RYi2:%i4+1 & RYi1:%i ) RYi2:%i+1 > RYi1:% N RYk:Ti+1\/L 7§ j2- (1)

Note that this asymmetric relation between two regions of different scale-
space layers does not depend on a threshold. However it not transitive, thus
we are not allowed to skip one scale layer, thus need to sample the scales
densely enough in contrast to our previous approach in [Drauschke et al., 2006].

We therefore obtain an image intrinsic graph structure which is a forest
of trees and reflects the partonomy. If we consider region adjacencies defined
as above, but in both directions (scale up- and downwards) then we may also
handle scale-space events, where regions split. However, regions may be split
when increasing scale, which however does not occur frequently and can be
neglected, i e. resolved with some heuristics in a first approximation. Due
to the huge number of very small regions, especially in the lower scales, we
build the tree of regions only over regions with a minimum size, see Fig. 1.
In our experiments we chose 30 pixels for the minimum size of a region.

2.2 Stability of Regions.

We are of course interested in scale-space events annihilation and merging.
However, it appears decisive whether a region only changes a little bit over
a wide range in scale-space.

In our first approach, cf. [?], we chose the area (size) of a region as
criterion for measuring a region’s stability. The area is a good measure since
it changes dramatically, if e. g. two regions melt together, and it is nearly
constant, if a region is similarly segmented over several adjacent scale-space
layers. As this approach, in its first realization was a manual one, we replaced
it by an automated process. While tracing the regions through the scale-space
layers, we focused on those regions which do not vary too much over a certain
range of scales. In fact, we looked for approximate prisms or cylinders in the
scale-space image which are built by regions from adjacent layers. Thus, we
observed the region R and its mappings into adjacent scales R"*?* with
s € [0g,01] and 0¢ < 0; < 07. Finally, we term all regions R"7¢ stable, if it
obeys the condition

22, B
02 : Rys,s > t (2)

s=oq



Figure 1: Example graph for regions neighbourhoods across scale-space lay-
ers. Nodes of the same height are regions in one layer. Edges between regions
of adjacent layers mark the mappings between those regions. Green nodes
symbolize stable regions, cf. equ. 2.

where the threshold ¢ can be used to weaken or strengthen the measurement
of stability. We used t = 0.75 for the determinations that we present in fig.
2 and 3.

As important regions may not be stable over a large scale range, larger
than t, we discarded this early decision. Therefore, we do not preselect stable
regions, but treat the region’s behavior in scale space as the region’s feature.

More precisely, we use the stability measure ¢, for a region R"*? to the
adjacent region in the next scale-space level s 4+ 1 by

RVst N RV8+170'5+1
- RVS’US U RVerl,Uerl

(3)

Ss

and the stability measure < of scale range with d scale-space levels by

$; = max { min gj} : (4)

1=0..d (j=s—d+i..s+1i

The regions where < is over a threshold, e. g. t = 0.75, are exactly the stable



Figure 2: Aerial image and its segmentations at scale-space layers with o = 1,
o =2 and 0 =4 (row-wise f.1.t.r.) where we highlighted the stable regions.

region of the previous approach. However, we now have as a feature of a
region the scale range within that region exists.

3 Functionality of Stable Regions IPM

3.1 Image Description

The Stable Regions IPM may work on all image formats that can be read by
the Matlab Image Processing Toolbox (imread). Its supported file types are
jpeg, tiff, gif, bmp, png, hdf, pcx, xwd, ico, cur, ras, pgm and ppm. Each
input image must have 3 colour channels (RGB), otherwise the IPM will stop
and return an error message. So far, we used images in jpg and tiff format
in our tests. We have not tested the IPM on other material than 8-bit coded
images. There is no further request on the input image, it may show any
scene (objects may be rectified as well as perspectively deformed).



Cra

Figure 3: Aerial image and its segmentations at scale-space layers with o = 1,
o =2 and 0 =4 (row-wise f.1.t.r.) where we highlighted the stable regions.

3.2 Principle of the Stable Regions Detection

The Stable Regions IPM recognizes image regions which stay stable for at
least a predefined range d in scale space. Therefore, we construct the scale
space function of an image f, using a Gaussian kernel for the smoothing
operation:

flz,y,0) = f(x,y) * Go(2,y).

There is no resizing of the image done, thus we analyze an image cuboid, not
an image pyramid. The scale space is implemented discretely with [ layers,
and we call a family of regions

S ={s1,52,83,...,8,} ,d<n<lI
stable, if for all regions s;, © = 1..n — 1:
1. If s; is a region of layer ¢, then is s;41 a region of layer ¢ + 1.
2. The regions do not change much from one layer to the next one:

S; = Sit1

Many stable regions can be found, where image parts have a clearly visible
border. Man-made objects often have these borders, additionally shadow
edges also often cause stable regions along them. Usually, single vegetation
objects only lead to stable regions in upper scales, but lawn might also lead to



stable regions at lower scales. Due to the image smoothing with a Gaussian
kernel, the regions get rounder shape when the scale increases. These regions
often do not represent a single object anymore. Therefore, the maximum
scale should not set too high.

3.3 Functionality of Interface Functions

We distinhguish between the interface functions of the Stable Regions IPM
and the private functions. The private functions are stored in the directory
src should not be called individually. Thus, we do not list their functionality
in this report. A short description of these routines and the explanation of
the input and output variables are listed in the beginning of each method.

The interface functions are prepared for usage by SCENIC, these func-
tions set up the environment of the Stable Regions IPM and there, we call
the private functions. All interface functions are stored in the main directory
of the Stable Regions IPM, which should be used as current directory when
using matlab.

e init. This functions creates directories for saving temporary data,
adds a path to the directory with the private functions to the Matlab
search path, and loads a configuration file. The input of this function
is the name of the configuration file and, voluntary, the file extension.
The accepted file formats for a configuration file are mat and xml. In
the directory test, there is a method create_option_file for making
such a configuration file. The routine returns a structure where the
system parameters are stored in.

e set_options. This functions resets the system configuration by read-
ing a new configuration file and returning an updated structure with
the system parameters. Thus, input and output are identical to the
function init.

e set_optionvalue and get_optionvalue. Both functions are imple-
mented for a contolled reading from and writing into the structure
with the system parameters, respectively. Thus, such a structure is an
input of both functions and the name of the selected parameter. The
writing method additionally needs the new value as input and has no
further output, and the reading method returns that parameter’s value.
If the parameter’s name is not one of the list (cf. next subsection), the
functions stops the process and returns an error message.



e derive further parameters. Most of the system’s parameters are set
from the configuration file, but some parameters depend on the value
of others. The validation of the read parameters and the derivation of
further dependent parameters in done in this routine, e.g. the base o
for the smoothing of the images depends on the number of layers and
the range of scale which can be set by the user. Thus, we determine its
value directly before starting the detection of the stable regions. There
two other input variables (both boolean), where the user may direct,
if the system shall write images into temporary directories for subtask
inspection and if the output stream shall be verbose.

e cleanup. If this function is called, all temorary directories and files are
removed again.

e show_stable_regions. The purpose of this function is the visualization
of the detection. So far, we only detect stable regions without having
any interpretation done. So we draw the boundary of all regions into
the image. Therefore, we need three input strings, the filename of
the image, the filename of xml-file, where the stable regions have been
saved, and the filename of the output image.

e find all stable regions. Here, the detection of the stable region
takes place. This routine is made as an all-ine-one-function, where
no interaction can be done. But the routine also returns important
information about the scale-space structure that has been saved, and
which can be used for further activities. The process five major private
functions which are described in section 3.5.

e find stable regions_in selected_area. It could be reasonable, to
search for stable regions in certain image parts. Then, not the whole
tree of regions has to be determined, but only a subtree of it. Thus,
all regions which do not intersect a rectangular image part are deleted
before constructing the regions hierarchy. This selection process is re-
alized in a private routine, the other difference to the previous function
is that the construction of the scale-space structure can be skipped, if
it already has been done.

3.4 System Parameters

The detection of stable regions depends on various parameters. Most of these
parameters are set in a configuration file. They are listed below, an example
is given in table 1:



avoid_oversegmentation. This parameter is used in segmentation
process. It describes a factor which will be multiplied to the median
of the average gradient. Then, all gradients below this product are set
to 0. For additonal information, cf. [Briigelmann & Forstner, 1992,
Drauschke et al., 2006].

maximum scale. This parameter is used when constructing the scale
space. In scale space, the different levels have the following meaning: 0
means the layer with the original image, 1 is the pyramid’s level where
original image is set on half size (or smoothed by Gaussian kernel with
sigma=1), 2,4,8 are next pyrmaid’s levels. Further levels do not seem
to be appropriate, because the smoothing of the image with a Gaussian
kernel will cause to many deformations of the regions.

nb big scales. This parameter is also used when constructing the
scale space. Big scales are all scales of pyramid’s levels ;= 1. We
prefer the work on 10 scales from one pyramid’s level to the next one.
Then, we need 31 scale for modelling the scale space starting at scale
1 and ending at scale 8.

nb_small scales. This parameter is also used when constructing the
scale space. Small scales are all scales below 1. We work with 10 scales
what is like observing the pyramid’s levels between 0.5 and 1. Further
small scales are not recommendable.

minimum size of a region. This parameter is used when analyzing
the scale space: The region’s hierarchy is only performed on regions
with at least this size (number of pixels). Thus, this criterion is kind
of a preselection of regions.

start_tree_layer. The layers in the scale space have an index, 1 is the
lowest scale, the original image, then the small scales come, finally the
big ones. This parameter is used when building the region’s hierarchy.
Its value refers to the index of a scale where we start building the
hierarchy and later, we begin there to derive the tree structure.

end tree_layer. The layers in the scale space have an index, 1 is the
lowest scale, the original image, then the small scales come, finally the
big ones. This parameter is used when building the region’s hierarchy.
Its value refers to the index of a scale where we stop building the
hierarchy and later, we stop there to derive the tree structure. The
value 0 for this parameter means that the work shall be done until the
last possible layer has been reached.



e stability_threshold. This parameter is used when analyzing the
regions in scale space. There, we focus on those regions which do not
change a lot over a certain scale space range. This parameter describes
the maximum allowed difference between two adjacent regions (in scale
space), 0.7 says 70% of the regions area (list of pixels) may not change.

e stability range. This parameter is used when analyzing the regions
in scale space, we focus on those regions which do not change a lot over
a certain scale space range. This parameter describes the minimum
number of scale space layers where regions may not change much.

Table 1: List of System Parameters as set in a Configuration File.

avoid_oversegmentation: 1
maximum_scale: 8
nb_big_scales: 31

nb_small_scales: 10
minimum_size_of_a_region: 30
start_tree_layer: 1
end_tree_layer: O
stability_threshold: 0.7000
stability_range: 10

Other system parameters depend directly on parameters from the con-
figuration file. Furthermore, the user may select two options for the output:
the systems behaviour concerning the saving of temporary images and the
printing into the command line is managed by the parameters save_images
and verbose. The two new derived system parameters are:

e sigma0. This parameter is needed to determine the correct smoothing
parameter. The scale space layers are logarithmically ordered, so this
value is used as a base for the determination of the smoothing values.
For additonal information, cf. [Drauschke et al., 2006].

e nb_all scales. The scale space shall consist of the original image and
all available small and bigger scales.

The following table shows the additional parameters of the options struc-
ture.



Table 2: List of derived System Parameters.

save_images: 1
verbose: O
sigmaO: 1.
nb_all_scales: 42

1

3.5 System Properties and Complexity

The Stable Regions IPM is implemented using Matlab 7.0.0.19920 (R14).
The Image Processing Toolbox 4.2 has been used and must also be available,
when running the IPM. We have tried the IPM only on Windows, so far, but
we don’t see any problems for using Linux as operating system (if Matlab is
installed there, too).

We have tested the IPM intensively, we also recorded the computational
CPU-time for inspecting the following 18 images:

e cups.jpg It is a very small image (134 x 71), where the calculations are
manageable in about 15 seconds.

e (razl6.jpg and Graz22.jpg Both images are extracts of aerial images,
but their size (each is 1409 x 1500) is still too big for fast testing. The
region detection for each scale needs about half an hour, the calcula-
tions on the hierarchy and stability measures needs a couple of days!
Thus, we used 5 and 9 smaller extracts of these aerial images, respec-
tively.

e London01.jpg, London02.jpg and London03.jpg They are taken from
the Imperial-group, all three images have an similar size of about 500
x 350 pixels.

The following table shows the computational costs of the five major rou-
tines that have to be called by each interface operator that wants to detect
the stable regions:

e m; detect_regions_for_tree. Here, we construct the scale space of
the input image, determine the image partition using the watershed
transform, and finally, we select the appropriate regions for the region
hierarchy graph without restricting the calculations on a pre-selected
image part.



e msy calculate_tree_of regions. In this method, we determine the hi-
erarchy graph of all detected regions, and we obtain the local stability
measure.

e m3 determine_range stability. In this routine, we derive a range
stability measure for each region using the tree structure and the local
stability measures.

e my reduce_tree_of regions. Here, we select the stable regions and
appoint the reference regions of each stable regions family and the
merging regions in the region hierarchy graph.

e m; write_stable_regions. This function is used for saving the stable
regions (vector-representation and bounding box) into an xml-file.

Table 3: CPU-time needed for each major function.

Image my Mo ms My ms

[sec] [sec] [sec] [sec] [sec]

cups 5.0 3.8 3.0 1.4 1.0

Grazl16_1 196.0 179.2 1216.8 58.3 15.7
~ 20 [min]

Grazl6_2 402.3 321.0 3265.1 114.5 24.9
~ 54 [min]

Grazl16_3 713.0 525.2 6996.0 156.1 27.1
~ 2 [h]

Grazl6.4 118.4 87.9 174.8 22.6 8.9

Grazl6.5 101.6 101.5 241.6 25.8 10.8

Graz22_1 75.1 79.0 75.4 12.5 10.4

Graz22_2 105.4 86.6 105.8 18.4 9.3

Graz22_3 84.5 72.3 83.6 11.3 9.1

Graz22_4 296.3 233.2 1602.5 74.1 18.3
~ 27 [min]

Graz22.5 65.8 50.9 54.0 9.2 5.1

Graz22_6 233.7 224.9 1511.0 80.5 20.1
~ 25 [min]

Graz22_7 138.7 111.8 373.5 28.0 9.8

Graz22_8 75.6 73.1 177.7 21.4 10.6

Graz22.9 164.3 141.7 672.4 42.0 9.6

London0O1 160.0 184.7 829.7 58.3 20.6




Table 3: CPU-time needed for each major function.

Image my Mo ms My ms

[sec] [sec] [sec] [sec] [sec]

London02 174.1 204.5 1792.3 97.1 13.0
~ 30 [min]

London03 209.2 257.9 1752.7 69.4 12.5
~ 29 [min]

sum of 3319.0 2939.2 20928.0 900.9 236.9

above ~ 55 [min] | ~49 [min] | ~ 5.8 [h] | & 15 [min] | = 4 [min]

| | | | | | |

Grazl16 29250 26 440 96 270 46 400 690

~8[h] | =~T7.5[h] ~ 27 [h] ~ 13 [h] | 11.5 [min]

Graz22 31790 26 180 133900 23430 680

~ 9 [h] ~ 7 [h] ~37[h] | ~6.5[h] |~ 11 [min]

3.6 Error Statements

The Stable Regions IPM returns the following error statements, if the IPM is
not used properly or other problems occur. Table 4 lists all error statements,
sorted by their number, and also contains the throwing function and the
statement itself.

Table 4: Error statements of Stable Regions IPM.

| Nr. | Throwing Functions

‘ Statement

|

1 | stab_init, stab_set_options No file name for configura-
tion file.
2 | stab_init, stab_set_options Configuration file must have
valid file extension (mat or
xml).
3 | stab_init, stab_set_options Configuration  file  not
found.
4 | stab_init, stab_set_options Wrong file extension for
configuration file.
5 | stab_set_optionvalue, Three / Two parameters are
stab_get_optionvalue, needed for setting / deriving
stab_derive_further_parameters | new option value.




Table 4: Error statements of Stable Regions IPM.

| Nr. | Throwing Functions

\ Statement

6 | stab_set_optionvalue, Wrong parameters name -
stab_get_optionvalue could not set / get option

value.

7 | stab_derive_further_parameters, | Option structure is not
detect_regions_for_tree, valid.
calculate_tree_of_regions,
determine_range_stability,
get_paths_from region,
reduce_tree_of regions,
visualize_stable_regions,
write_stable_regions,
select_regions_from_area

8 | detect_regions_for_tree Invalid input image must

have 3 channels (RGB).

9 | detect_regions_for_tree Problem with reading the

input image.

10 | detect_regions_for_tree Problem with filename of in-

put image.

11 | get_scale_space_layer Problem with smoothing

the image.

12 | get_scale_space_layer Problem with determining

the watershed regions.

13 | get_scale_space_layer, Problem with saving tempo-
detect_regions_for_tree, rary data.
visualize_stable_regions,
select_regions_from_area

14 | calculate_tree_of regions, Problem with loading tem-
visualize_stable_regions, porary data.
write_stable_regions,
select_regions_from_area

15 | calculate_tree_of regions Calculation of histogram.

16 | determine_range_stability Inversion of tree of region

failed.

17 | get_paths_from_region Problem with tree analysis

upwards / downwards.

18 | determine_range stability Problem by determination

of range stabilities.




Table 4: Error statements of Stable Regions IPM.

| Nr. | Throwing Functions

\ Statement

19 | reduce_tree_of regions Marking of regions failed.

20 | reduce_tree_of regions Gathering marked regions
into paths failed.

21 | reduce_tree_of regions Determination of reduced
tree nodes failed.

22 | reduce_tree_of regions Arrangement of reduced
stable regions tree failed.

23 | reduce_tree_of regions Saving the Reduced Stable
Regions Tree failed.

24 | write_stable_regions Problem with converting a
region-bitmap into vector-
representation.

25 | write_stable_regions Problem with saving stable
regions into xml file.

4 Examples

In this chapter, we present some examples of the Stable Regions IPM. In
table 5, we list the numbers detected stable regions for each of our 20 test
images. The table also includes the sizes of each image. All calculations have
been done with the same set of system parameters, whose values are listed

in table 1.

Table 5: Size and number of detected stable regions per
test image.

H Image ‘ Size ‘ Regions H H Image Size ‘ Regions H
cups 134 x 71 33 Graz22_1 298 x 316 147
London01 458 x 334 324 Graz22_2 386 x 266 178
London02 458 x 334 357 Graz22_3 312 x 326 141
London03 530 x 352 292 Graz22 4 450 x 424 334
Grazl6_1 438 x 368 303 Graz22.5 286 x 292 118
Grazl6_2 618 x 368 426 Graz22_6 600 x 310 361
Graz16_3 756 x 410 462 Graz22_7 322 x 402 213
Grazl6.4 295 x 356 196 Graz22_8 376 x 250 212
Grazl6_5 370 x 304 200 Graz22_9 398 x 348 248




Table 5: Size and number of detected stable regions per
test image.

H Image \ Size \ Regions H H Image \ Size \ Regions H
H Grazl6 \ 1409 x 1500 \ 3634 H H Graz22 \ 1409 x 1500 \ 4328 H

Furthermore, we have visualized our results regarding the three images
from London. You can see all detected regions in figs. 4, 6 and 8. Since
the number of detected regions is relatively high, and many regions overlap
others, we do also show 10 images showing only 10% of the detected stable
regions, cf. figs. 5, 7 and 9.

Figure 4: All detected stable regions of London01.jpg



References

[Alvarez et al., 1993] ALVAREZ, Luis, GUICHARD, FREDERIC, LIONS,
PiERRE-LOUIS, & MOREL, JEAN-MICHEL. 1993. Axioms and funda-
mental equations in image processing. Archive for Rational Mechanics,
123(3), 199-257.

[Briigelmann & Forstner, 1992] BRUGELMANN, REGINE, & FORSTNER,
WOLFGANG. 1992. Noise Estimation for Color Edge Extraction. Pages
90-107 of: FORSTNER, W., & RUWIEDEL, S. (eds), Robust Computer
Vision. Wichmann, Karlsruhe.

[Drauschke et al., 2006] DRAUSCHKE, MARTIN, SCHUSTER, HANNS-
FLORIAN, & FORSTNER, WOLFGANG. 2006. Detectability of Buildings in
Aerial Images over Scale Space. Pages 7-12 of: FORSTNER, WOLFGANG,
& STEFFEN, RICHARD (eds), Symposium of ISPRS Commission III: Pho-
togrammetric Computer Vision, vol. XXXVI. Bonn: ISPRS Commission
I1I, for ISPRS.

[Florack & Kuijper, 2000] FLORACK, Luc, & KUlJPER, ARJAN. 2000. The
Topological Structure of Scale-Space Images. Journal of Mathematical
Imaging and Vision, 12(1), 65-79.

[Kuiper et al., 2003] KUlPER, ARJAN, FLORACK, Luc, & VIERGEVER,
Max. 2003. Scale Space Hierarchy. Journal of Mathematical Imaging
and Vision, 18, 169-189.

[Lindeberg, 1994] LINDEBERG, TONY. 1994. Scale space theory in computer
vision. Kluwer Academic.



Figure 5: Results of London01.jpg



Figure 6: All detected stable regions of London01.jpg



7%

Fi :
igure 7: Results of London02.jpg



Figure 8: All detected stable regions of London01.jpg



Figure 9: Results of London03.jpg



