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Abstract We develop a qualitative measure for the com-
pleteness and complementarity of sets of local features in
terms of covering relevant image information. The idea is to
interpret feature detection and description as image coding,
and relate it to classical coding schemes like JPEG. Given
an image, we derive a feature density from a set of local fea-
tures, and measure its distance to an entropy density com-
puted from the power spectrum of local image patches over
scale. Our measure is meant to be complementary to ex-
isting ones: After task usefulness of a set of detectors has
been determined regarding robustness and sparseness of the
features, the scheme can be used for comparing their com-
pleteness and assessing effects of combining multiple de-
tectors. The approach has several advantages over a simple
comparison of image coverage: It favors response on struc-
tured image parts, penalizes features in purely homogeneous
areas, and accounts for features appearing at the same lo-
cation on different scales. Combinations of complementary
features tend to converge towards the entropy, while an in-
creased amount of random features does not. We analyse the
complementarity of popular feature detectors over different
image categories and investigate the completeness of com-
binations. The derived entropy distribution leads to a new
scale and rotation invariant window detector, which uses a
fractal image model to take pixel correlations into account.
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The results of our empirical investigations reflect the theo-
retical concepts of the detectors.
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1 Introduction

Local image features play a crucial role in many computer
vision applications. The basic idea is to represent the image
content by small, possibly overlapping, independent parts.
By identifying such parts in different images of the same
scene or object, reliable statements about image geome-
try and scene content are possible. Local feature extraction
comprises two steps: (1) Detection of stable local image
patches at salient positions in the image, and (2) description
of these patches. The descriptions usually contain a lower
amount of data compared to the original image intensities.
The SIFT descriptor (Lowe 2004), for example, represents
each local patch by 128 values at 8 bit resolution indepen-
dent of its size.

This paper is concerned with feature detectors. Important
properties of a good detector are:

. Robustness. The features should be robust against typical
distortions such as image noise, different lighting condi-
tions, and camera movement.

2. Sparseness. The amount of data given by the features
should be significantly smaller compared to the im-
age itself, in order to increase efficiency of subsequent
processing.

3. Speed. A feature detector should be fast.

4. Completeness. Given that the above requirements are
met, the information contained in an image should be
preserved by the features as much as possible. In other
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words, the amount of information coded by a set of fea-
tures should be maximized, given a desired degree of ro-
bustness, sparseness, and speed.

Popular detectors have been investigated in depth regarding
Item 1, and there exists some common sense about the most
robust detectors for typical application scenarios. Sparse-
ness often depends on the parameter settings of a detector,
especially on the significance level used to separate the noise
from the signal. The speed of a detector should be charac-
terized referring to a specific implementation.

Item 4 has not received much attention yet. To our knowl-
edge, no pragmatic tool for quantifying the completeness
of a specific set of features w.r.t. image content is avail-
able. This may be due to the differences in the concepts of
the detectors, making such a statement difficult. As shown
in Fig. 1, for example, blob-like features often cover much
of the areas representing visible objects, while the charac-
teristic contours are better coded by junction features and
straight edge segments.

Complementarity of features plays a key role when us-
ing multiple detectors in an application. It is strongly related
to completeness, as the information coded by sets of com-
plementary features is higher than that coded by redundant
feature sets. The detectors shown in Fig. 1 complement each
other very well. Using all three, most relevant parts of the

images are taken into account. Such complementarity is of-
ten taken for granted, but cannot always be expected. A tool
for quantifying it would be highly desirable.

Our goal is to develop a qualitative measure for evaluat-
ing how far a specified set of detectors covers relevant image
content completely and whether the detectors are comple-
mentary in this sense. We would also like to know if com-
pleteness over different image categories reflects the theo-
retical concepts behind well-known detectors.

This requires us to find a suitable representation of what
we consider as “relevant image content”. We want to follow
an information theoretical approach, where image content is
characterized by the number of bits using a certain coding
scheme. Then it is desirable to have strong feature response
at locations where most bits are needed for a faithful cod-
ing, while features on purely homogeneous areas are less
important. Therefore we will derive a measure d for the in-
completeness of local features sets, which takes small values
if a feature set covers image content in a similar manner as
a good compression algorithm would. We will model d as
the difference between a feature coding density p. derived
from a set of local features, and an entropy density pg, both
related to a particular image. The entropy density is closely
related to the image coding scheme used in JPEG. Although

LOWE (blobs)

Original image

Fig. 1 Sets of extracted features on three example images. The fea-
ture detectors here are substantially different: LOWE (Lowe 2004) fires
at dark and bright blobs, EDGE (Forstner 1994) yields straight edge

EDGE (line segments) SFOPO (junctions)

segments, and SFOPQ (Forstner et al. 2009, using « = 0 in (7)) extracts

junctions
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not being a precise model of the image, we will show that it
is a reasonable reference.

We do not intend to give a general benchmark for detec-
tors. More specifically, we do not claim sets of features with
highest completeness to be most suitable for a particular
application. Task usefulness can only be determined by in-
vestigating all of the four properties listed above. Therefore
we assume that a set of feature detectors with comparable
sparseness, robustness and speed is preselected before using
our evaluation scheme.

The entropy density pg also leads to a new scale and ro-
tation invariant window detector, which explicitly searches
for locations over scale having maximum entropy. The de-
tector uses a fractal image model to take pixel correlations
into account. It will be described and included in the inves-
tigations.

The paper is organized as follows. In Sect. 2 we will give
an overview on popular feature detectors and related work
in image statistics. Section 3 covers the derivation of the en-
tropy and feature coding densities together with an appro-
priate distance metric d, and introduces the new entropy-
based window detector. An evaluation scheme based on d is
described in Sect. 4.1, followed by experimental results for
various detectors over different image categories, including
a broad range of mixed feature sets (Sect. 4.2). We finally
conclude with a summary and outlook in Sect. 5.

2 Related Work
2.1 Local Feature Detectors

Tuytelaars and Mikolajczyk (2008) emphasized that most
local feature detectors are in fact extractors, and that the fea-
tures themselves are usually covariant w.r.t. distortions of
the image. However we use the term “detector” for all pro-
cedures which extract some relevant features, irrespective of
their invariance properties.

A broad range of local feature detectors with different
properties is available today. They are often divided into cor-
ner detectors, blob detectors and region detectors, the lat-
ter two representing two-dimensional features as opposed to
corners, which have dimension zero. While blobs may also
be seen as regions referring to their dimension, the distinc-
tion is reasonable: With “blobs” we usually denote features
attached to a particular pixel position, representing dark or
bright areas around the pixel, while regions are explicitly
determined by their boundaries. We also need to take detec-
tors of one dimensional features into account, namely edge
detectors, as they explicitly focus on boundaries of regions
and possibly build corner and junction points.

We give a short overview on the most popular detec-
tors, and refer to Tuytelaars and Mikolajczyk (2008) for a
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detailed description. Before we start however, we want to
mention the interesting work of Corso and Hager (2009),
who search for different scalar features arising from kernel-
based projections that summarize content. This approach ad-
dresses our idea of preferring complementary feature sets,
but is very different from classical feature detectors.

2.1.1 Blob and Region Detectors

The scale invariant blob detector proposed by (Lowe 2004),
here denoted as LOWE, is by far the most prominent one. It
is based on finding local extrema of the Laplacian of Gaus-
sians (LoG) sz g= Vrz x g, where g is the image function
and t is the scale parameter, identified with the width of
the smoothing kernel for building the scale space. The LoG
has the well-known Mexican hat form, therefore the detec-
tor conceptually aims at extracting dark and bright blobs on
characteristic scales of an image. The underlying principle
of scale localization has already been described by Linde-
berg (1998b). To gain speed, the LOWE detector approxi-
mates the LoG by Difference of Gaussians (DoG).

The Hessian affine detector (HESAF) introduced by
Mikolajczyk and Schmid (2004) is theoretically related to
LOWE, as it is also based on the theory of Lindeberg (1998b)
and relies on the second derivatives of the image function
over scale space. It evaluates both the determinant and the
trace of the Hessian of the image function, the latter one
being identical to the Laplacian introduced above. In Miko-
lajczyk et al. (2003), the response of an edge detector is eval-
uated on different scales for locating feature points. Then, in
a similar fashion as for HESAF, a maximum in the Laplacian
scale space is searched at each of these locations to obtain
scale-invariant points. Therefore this detector, referred to as
EDGELAP, computes a high amount of blobs located near
edges with some non-homogeneous signal on at least one
side.

Regions, as opposed to blobs, determine feature windows
based on their boundary, and thus have a strong relation to
image segmentation methods. A very prominent affine re-
gion detector is the Maximally Stable Extremal Region de-
tector (MSER) proposed by Matas et al. (2004). The idea is to
compute a watershed-like segmentation with varying thresh-
olds, and to select such regions that remain stable over a
range of thresholds. The MSER detector is known to have
very good repeatability especially on objects with planar
structures, and is widely used especially for object recogni-
tion. Another example is the intensity-based region detector
IBR proposed by Tuytelaars and Van Gool (2004). Here, lo-
cal maxima of the intensity function are first detected over
multiple scales. Subsequently a region boundary is deter-
mined by seeking for peaks of the intensity function along
rays radially emanating around these points. It has been ob-
served that the feature sets extracted by MSER and IBR are



Int J Comput Vis (2011) 94:154-174

157

fairly similar (Tuytelaars and Mikolajczyk 2008). The direct
output of both algorithms can be any closed boundary of a
segmented region. Within this work however, we will model
feature patches by elliptical shapes, following most existing
evaluations.

A different approach is been taken by Kadir and Brady
(2001) who estimate the entropy of local image attributes
over a range of scales and extract points exhibiting entropy
peaks in this space with significant magnitude change of
the local probability density. Their “salient regions” detec-
tor (SALIENT) has been extended to affine invariance later
(Kadir et al. 2004). It typically extracts many features, but is
known to have significantly higher computational complex-
ity and lower repeatability than most other detectors (Miko-
lajczyk et al. 2005).

2.1.2 Corner and Junction Detectors

Corners have been used extensively since the early works of

Forstner and Giilch (1987) and Harris and Stephens (1988).

Both of these detectors in principle provide rotation invari-

ance and good localization accuracy. The detectors are based

on the second moment matrix, or structure tensor,
- 2
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computed from the dyadic products of the image gradi-
ents. Here, t is the smoothing parameter used for com-
puting the derivatives, and o used for specifying the size
of the integration window. Usually they are tied, i.e. by
t(0) = o/3. Strictly speaking, these detectors are window
detectors: They compute optimal local patches for describ-
ing a feature instead of optimal feature locations, and usually
fire close to junctions. Window detectors also cover circular
symmetric (Forstner and Giilch 1987) and spiral type image
features (Bigiin 1990). More specifically, spirals are a gen-
eralization of junctions and circular symmetric features.

In recent applications rotation invariance is usually not
sufficient. Therefore a number of attempts for exploiting the
structure tensor over scale space have been proposed. The
Harris affine (HARAF) detector (Mikolajczyk and Schmid
2004) computes the structure tensor on multiple scales to
detect 2D extrema within each scale. The final points are
determined by locating characteristic scales at these posi-
tions using the Laplacian, which effectively fires at blobs.
This way the corners seen in the image usually get lost, as
they do not exhibit extrema in the Laplacian. We therefore
believe that HARAF should be considered a blob detector, in
contrast to Tuytelaars and Mikolajczyk (2008) who refer to
it as a corner detector.

Lindeberg (1998b) uses the junction model of Forstner
and Giilch (1987), determines the differentiation scale by
analyzing the local sharpness of the image and chooses the

integration scale by optimizing the precision of junction lo-
calization. The recent work of Forstner et al. (2009) pro-
poses a scale space formulation that directly exploits the
structure tensor and the general spiral feature model to de-
tect scale-invariant features (SFOP). It includes junctions as
a special case and generalizes the point detector in Forstner
(1994). The authors have shown that the scale and rotation
invariant features have repeatability comparable to that of
LOWE.

Extensions from scale to affine invariant detectors usually
also rely on the structure tensor, by undistorting a local im-
age patch such that the structure tensor becomes isotropic.
This implicitly yields elliptical image windows.

2.1.3 Edge and Line Features

Edge or line features are usually obtained by first comput-
ing the response of a pixel-wise detector, e.g. using the struc-
ture tensor, followed by a grouping stage to obtain connected
straight or curved segments. In object recognition, such one-
dimensional features were historically considered less often
due to the lack of a robust wide-baseline matching tech-
nique. However, some promising approaches have been pro-
posed. Bay et al. (2005) choose weak intensity-based match-
ing using two quantized color-histograms on each side of
an oriented straight line segment, followed by a sophisti-
cated topological filter and boosting stage for both eliminat-
ing outliers and iteratively collecting previously discarded
inliers. Meltzer and Soatto (2008) proposed a technique for
computing robust descriptors for scale-invariant edge seg-
ments (Lindeberg 1998a) with possibly curved shape. They
achieve impressive results for shape and object recognition.
We refer to other literature for an overview of edge and
line detection methods, e.g. Heath et al. (1996). The focus
of this initial study on the completeness of detectors is on
zero- and two-dimensional features. However, we will in-
clude a straight edge segment detector (EDGE) based on the
framework by Forstner (1994) in our investigations.

2.1.4 Performance Evaluation for Feature Detectors

As a generally accepted criterion, the repeatability of ex-
tracted patches under changes of viewpoint and illumination
has been investigated in mostly planar scenes (Mikolajczyk
et al. 2005) and on 3D structured objects (Moreels and Per-
ona 2007). Recent work has also focussed on localization
accuracy (Haja et al. 2008; Zeisl et al. 2009) and the gen-
eral impact on automatic bundle adjustment (Dickscheid and
Forstner 2009). Benchmarks usually evaluate each method
separately, not addressing the positive effect when using a
combination of multiple detectors, which may be very useful
in many applications (Dickscheid and Forstner 2009). For
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example, Bay et al. (2005) propose to use edge segments to-
gether with regions for calibrating images of man-made en-
vironments with poor texture. Their approach benefits from
stable topological relations between features of complemen-
tary detectors.

Completeness of feature detection received less attention
up to now. Perdoch et al. (2007) use the notion of “cover-
age” for stating that a good distribution of features over the
image domain is favorable over a cluster of features in a nar-
row region. This concept is strongly related to completeness.
In the interesting work of Lillholm et al. (2003), the ability
of edge- and blob-like features to carry image information
is investigated based on a model of retinal cells and con-
sidering the task of image reconstruction. The authors show
that features based on the second derivatives of the image,
namely blobs, carry most image information, while fine de-
tails are coded in the first order derivatives, namely edges.
They also report that increasing the number of edge features
effectively improves the image details, while increasing the
number of blobs is less rewarding, and emphasize the com-
plementarity of these two feature types.

Neither Perdoch et al. (2007) nor Lillholm et al. (2003)
formalize their notions of coverage or complementarity. To
our best knowledge a tool for measuring complementarity
of different detectors is still lacking.

2.2 Information Contained in an Image

Describing the information content of an image can be ap-
proached from at least two sides: by analyzing the visual
system, following a biologically inspired approach, or by
investigating the image statistics, following an information
theoretic approach (Shannon 1948). An excellent review on
these paradigms, together with a mathematical formaliza-
tion, is given by Mumford (2005).

The biologically inspired approach of (Marr 1982) iden-
tified relevant image information with the so-called primal
sketch, which mainly refers to the blobs, edges, ends and
zero-crossings that can be found in an image. Such a rep-
resentation in principle is achieved using a combined set of
different feature detectors. Marr’s approach has been sup-
ported by the recent work of Olshausen and Field (1996).
Extracting image features for subsequent processing in im-
age analysis actually can be seen as mimicking the vi-
sual system. Higher level structures, resulting from group-
ing processes, are essential for interpretation and give rise
to models like unsupervised clustering for segmentation
(Puzicha et al. 1999) or grammars (Liang et al. 2010).

Following Mumford (2005), at least two properties char-
acterize the local image statistics: (1) The histograms of in-
tensities or gradients are heavy tailed, (2) the power spec-
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trum P, (u) of an image g(x) falls off with a power of the
frequency u. For large frequencies one observes

1
Py (u) o b @

with exponents b in the range 1 to 3, smaller exponents rep-
resenting rougher images.

The entropy of a signal depends on the probability distri-
bution of the events, which is usually not known and hence
has to be estimated from data. In spite of the empirical find-
ings, approximations are frequently used to advantage. Re-
stricting to second order moments, thus variances and co-
variances, one implicitly assumes the signal to be a Gaussian
process, neglecting the long tails of real distributions. As
an example, Bercher and Vignat (2000) proposed a general
method for estimating the entropy of a signal by modeling
the unknown distribution as an autoregression process, fo-
cusing on finding a good approximation with tractable nu-
merical integration properties. The widely accepted JPEG
image coding scheme is also based on entropy encoding. It
uses the Discrete Cosine Transformation (DCT) and implic-
itly assumes that second order statistics are sufficient. Other
coding schemes, e.g. based on wavelets, follow a similar ar-
gument (Davis and Nosratinia 1998). The “salient region”
detector by Kadir and Brady (2001) derives the entropy from
the histogram of an image patch, neglecting the interrela-
tions between intensities within an image patch.

In the context of this paper we are only concerned with
local image statistics, not taking higher level context into
account.

3 Completeness of Coding with Image Features
3.1 Completeness vs. Coverage

A simple approach for evaluating the completeness of a fea-
ture set would measure the amount of image area covered
by the local patches, as applied in Perdoch et al. (2007)
or Dickscheid and Forstner (2009). Such approaches have
a number of shortcomings, as illustrated in Fig. 2.

1. Full completeness can be achieved using a few features
with large scales as in Fig. 2(a), or a regular grid of adja-
cent features. However, such feature sets do not code the
image structures well. We would like a good measure not
to overrate such feature sets.

2. Superimposed features on different scales, as in Fig. 2(b),
would not contribute to the completeness, although often
carrying important additional information. We would like
a proper measure to take such effects into account.

3. Fine capturing of local structures, as in Fig. 2(c), is not
rewarded. As a consequence, adding complementary fea-
tures may not converge towards full completeness, while
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Fig. 2 Illustration of three simple feature sets (circles) covering an im-
age of a checkerboard. (a) Single feature on a large scale, (b) two su-
perimposed features with different scales, (¢) mixed set of junction and
blob features. Obviously (c¢) captures the image structure most com-
pletely. The dashed line indicates the stripe used in Fig. 3

Fig. 3 From top: (1) Image
stripe across the main diagonal
line of the checkerboard in
Fig. 2, (2) profile of the intuitive ()
amount of relevant image

o [T |

information along the stripe,

(3-5) coverage profiles along 3 — L
the stripe for the feature sets in 1

Fig. 2 (a—c). The profiles take 4) i | |

overlap into account

(&) —| I—

adding random features often would. A proper measure
should show the opposite behavior.

Obviously we need a better measure. Consider the image
signal in a diagonal stripe across the checkerboard image de-
picted in Fig. 3(1). The intuitive amount of relevant image
information contained in small local patches along the stripe
is depicted by Fig. 3(2): It is zero on the image border, has
peaks at the checkerboard corners, especially in the center of
the checkerboard, and is also high within the checkerboard
patches. Fig. 3(3-5) show coverage profiles along the im-
age diagonal, obtained by taking the overlap of the features
in Fig. 2(a—c) into account. The similarity between these
coverage profiles and the profiles in the second row would
obviously give a better measure: The additional feature in
Fig. 3(4) is rewarded w.r.t. Fig. 3(3), and the reasonable cov-
erage of complementary features in Fig. 3(5) is most similar
to the reference profile.

The measure that we derive in the following is modelled
after this principle.

3.2 Basic Principle

As motivated in the introduction, we want to interpret fea-
ture detection and description as coding of image content,
so we propose to measure completeness of local feature ex-
traction as a comparison with classical coding schemes. We
will apply three quantities for deriving the measure (Fig. 5):

1. Representation of local image content. We need a rea-
sonable representation for the parts considered to reflect
“relevant information” within an image, corresponding to
Fig. 3(2).

2. Representation of local feature content. We need a mean-
ingful representation of the content that is coded by
a particular set of local features, roughly related to
Fig. 3(3-5).

3. Distance measure. Having two such representations, we
need a proper distance measure. If the distance vanishes,
the features are supposed to capture the image content
completely, so it should reflect the incompleteness of the
local image information preserved by the features.

For representing local image content, we use the entropy
density pp (x). It is based on the local image statistics and
gives us the distribution of the number of bits needed to rep-
resent the complete image over the image domain. Thus, if
we need H) [bits] for coding the complete image, we can
use py for computing the fraction of H") needed for cod-
ing an image region R by Hg = H!) fxeﬁ pH(X)dx. The
number of bits will be high in busy areas, and low in homo-
geneous areas of the image, as depicted in the right column
of Fig. 6. For taking into account features of different scales
at the same image position, we compute the local entropies
over scales, as will be explained in Sect. 3.5.

For the local feature content, a feature coding density
pc(x) is directly computed from each particular set of lo-
cal features. Each region covered by a feature is represented
with an anisotropic Gaussian distribution spreading over the
image domain. We assume that a certain number of bits is
needed to represent each feature, i.e. the area covered by
each Gaussian. Within this paper, the number of bits remains
constant for all features, but one may also derive it explic-
itly for each feature. The coding density p.(x) is finally ob-
tained by the normalized sum of these Gaussians. We have
illustrated such coding densities for different feature sets in
the center columns of Fig. 6.

Figure 4 shows the profiles of some feature coding and
entropy densities along the diagonal of a noisy image of a
4 x 4 checkerboard with grey background. These plots can
be compared to the introductory illustration in Fig. 3, vi-
sually indicating that the proposed representations have the
desired properties.

The incompleteness d is determined as the distance be-
tween py(x) and p.(x), using the Hellinger metric. When
pe is close to py, thus d being small, the image is effi-
ciently covered with features, and the completeness is high.
We hereby require busy parts of images to be densely cov-
ered with features, and smooth parts not to be covered with
features, as motivated in the Sect. 3.1.

We now describe the individual quantities used in our ap-
proach in more detail.
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Fig. 4 Profiles of the entropy density py and different feature coding
densities p. along the diagonal stripe of a noisy image of a checker-
board, now with 4 x 4 patches and a grey border (top row, cf. Fig. 10).
The profiles correspond to the diagonal slices of the distributions. The
combination of LOWE, SFOP0 and EDGE is most similar to the entropy
pu (x). The regular grid of features is not very similar, but may have
higher completeness than a very sparse detector. That is why we rec-
ommend to use the evaluation scheme on feature sets of comparable
sparseness

3.3 Representing Image Content by Local Entropy

The total number of bits required for coding an image with
a certain fidelity can be derived using rate distortion theory,
which has already been discussed in the classical paper of
Shannon (1948) and worked out by Berger (1971). The idea
is to determine a lower bound for the number of bits that are
necessary for coding a signal, given a certain error tolerance.
We will use this theory for determining how the required
bits are distributed over the image, and derive a pixel related
measure from the local image statistics of a square patch.

3.3.1 Model for the Signal of an Image Patch

We assume the signal g(x) in an J x J = K image patch to
be the noisy version of a true signal f(x). The true signal
and the noise are assumed to be mutually independent sto-
chastic variables. While f(x), vectorized to f, has arbitrary
mean p ¢ and covariance matrix X' ¢¢, we assume the noise
n to have zero mean and diagonal covariance X, = Ny Ix.
The model hence reads

g=f+n 3)
with
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The vanishing covariance X, s between signal and noise re-
flects the assumed mutual independence.

We want to derive the minimum number of bits needed
to code the local area at each pixel, based on the statistics
of the surrounding image patch, with the requirement that
the loss of information is below a certain error tolerance.
The tolerance is expressed by the mean square discrepancy
Dy=E[(f— f)z], where the given signal f is approximated
by a reconstruction T.

We first derive the number of bits required for lossy
coding a single Gaussian variable and then generalize to
Gaussian vectors with correlations. In order to obtain a rea-
sonable estimate without knowledge of the correlations, we
finally assume the image patch to be the representative part
of a doubly periodic infinite signal, and will derive the num-
ber of bits from the power spectrum.

Using a Gaussian model for the image patch is an ap-
proximation that has been used by other authors before. For
example, Lillholm et al. (2003) use it to motivate differ-
ent norms for regularization during image reconstruction,
assuming either uncorrelated pixels or white noise for the
gradients. At first the choice is pragmatic, as the model al-
lows us to exploit the power spectrum, which considers only
first and second moments. Due to the lack of an alternative
model, we cannot verify the influence of this approximation
on our results theoretically. However, in our experiments we
will investigate in how far the model leads to meaningful
results, and claim that it is reasonable for the given prob-
lem.

3.3.2 Entropy of a Lossy Coded Single Gaussian

Assume that we want to code a signal y which is a sample
of a Gaussian with a given mean and variance V. Its differ-
ential entropy is (Bishop 2006, eq. 1.110)

1 1 1
H(y)= 3 log, 2meVy) = > log, 2me) + 3 log, Vy. 5)

We consider y to be the signal that has originally been
emitted, and want the reconstructed signal y to lie with-
in an error tolerance E[(y — y)*] = Dy after transmission.
Under the further assump_tion_that the transmission process
is ergodic, i.e. that a very long sample of the transmis-
sion will be typical for the process with probability near 1,
rate distortion theory gives the following result (Davisson
1972):

— We only need to transmit the signal if Vy > Dq. If Vy is
smaller, Dy dominates, hence we have

D = min(Dy, Vy). (6)

— The minimum number of bits Ry—the rate—required for
the transmission is given by the mutual entropy of y and
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Fig. 5 Workflow for a single image of the evaluation scheme de-
scribed in Sect. 4.1.1, using only two different sets of features. £ is a
combined set of junctions, edges and blobs, while £ is its subset of
junctions. Having |£1| < |£2[, we expect d| >> d>. Indeed the density

y, sometimes also denoted as mutual information:

Ry =H(y)— H(I) @)
1 1
=3 log,2meVy) — > log, (2meDy) ®)
1 V
= —log, —.
5 102 Dy )]

Here we use the assumption that the noise and the true sig-
nal are mutually independent, hence that their entropies add.
Therefore the conditional entropy—the second part of (8)—
is simply the entropy of the noise, i.e. the number of bits
needed for coding the distortion.

Combining (9) and (6), we have the required number
of bits for a lossy coded single Gaussian (Davisson 1972,
eq. (11))

R L 0,1 Yy (10)
= —max| 0,log, — ).

) & Dy

We use this approximation for coding, assuming that the
power spectrum of the local patch, from which we deter-
mine Ry, is representative for its statistical properties.

3.3.3 Entropy of a Lossy Coded Gaussian Vector

We now want to generalize (10) to the case of a stochastic
Gaussian K-vector y ~ N(p,, Xyy) with correlations be-

4
Distance
di =d(pe,.p)
A

— dy > d, I

h 4
Distance
dy =d (pe,,pn)
A

T

De, looks much more similar to the entropy distribution py than p, .
If d| > d» would not hold, we would conclude that the blobs and edges
{«£2 \ L1} do not complement the junctions £ well

tween its components. Using the factorization of the covari-
ance matrix X, into eigenvectors and eigenvalues

K
2. T
Sy =Y Apnery, (11)
k=1
we may use the alternative representation

K
y=py+ Y 1z, withz, ~ N, Ap). (12)
k=1

This representation allows us to effectively replace the
original components of y by K stochastically independent
Gaussian variables z, . We therefore can determine the to-
tal entropy for lossy coding of the stochastic vector y as the
sum of the entropies for the individual mutually independent
z;, (Davisson 1972, eq. (23))

1 e
Ry = 5 ];max<0, log, D—0> (13)

This expression depends essentially on the eigenvalues )\,%
of the covariance matrix Xy, of the signal to be coded.

3.3.4 Entropy of a Local Image Patch

The covariance matrix of a local image patch is not known,
hence we do not have the eigenvalues for applying (13) di-
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Original image pc(x) for LOWE

Fig. 6 Estimated entropy densities py(x) and feature coding densi-
ties p.(x) on three different images. We illustrate feature coding den-
sities for LOWE separately, and for a combination of LOWE, EDGE and
SFOP0. Combining complementary features (third column) seems to

rectly onto an image patch. Therefore we assume the image
patch to be the central part of an infinite periodic signal, and
use the power spectrum for deriving the eigenvalues of the
covariance matrix of the intensities in the image patch.

Let F = [Fj;] = [exp(—2mijk/K)] be the K x K-
Fourier matrix. Then the discrete Fourier transform of the
cyclical signal y(k) with K-vector y is Y = Fy and the
power spectrum of y(k) is

! 2
Py(u) = Y @)l”. (14)

One can show that the eigenvalues of the covariance matrix
Xy of y are identical to the elements of the power spectrum
P (u) of the periodic signal y(k): We use the unitary matrix

— 1 — e
F=——F, FF =FF=I, (15)

VK

where F is the transposed complex conjugate of F. It is
equivalent to a rotation matrix. The empirical covariance
matrix of y(k) then is Xy, = %F Diag(Py(u))F*. Finally
this can be written as

%y = FDiag(Py)F (16)
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pe(x) for LOWE, SFOPO
and EDGE

P (X)

converge towards the entropy (right column). Observe that the white
area in the image of the middle row is below the noise level, thus not
considered by the entropy, while the sand in the bottom row carries a
small amount of information

showing the entries of the power spectrum to be the eigen-
values of the covariance matrix.

If the patch is a doubly periodic two-dimensional sig-
nal f(x) of size K = J x J, the power spectrum Py(u) =
Py (u1,uz) depends on the row and column frequencies 1
and u. Thus the squared eigenvalues A} of X/ are A7 =
Py (u), the index k capturing the indices u = [u]. Given the
power spectrum, we obtain the entropy of an K = J x J
patch f(x) by (Davisson 1972, discussion after eq. (36))

Ry =% 3 max<o, log, P’;;)). 17)

u\(0,0)

Note that we omit the DC term P (0), as it represents the
mean of the signal and we are only concerned with the vari-
ance.

Finally, as the true signal is not available, but only the
observed signal as in (3), we need to estimate the power
spectrum Py. From the structure of the covariance matrix
Yoo = Xy¢f + Xy we know that Py(u) = Pr(u) + Py (u).
Therefore we choose to estimate the power spectrum of the
true signal by

Py (u) = max (0, Py(u) — No) (18)
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Fig. 7 Detail of the example
image depicted in Fig. 1 left.
Note that the regions are plotted
with radius equal to the scale of
the feature. The support region
used for computing descriptors
is usually larger but proportional

and obtain the final entropy per patch as the rate

1 0, Po(u) — N
Ri=3 2 max(0,10g2 max( g(“) °)>. (19)
u\(0,0) 0

We estimate the standard deviation of the noise Ny for
each input image separately using the approach of Forstner
(1998). As a minimum, we use the rounding error, identified
by the standard round-off error variance Dy = Ng = €2 /12
(Smith 2007). The quantization unit € depends on the actual
image representation, e.g. € = 1/256 for 8-bit intensities.

As the estimated number of bits spreads over the local
patch however, we assign to the pixel only the corresponding
fraction according to the patch size, i.e.

1 Pr(u)
ﬁfp)(x, M) = T Z max(O, log, fDo ) (20)
u\(0,0)

In the end we use the Discrete Cosine Transform Type-II
instead of the Discrete Fourier Transform. It suppresses ef-
fects of signal jumps at the borders of the window onto the
spectrum, while preserving the frequencies except for a fac-
tor of 2 (Rosenfeld and Kak 1982, p. 159). The equivalence
of the power spectrum entries with the eigenvalues of the
covariance matrix therefore still holds.

We cannot proceed with a fixed patch size J, as can be
seen from the image detail shown in Fig. 7: The large feature
in the middle covers content with rich information, although
a smaller patch placed in its center for computing the en-
tropy might have minimal entropy.

Like in wavelet transform coding, we assume that the
coding is hierarchical for the entropy density, and choose to
integrate information from different scales in order to take
such scale effects into account. For doing so, we compute
the sum

S
H(x) =Z§§f’)(x, 1 +2%). @21)

s=1

In our experiments we use S = 7, so the patch size is lim-
ited to 3 < M < 129. Observe that the omission of the DC
term in a lower scale is compensated by the coding in higher
scales. Taking the sum in (21) is a pragmatic choice. We
did not yet investigate to which extent this is an approxima-
tion regarding possible correlations between scale levels. As

will be seen in the next section however, we handle super-
imposed features at different scales in a very similar manner
when computing the feature coding densities.

Finally we obtain the entropy density by normalizing
(21):

H(x)

S H@ (22)

pa(X) =

The expected number of bits in a certain region R therefore
is HD'Y" o~ pu(x), where H) is the total number of bits
for the complete image. However, for comparing the entropy
distribution over the image with a particular set of local fea-
tures, we cannot use absolute values (i.e. bits per pixel), but
only relative values. This is why we take p g (X) as reference.
In the right column of Fig. 1, this entropy density is depicted
for two example images.

3.4 Representing Local Feature Content

The local feature content is a density comparable to pg (x),
representing a set of L local features £ = {/1,...,Ip}. Each
local feature represents a certain image region with known
shape and is represented as a tuple [} = {x;, X}, d;, ¢},
where

— x; is the spatial location of the feature in the image,

— X is a scale matrix representing the shape of the feature
window, using the model of a 2D ellipse,

— d; is a vector used as a description of the feature window,
and

— ¢ is the number of bits required for d;, coding the whole
region R;. The number of bits may be different between
feature types, but we usually assume a constant number
of bits for all features.

Positioning X at x; gives us the actual region R; covered
by the feature. For straight edge segments, identified by their
start- and endpoints (Xs, Xg);, we use X; = (Xs.; + Xg,1)/2
and use the direction of the edge as the major semi-axis of
Xy with length [Xg ; — Xs ;|/2 while setting the length of the
minor semi-axis to 1 [pel].

If we spread the bits ¢; uniformly over each region R;,
we obtain a feature coding map by

L

1
=y ‘g—ilx)c, (23)
=1

where 1, (x) is an indicator function, being 1 within the re-
gion Ry, and 0 outside. In order to emphasize the informa-
tion next to a feature’s center, it is common practice to apply
Gaussian weighting within the local patches before comput-
ing feature descriptors (Lowe 2004, 6.1). So it is reasonable
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X2
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V2-d(pe,pu)

-

X1

Fig.8 Hellinger’s metric d illustrated for two sample distributions pg
and p. of an image with two pixels xy, x2

to replace the uniform distribution by a Gaussian and derive
the feature coding map by

L
c) =Y aGxx, Zp). (24)
=1

Then the actual density to be compared with the entropy
density py(x) is
c(x)

P=5 @

We illustrate feature coding densities of some example im-
ages in Fig. 6.

(25)

3.5 Evaluating Completeness of Feature Detection

In case the empirical feature coding density p.(x) would
be identical to the entropy density pg(x), coding the im-
age with features would be equivalent to using image com-
pression. Of course image features may use less or more
bits for coding the complete image, depending on the cod-
ing of the individual feature, so we do not compare the
absolute number of bits per pixel, but their densities. We
use Hellinger’s metric for measuring the difference between
pr(x) and p(x):

1
d(pr(X), pe(x)) = \/E > W) —Vpx)2  (26)

Hellinger’s metric is computed from the pixel-wise differ-
ences of the square roots of the densities, and may be ex-
plained as illustrated in Fig. 8: Each of the square-rooted
densities can be thought of as a unit vector in the space of
all possible densities over the image, the dimension of this
space being equal to the number of pixels. Then Hellinger’s
distance between the two densities is proportional to the
Euclidean distance between the piercing points on the unit
sphere, so it basically relates to the angle between the vec-
tors representing each density.

Note that although one often uses the Kullback-Leibler
divergence for comparing density functions, it is not useful
here: It is no metric, and a larger divergence does not neces-
sarily indicate a larger deviation from the reference density.
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3.6 Euclidean Embedding of Detectors

In Sect. 3.5 we derived as an incompleteness measure the
distance d between the entropy ppy distributed over an im-
age and the information p. coded with a set of local features.
In addition to comparing image codings with entropy, we
can also measure distances between pairwise feature cod-
ings p¢; and pe;. This allows us to build up a distance net-
work in high dimensional space representing the similarity
or complementarity of feature detectors.

From such a network of N detectors we can determine
their relative positions in a (N — 1)-dimensional space us-
ing a technique called “Euclidean embedding” (Cayton and
Dasgupta 2006). First the matrix of squared distances D :
[D;ij]=d(p, pcj)2 is centered using the centering matrix

H=1[-— %IIT, with 1 being a vector filled with ones:
1
B=— 7 HDH. 27

Computing the spectral decomposition of B = UAU', and
ensuring positive eigenvalues [ A ];; = max(4;;, 0), we ob-
tain relative positions X = [x,] for each feature detector:
x=aAYU". (28)

This way we end up with a mapping for feature detectors,
taking one image into account only. By evaluating the mean
of the distances d between each two codings p.; and p;,
we can average the positions X over multiple images, since
they are supposed to be rather invariant w.r.t. image content.
In order to propagate the variance of the distances d into the
detector space, we perform the embedding for each image
individually. Afterwards we transform the detector positions
X into one common reference frame, taking changes in ori-
entation and directions of the eigenvectors into account.

The (N — 1)-dimensional detector space can be visual-
ized by neglecting small principal components. Figure 9 il-
lustrates the mapping of some detectors into 3D space. The
ellipsoids represent an approximation of their distribution.
Some well-known relationships between the detectors be-
come visually apparent in the plot, as for example between
IBR and MSER.

3.7 A Feature Detector Based on Local Entropy

So far we discussed two strategies for selecting the char-
acteristic scale of a feature: The Laplacian, or Difference of
Gaussian space; and the structure tensor. Both methods have
been summarized in Sect. 2. The entropy density py that we
developed in the previous section gives rise to a third para-
digm, namely using the local entropy for building the scale
space.
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Fig. 9 Visualization of the Euclidean embedding (Cayton and Das-
gupta 2006) of detectors: Several feature detectors are mapped into
a 3D subspace spanned by the three largest principal components of
the centred distance matrix B. The ellipsoids approximate the distri-
bution of the detectors over all considered images. Notice how the
close theoretical relationship between the SFOP variants, MSER/IBR
and HESAF/HARAF becomes visible in terms of proximity

To our knowledge, Kadir and Brady (2001) were the first
to present a local feature detector based on information the-
ory (SALIENT). They estimate the entropy of local image
attributes over a range of scales and extract points at peaks
with significant magnitude change of the local probability
density. A set of such features is shown on the right side
of Fig. 10. The number of features extracted by SALIENT
is high compared to other detectors (see Table 1), result-
ing in good image coverage. However, by estimating en-
tropy from local histograms, the approach ignores the un-
known pixel correlations, which usually affect local image
attributes. It has rather low repeatability compared to other
detectors (Mikolajczyk et al. 2005).

In this section, we want to derive a scale-invariant fea-
ture detector which models the local entropy in the same
way as when deriving the entropy density py proposed in
Sect. 3.3. It extracts sparse sets of features near peaks of the
entropy distribution pg. One possible way to model the de-
tector would be to build a stack of entropy distributions for
varying patch sizes using (20), and then search for local ex-
trema within 3 x 3 x 3 dices of the resulting cuboid. How-
ever, computing the power spectrum over all scales would
result in high computational complexity. Therefore we will
take another approach: We express the entropy density using
an approximate functional model for the power spectrum,
depending only on the variances of the intensities, the im-
age gradients and the image noise. These can easily be deter-
mined. The detector is included in our evaluation (Sect. 4.2),
denoted by EFOP.

3.7.1 The Local Entropy for Rough Signals

We represent the power spectrum, which is a decaying func-
tion, by the model

-1
P(u) = P0<1 + i) (29)
uo

taking the extreme exponent » = 1 in (2) and regularizing
for small frequencies. This can be used to replace the power
spectrum in (17), and allows us to approximate the local en-
tropy as a function of the signal to noise ratio SNRand the
effective bandwidth b, of the signal in the local image con-
tent:

Ry =k -bg\/log,(1+ SNR?) (30)

with k >~ 5.43. Here we use the relationships for the signal-
to-noise ratio
Py Vg

SNR?= — = & (1)
No V,

and the effective bandwidth (McGillem and Svedlow 1976,
Eq. (16))
Vo o futou? Puw)du

b2 =5 —gng?lu=0" 32
£V, § fo o P(u)du 2)

to rewrite (30) as

R L 1+ -2 (33)
o« [—=1lo — ],
f Ve £2 Vi

which only depends on the variance of the image gradients
V,, the variance of the gray-scale values V, and the noise
variance V,,.

The derivation is outlined in Appendix. Note that this
model is only proportional to the approximate entropy (40),
as we intend to perform a maximum search over the func-
tion.

3.7.2 Finding Maxima of Local Entropy over Scale

Following Shi and Tomasi (1994), we identify the vari-
ance of the gradients Vs with the smaller eigenvalue of
the structure tensor A2(M; ) instead of using its trace (see
Sect. 2.1.2). This avoids detecting points located on lines
with poor localization accuracy. The integration scale o then
spans the space for selecting features at different scales,
yielding the following scale space of the entropy rate:

s e oy P2 T ) Ve(x.7,0)
Ryxr.0)= Ve(x,7,0) 10g2(1+ Vo (X, 7) ) (34
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Fig. 10 A noisy image of a checkerboard, overlaid with features de-
tected by the maximum-entropy detector EFOP described in Sect. 3.7
(left) and the one proposed by Kadir et al. (2004) (right). Note that we
use o as a radius for the features, while one would usually compute
descriptors on a 20 patch

The close relationship of the structure tensor with the local
information in an image has already been observed by Mc-
Clure (1980, eq. (7)).

The variance of the gray-scale values can be computed
via
Vo0, 1) =Go # (Gr %8 =G s x0)%, (35)
and the noise variance by V,(t) =V, /(87 t#). Therefore,
(34) meets our goal of approximating the local entropy by a
formulation based on convolutions of the gray-scale values

and gradients only.
The final detection algorithm proceeds as follows:

1. Compute the entropy of each pixel for a range of scales
o using (34), fixing T = 0o/3.

2. Search for local maxima over 3 x 3 x 3 dices of the re-
sulting 3D cuboid, yielding a set of keypoint candidates.

3. Keep only those keypoints where A, (M) is significant.

4. Perform a non-maximum-suppression and subpixel lo-
calization.

The procedure is almost identical to the algorithm described
in Forstner et al. (2009, Chap. 3) which contains more im-
plementation details, except that the scale-space representa-
tion (34) is used.

The character of the detected features is illustrated by the
result on a checkerboard image in Fig. 10. The detector finds
the junctions with gradients in all four directions quite ex-
actly. Junctions on the border, with homogeneous areas to-
wards one side, yield extrema on slightly larger scales with a
strong but stable offset from the border. They are practically
located over homogeneous areas similar to blobs. We do not
claim the detector to have high repeatability or precision, its
use for object detection is outside the scope of this paper.
However, we used it successfully for camera calibration, as
reported in Dickscheid and Forstner (2009).
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4 Experiments

In the following we will apply the above-mentioned evalu-
ation to a data set involving various image categories, and
analyze the complementarity and completeness of both sep-
arate detectors and detector combinations. After describing
the experimental setup in Sect. 4.1, we will present com-
prehensive results, and show in Sect. 4.2 how they coincide
with the concepts of the detectors.

4.1 Experimental Setup
4.1.1 Evaluation Scheme

We use the distance measure d derived in Sect. 3 (26) for
evaluating sets of local features. The procedure is illustrated
for two sets L1, £ in Fig. 5. We start by computing fea-
ture coding densities p., for each set .£; as well as the en-
tropy distribution py of the image as a reference. Next we
compute the distances d; = d[pn(X), p¢; (X)], and compare
them. We typically draw conclusions of these types:

1. If d; < dj, feature set £; is in general more complete
w.r.t. py referring to an image. It is then often interest-
ing to compare the amount of features: If |£;]| == |£/],
the improved completeness is an obvious advantage. As
mentioned before, we recommend comparing feature sets
of comparable sparseness.

2. If £; C &L and |L£;] K |L ], we conversely expect d; >
dj, as in Fig. 5. In other words: We expect a combined
set of features o£; to be more complete than any signifi-
cantly smaller subset .£; of it, otherwise we conclude that
{£L \ &L;} does not complement £; well.

4.1.2 Applied Feature Detectors

Blob detectors We investigate most of the prominent scale
and affine invariant blob detectors presented in Mikolajczyk
et al. (2005), using the implementations from the corre-
sponding website. These include

— the Harris and Hessian Laplace detectors (HARLAP, HES-
LAP) of Mikolajczyk and Schmid (2004) as well as their
affine covariant extensions (HARAF, HESAF),

— the Maximally Stable Extremal Regions detector (MSER)
by Matas et al. (2004),

— the intensity-based region detector (IBR) by Tuytelaars
and Van Gool (2004),

— the Edge-Laplace detector (EDGELAP) by Mikolajczyk
et al. (2003), and

— the salient regions detector (SALIENT) of Kadir and Brady
(2001).

Furthermore we include the popular Laplacian blob detec-
tor by Lowe (2004) using the original source code kindly
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Fig. 11 Example images from the datasets used for the experiments

provided by the author. Here we choose to build the scale
space starting with the original instead of the double image
resolution, for comparability with the other detectors.

Detectors based on the structure tensor For point-like fea-
tures based on the structure tensor, we use the recently pro-
posed scale invariant detector by Forstner et al. (2009), but
distinguish the results into three classes:

— The subset of pure junction points (SFOP0) obtained when
restricting to o = 0 (Forstner et al. 2009, eq. (7)),

— the set of pure circular features (SFOP90) with o = 90,
and

— the complementary set of features with optimal «, i.e. the
full power of the detector (SFOP).

Additionally we compare that to the non-scale-invariant de-
tectors described in Forstner (1994) for junctions and circu-
lar symmetric features (FOP0O, FOP90), as well as the classi-
cal detector HARRIS by Harris and Stephens (1988) with an
implementation taken from Kovesi (2009). The maximum-
entropy-detector (EFOP) described in Sect. 3.7 is not specif-
ically a point detector. It represents the class of window or
texture detectors exploiting the structure tensor.

Line and edge detectors Here we restrict to a straight edge
detector (EDGE) based on the theory in Forstner (1994), us-
ing a minimum edge length of ten pixels. We intentionally
do not include a whole range of line segment detectors in
order to keep the number of detector combinations tractable
within this paper. We also do not expect significantly differ-
ent results using other edge detectors.

Parameter settings Completeness is in general lower for
sparse feature sets. Decreasing a detector’s significance level
will yield more features but at the same time reduce repeata-
bility and performance. We have chosen to use default pa-
rameter settings provided by the authors whenever available
in order to make our results a direct complement to existing
evaluations. Unfortunately this involves different amounts
of features being extracted, which we report in Table 1 for
clarity.

4.1.3 Image Data

We compare the completeness and mutual complementar-
ity of the above mentioned detectors on a variety of images.

FOREST

e
<

MOUNTAIN TALL BUILDING

KITCHEN

Our experiments are built on the fifteen natural scene cat-
egory dataset (Lazebnik et al. 2006; Li and Perona 2005),
complemented by the well-known Brodatz texture dataset, a
collection of cartoon images from the web and a set of image
sections of an aerial image. We present results for a subset
of seven categories, as depicted in Fig. 11. For each of the
categories, we report average results over all images.

4.1.4 Investigated Sets of Features

We start by computing the incompleteness d(p., pg) for
each of the detectors separately over all images of a cate-
gory. This will give us a first impression on the complete-
ness of the different methods. The results are discussed in
Sect. 4.2.1. Our special interest is the effect of combining
sets of features, i.e. for finding evidence about their com-
plementarity. However, we obviously cannot discuss results
for arbitrary tuples of all of these detectors. We therefore
choose to constrain the set of all possible combinations in
two ways:

1. In Sect. 4.2.2 we start by identifying detectors with very
similar properties and close theoretical relationships, and
use such sets as groups. Detectors within a group are
not combined mutually to decrease the overall number
of combinations.

2. We concentrate on combinations of three detectors. We
hereby assume that using more than three detectors is
not feasible in most applications. Results for triplets are
given in Sect. 4.2.3.

4.2 Experimental Results
4.2.1 Results for Separate Detectors

Figure 12 shows the average of the distances d(p., py) on
seven image categories for each detector separately. The cor-
responding average amounts of features are listed in Ta-
ble 1.

The most noticeable result is that the EDGELAP detector
shows significantly highest completeness on all image cate-
gories with rather good confidence. This is certainly due to
the very high number of features compared to other detec-
tors (Table 1).
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Fig. 12 Average dissimilarity d(p., py) for separate detectors over
all images of seven image categories. The categories for BRODATZ,
AERIAL and CARTOON contain between 15 and 30 images, all oth-
ers contain around one hundred images. Small distances denote high

completeness of a detector w.r.t. the entropy distribution pg. The ad-
ditional black bars denote the 1-o-confidence region over all images
in a category

Table 1 Average number of

features per image category BRODATZ AERIAL CARTOON FOREST MOUNTAIN TALL BUILDING KITCHEN

extracted by the different

detectors. We see that SALIENT EDGELAP 28011 4658 5518 4678 2548 3252 3210

and especially EDGELAP extract  SALIENT 5832 613 846 607 296 385 200

more features' than most other MSER 2202 212 187 186 82 122 %

detectors, while IBR and EFOP

are very sparse IBR 1078 182 122 40 29 31 31
SFOP 2052 494 238 290 157 152 145
SFOP0 1355 344 175 197 110 102 95
SFOP90 1177 295 120 183 91 95 87
EFOP 473 153 72 66 57 54 42
LOWE 2093 324 307 152 105 111 115
HESAF 3499 338 837 156 134 139 195
HARAF 4847 359 596 239 138 156 166

The MSER and SALIENT detectors show overall best re-
sults aside from EDGELAP. While in case of SALIENT we
have to put the higher number of features into perspective
again, the result for MSER is really remarkable: It has signif-
icantly higher completeness compared to most other detec-
tors, but at the same time similar sparseness. SFOP and IBR
both have slightly lower completeness than the above men-
tioned. The good score of 1BR is especially noticeable, as the
feature sets are very sparse. For EFOP, having similar sparse-
ness, the completeness is rather poor instead. The LOWE,
HARAF and HESAF detectors, all in principle exploiting the
Laplacian scale space, achieved similar results among each
other. They rank slightly behind IBR and SFOP on average.

As expected, SFOP performs better than its special cases
SFOPO and SFOP90. Among these two, the junctions are
more complete than the circular points, which is also in-
tuitive. Especially on AERIAL and FOREST, the complete-
ness of detectors based on the structure tensor seems to be
better than that of Laplacian-based methods. This observa-
tion is interesting, as the structure tensor has been shown to
be related to high local information (McClure 1980). The
behavior of the straight edge features (EDGE) depends on
the amount of man-made structures. While it is acceptable
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on KITCHEN, TALL BUILDING, CARTOON and AERIAL, it
shows overall worst results for the natural structures in FOR-
EST, MOUNTAIN and BRODATZ. Conversely, the complete-
ness for the blob and corner detectors rather benefits from
natural structures, the behavior hence being almost opposite
over categories compared to EDGE.

4.2.2 Relationships Between Detectors

The goal of this section is to reduce the set of detectors
used for the final evaluation of triple combinations, both
by selectively excluding some detectors and by grouping
mostly redundant methods. To do so, we will use the Euclid-
ean embedding of different sets of detectors as explained in
Sect. 3.6 and identify clusters. We will finally end up with
the six groups of detectors depicted in Table 2.

Role of the EDGELAP detector The EDGELAP detector pro-
duces significantly more points than all other detectors, as it
does not explicitly suppress responses on edges. This para-
digm is superior regarding the proposed completeness mea-
sure, but targets at special applications. When combined
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Table 2 Groups of detectors used for evaluating possible triplets, re-
ferring to the conclusions made in Sect. 4.2.2

Group Members
Edges EDGE
Segmentation-based IBR, MSER
Laplacian LOWE

Mixed Laplacian HESAF, HARAF

Structure tensor EFOP

Spiral type SFOP, SFOP(, SFOP90

EDGELAP I— |
HESAF +EDGELAP 1
HARAF +EDGELAP B3 —
LOWE +EDGELAP ——
IBR +EDGELAP Ee1—
MSER +EDGELAP e !
SFOP0 +EDGELAP e |
SFOP90 +EDGELAP T
SFOP +EDGELAP ——F— |
EFOP +EDGELAP e |

0.1 0.2

Fig. 13 Average incompleteness d(p., py) for pairwise combinations
of other detectors complementing EDGELAP over all images in our
evaluation. Black bars denote the 1-o-confidence region. We see that
EDGELAP is not significantly complemented by any of the detectors, as
it has strong completeness on its own already

SALIENT [
HESAF +SALIENT 1
HARAF +SALIENT e
LOWE +SALIENT e
IBR +SALIENT e
MSER +SALIENT 1
SFOPQ +SALIENT e I
SFOP90 +SALIENT e
SFOP +SALIENT e
EFOP +SALIENT — —
0.1 0.2

Fig. 14 Average incompleteness d(p., py) for pairwise combina-
tions of other detectors complementing SALIENT over all images in
our evaluation. Black bars denote the 1-o-confidence region. We see
that SALIENT is most efficiently complemented by HESAF, followed
by HARAF and SFOP

with other detectors, the increase in complementarity be-
comes hardly visible, as shown in Fig. 13. Therefore we
choose not to include EDGELAP in the final evaluation of
detector combinations.

Role of the SALIENT detector SALIENT detects less fea-
tures than EDGELAP but still significantly more than the
other detectors. Despite its high completeness scores, it is
still complemented by some other detectors (Fig. 14), es-
pecially by HESAF. In our experiments we found that triple
combinations including SALIENT achieve best scores among
all combinations, apart from those including EDGELAP. As
mentioned before however, the computational complexity of
the detector is orders of magnitude higher than that of other

€2

SFOP X SFOP90
SFOPO
PH
FOP90

HARRIS
FOPO ‘ ‘

Fig. 15 Projection of the Euclidean embedding (Sect. 3.6) of SFOP,
SFOPO0, SFOP90 together with their classical non-scale-invariant coun-
terparts FOPQ, FOP90 and HARRIS onto its first two principal compo-
nents. The nodes represent average values over all images of all cate-
gories. The scale-invariant feature sets are by far closer to the reference
PH, thus significantly more complete

€1

detectors, and its repeatability ranges significantly below av-
erage (Mikolajczyk et al. 2005). It is therefore rather un-
likely that SALIENT will be used in conjunction with other
detectors, so we choose not to include it in our evaluation of
combinations.

Scale invariance of detectors for corners and circular fea-
tures We analyzed the classical detectors for corners and
circular features FOPO, FOP90 and HARRIS together with
the scale-invariant extensions SFOP, SFOP0O, SFOP90 over
different image categories. Throughout the experiments we
found that the scale-invariant methods are significantly more
complete than the classical ones, which is expected due to
the variable patch sizes. The projection of a mapping over all
image categories is shown in Fig. 15. We therefore choose
to only include the scale invariant features in the final eval-
uation.

Affine invariance of blob detectors We compared HAR-
LAP and HESLAP with their affine covariant versions HARAF
and HESAF, which differ by a final affine refinement of the
window shapes. The differences between the affine and non
affine versions are negligible referring to our completeness
measure, as illustrated in Fig. 16. Therefore we only include
the affine-extended versions in the subsequent evaluation.

Groups of similar detectors We want to find out in how
far different detectors are mutually complementary refer-
ring to the proposed measure. It is therefore not necessary to
consider combinations of highly redundant detectors, where
complementarity cannot be expected. We illustrate such re-
dundant groups by a projection of a high-dimensional map-
ping over all image categories in Fig. 17. The results of the
IBR and MSER detectors are strongly related throughout the
image categories. Therefore we put them into a group de-
noted “Segmentation-based”. This is in agreement with the
observation already made by Tuytelaars and Mikolajczyk
(2008, p. 211) that IBR and MSER yield very similar regions.

@ Springer



170

Int J Comput Vis (2011) 94:154-174

Fig. 16 Projection of Euclidean e
embedding (Sect. 3.6) of
HARAF, HESAF, HARLAP and
HESLAP onto its first two
principal components. The
affine invariant feature sets are
not significantly different from
the non-affine invariant ones

HESAF

Cg HESLAP
PH

HARAF

Cﬁ HARLAP

w.r.t. the completeness measure €1
€2 sFoP90
(g SFOP
!)/— SFOPO (O— HARAF
MSER (O— HESAF
? ‘ IBR ﬁ)
EFOP ? LOWE
PH
SALIENT 1
| EDGE
N el

Fig. 17 Projection of Euclidean embedding (Sect. 3.6) of the most
important detectors onto its first two principal components. Regarding
the proposed completeness measure, the detectors roughly build three
groups: MSER and IBR form a cluster, as well as the spiral model based
feature sets SFOP, SFOPQ and SFOP90, and the HESAF and HARAF de-
tectors. The other detectors are rather distinguished and not put into
groups. Note that the EDGE detector has significant larger distance and
is not included in this figure

The SFOP, SFOPO and SFOP90 detectors are also closely re-
lated, which is intuitive as they all result from the same the-
oretical framework (Bigiin 1990). Therefore we put these
three into a group called “Spiral type”. The LOWE detec-
tor, though theoretically similar to HESAF and also HARAF,
shows significant distance towards these two in all our ex-
periments. Therefore it builds a separate group “Laplacian”.
The EFOP detector developed in Sect. 3.7 is also distin-
guished from the others in most image categories. As it ba-
sically fires at texturedness, classified by the structure ten-
sor, it represents the group “Structure tensor”. The HESAF
and HARAF detectors show mostly similar results and have
small mutual distance over all image categories. This ob-
servation contradicts the statement of Tuytelaars and Miko-
lajczyk (2008, 4.3) that HESAF and HESLAP are “comple-
mentary to their Harris-based counterparts, in the sense that
they respond to a different type of feature in the image.” Al-
though making use of the Laplacian scale space, the detec-
tors differ from LOWE in that the scale search is induced by
local extrema of multi-scale representations differing from
the pure Laplacian. Therefore they are grouped as “Mixed
Laplacian”, above the Laplacian exploiting the structure ten-
sor and the Hessian respectively.
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4.2.3 Results for Selected Triplets of Detectors

We computed the incompleteness d(py, pc) of all possible
triplets over the groups given in Table 2, without combin-
ing detectors within the same group. This yields 82 overall
combinations. The average incompleteness scores for these
combinations over all image categories are listed in Table 3.

The most complete triplets contain a combination of
the groups “segmentation based” and “spiral type”. These
groups seem to be complementary over a wide range of im-
age categories. As a third component, EDGE, LOWE or EFOP
are most promising.

Besides this, two “holes” in the table attract the attention:
The Laplacian-based blobs do not appear among the first ten
to fifteen entries, and the last rows of the table are empty for
the spiral type features. This indicates that spiral-type fea-
tures play an important role for promising complementary
sets. Regarding the Laplacian-based detectors, it suggests
some redundancy with one of the other groups, which can
be verified when observing the last rows of the table: Here
we find mainly combinations of the segmentation based with
the Laplacian detectors. It therefore seems that combining
MSER or IBR with one of the Laplacian based detectors is
rather redundant, but that IBR/MSER have higher comple-
mentarity to the remaining groups.

There are many other combinations that also work well:
Combining HARAF or HESAF as a blob detector with junc-
tions, edges or segmentation based regions usually achieves
good results.

We motivated our approach by the fact that highly re-
dundant feature sets are punished. Considering combina-
tions including LOWE and HESAF, which are theoretically
most closely related, strengthens this statement. They ap-
pear prevalently in the last rows of the table, but not even
once within the first half.

It is important to note that the differences between combi-
nations are substantially smoothed due to the large amount
of images used. For separate categories, one obtains more
significant differences.

4.2.4 Other Combinations of Detectors

Combinations containing detectors within the same group
(Sect. 4.2.2) show worse results, confirming our selection
principle. As an example, a combination of three blob de-
tectors, i.e. LOWE, HESAF and HARAF, usually achieves sig-
nificantly lower completeness scores. A similar effect occurs
when using three spiral-type detectors.

In addition to triple combinations, we also computed the
results for combinations of four and more detectors, respect-
ing the grouping shown in Table 2. We found that the best
group of four or five detectors is usually only slightly better
than the best group of three.

A complete list of our results is available at http://www.
ipb.uni-bonn.de/completeness.


http://www.ipb.uni-bonn.de/completeness
http://www.ipb.uni-bonn.de/completeness

Int J Comput Vis (2011) 94:154-174

171

Table 3 Average incompleteness d(pp, p;) for feature sets £;, aris-
ing from all considered triplets of detectors, over all image categories.
The additional black bars denote the 1-o-confidence region over all im-

ages in a category. Black column borders for detectors indicate groups
(Table 2). The triplets are sorted in ascending order w.r.t. their com-
pleteness regarding the entropy density py
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4.3 Applicability of the Results in Real Applications

In the end we are interested in the impact of these results
onto some real application scenarios. The two most impor-
tant applications are certainly camera calibration and object
recognition.

The impact of a variety of detector combinations onto
camera calibration has been recently studied by Dickscheid
and Forstner (2009). There, a fixed strategy for automatic
image orientation has been used with different detector com-
binations as an input. Then results of a final bundle adjust-
ment were compared. The most meaningful measure in such

a setting is the accuracy of the estimated camera projection
centers compared to ground truth (Dickscheid and Forstner
2009, Fig. 7), which we want to relate to our findings about
completeness.

For separate detectors, SFOP and MSER achieved best re-
sults in the bundle adjustment. This is in full agreement with
the incompleteness in Fig. 12, considering that EDGELAP,
SALIENT and IBR have not been included in the bundle ad-
justment test. The LOWE detector performed only slightly
worse, which can also be verified from our completeness
scores. Combinations of detectors usually had positive ef-
fects onto the bundle adjustment. The best combination of
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three was LOWE with SFOP and MSER. This combination
also achieves one of the best completeness scores, when
ignoring combinations including EDGE. Especially interest-
ing is the fact that combining LOWE and HESAF, which are
closely related and highly redundant, had negative effects
onto the bundle adjustment. In Table 3, we also see that com-
binations including these two appear only towards the end,
in the second part of the table.

The completeness therefore seems to be a good indicator
for promising feature sets w.r.t. camera calibration, besides
robustness and localization accuracy. A comparison with re-
sults in an object recognition framework still has to be done.

5 Conclusion and Outlook

We have proposed a scheme for measuring completeness of
local features in the sense of image coding. To achieve this,
we derived suitable estimates for the distribution of relevant
information and the coverage by a set of local features over
the image domain, which we compared by the Hellinger dis-
tance. This enables us to quantify the completeness of dif-
ferent sets of local features over images, and especially in
how far detectors are complementary in this sense. The ap-
proach has important advantages over a simple comparison
of image coverage. For example, it favors response on struc-
tured image parts while penalizing features in purely homo-
geneous areas, and it accounts for features appearing at the
same location on different scales.

The proposed scheme does not give a general benchmark
for detectors. To make a good choice for a particular ap-
plication, detectors have to be preselected according to task
usefulness, considering sparseness, robustness, and speed.
Then the proposed evaluation helps in finding the most com-
plete ones, and especially the most promising complemen-
tary combinations.

We made a number of interesting observations. Scale in-
variance is clearly beneficial for covering image content,
while at the same time we could not observe improvements
when using affine covariant windows. The EDGELAP detec-
tor (Mikolajczyk et al. 2003), basically using edge informa-
tion, showed clearly superior completeness as a separate de-
tector, but targets at specific applications. Also the SALIENT
detector (Kadir and Brady 2001) achieved very good re-
sults, extracting a significantly higher number of features
than other detectors. The MSER detector (Matas et al. 2004)
seems to be most complete among the detectors with aver-
age sparseness. For combining features, it is most profitable
to use a detector implementing a junction model (like SFOP,
Forstner et al. (2009)) together with a good blob or region
detector, ideally MSER (Matas et al. 2004). Best triplet com-
binations are achieved when additionally using a texture-
related detector, such as an edge or entropy-based detector.
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The proposed entropy density pp(X) gives rise to a new
scale invariant keypoint detector which locally maximizes
the entropy over position and scale. We have proposed such
a detector (EFOP), which, compared to the detector of Kadir
and Brady (2001), yields significantly sparser feature sets
and takes pixel correlations into account. The completeness
of the new detector however is below average.

Evaluating feature detectors in general suffers from the
somewhat arbitrary and implementation dependent parame-
ter settings. We believe that in principle the parameters
should be clearly determined from the image, i.e. via the
estimated noise variance (Forstner 1998; Liu et al. 2008).
It would be highly desirable for future benchmarks to have
a common, reduced set of input parameters, which in our
opinion should be no more than the possibly signal depen-
dent noise variance and maximum number of features. Each
detector could then select the best ones according to its own
formulation of significance. This way the performance of
detectors could be characterized as a function of the number
of features. By evaluating the minimum number of neces-
sary features to reach a prespecified performance in a given
application, a characterization in terms of efficiency would
also be possible.

Of course the results have to be transferred to practical
applications. By relating them to a recent evaluation in the
context of camera calibration, we found that the accuracy of
bundle adjustment results was strongly correlated with com-
pleteness. A comparison with results in an object recogni-
tion framework still has to be done.

We did not consider edge detectors in detail due to their
rather special role. It would be interesting to include a num-
ber of edge detectors, especially scale invariant ones, into
the setup. An investigation into individual coding schemes
for different feature types—points, lines, and blobs—would
be desirable. Finally a more realistic image model than the
Gaussian could lead to a more detailed insight into the rela-
tionship between different detectors.
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Appendix: Derivation of the Effective Bandwidth in (30)

This section outlines the derivation of the approximation
(30) based on the model (29). Based on (17), a continuous
formulation of the entropy of a local patch using the fractal
model is

R 1/14;11 Po(1+ MLO)_ld 36)
f= ) o 0g-» DO u.
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For asserting that we do not use any bits where the signal
is below distortion, we have to restrict the integration limits
and require u < u, satisfying

Py
14

:|:
[SRE]

=Ny un=uo<——1>. (37)

In order to find a suitable value for the model parameter u,
we need further knowledge about the signal. We can solve
the integrals in the right hand side of (32) to relate the effec-
tive bandwidth bé to ug and the signal-to-noise ratio by

p2_ 2o SNR? +3 — 4SNR? + SNR*
8

. 38
4log, SNR “o (38)

Here we again assume additive white noise with known vari-
ance, as in the model introduced in (3) and (4). Assuming
the bandwidth and signal-to-noise ratio of the signal to be
known, we can use (38) for replacing ug in (36), with the
integration limit as specified above, and obtain the entropy

Ry =2(SNR? — 1)(log, 2re + 1 — 2log, SNR)

log, SNR b
2log, SNR? 4 3 — 4SNR? + SNR* &’

39)

This function can be approximated by

Hy(g) = kbgy/log, (1 + SNR?) (40)

with
k =~/2(1 +In(2me)) ~ 5.43. 41)

Using the correct scale factor, one can show by analytic
comparison that the approximation error between (30) and
(17) is below 1%.
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