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Abstract. We investigate the suitability of different local feature de-
tectors for the task of automatic image orientation under different scene
texturings. Building on an existing system for image orientation, we vary
the applied operators while keeping the strategy fixed, and evaluate the
results. An emphasis is put on the effect of combining detectors for cal-
ibrating difficult datasets. Besides some of the most popular scale and
affine invariant detectors available, we include two recently proposed
operators in the setup: A scale invariant junction detector and a scale
invariant detector based on the local entropy of image patches. After
describing the system, we present a detailed performance analysis of
the different operators on a number of image datasets. We both ana-
lyze ground-truth-deviations and results of a final bundle adjustment,
including observations, 3D object points and camera poses. The paper
concludes with hints on the suitability of the different combinations of
detectors, and an assessment of the potential of such automatic orienta-
tion procedures.

1 Introduction

1.1 Motivation

Automatic image orientation has become mature even in close-range and wide-
baseline scenarios with significant perspective distortions between overlapping
views. Fully automatic solutions of the relative orientation problem are available
for such cases, relying on rotation and scale invariant [1] or even fully affine
invariant correspondence detection techniques [2–4]. Such systems however do
not always perform well: It will turn out that the suitability of detectors varies
especially depending on the 3D structure and texturedness of the surfaces.

The applications of automatic image orientation are manifold. Examples are
the alignment overlapping subsets of unordered image collections, known as the
“stitching problem”, which requires to recover the relative positioning of the
cameras [5], or the automatic computation of 3D scene models from images,
where one needs accurate estimates of the extrinsics for computing dense 3D
point clouds.

For evaluating variations of an automatic image orientation system, one may
consider two cases: (i) Given a fixed strategy, what is the impact of different
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Fig. 1. Some example images of the datasets used. Top left: Entry-P10, top right:
Herz-Jesu-P25, bottom left: Empty-2, bottom right: glCube-Texture/glCube-
Coast.

operators on the result? (ii) Given a specific operator, how successful are different
strategies in solving the problem? In this contribution, we are concerned with
(i) and leave the orientation strategy fixed.

We will continue by giving a short overview on the state of the art in local
feature detection and automatic image orientation, before describing the system
used for this evaluation in section 2, together with the applied keypoint detectors.
The experimental setup is detailed in section 3, followed by an analysis of the
results in 4. We conclude with a short summary and outlook in section 5.

1.2 Related Work

Fully automated systems for solving the relative orientation problem are avail-
able since several years [6–8]. The procedure used in our experiments is based
on [9], which uses Lowe features [1] for automatic correspondence detection, and
related to the approach of [10]. There is a lot of recent work on optimizing such
procedures. To only mention a few, in [11] it was shown how to connect pairwise
epipolar geometries by first registering the rotations and then globally optimiz-
ing the translation vectors in a robust manner, while the authors of [12] use a
small Bayesian network for pairwise correspondences in image triples in order to
make efficient and statistically sound use of the correspondence information.

Several good feature detectors have been established in the last years. Beyond
the classical junction detectors [13, 14], based on the second moment matrix com-
puted from the squared gradients, the influential work of Lowe [1] showed that
robust automatic correspondence detection is possible under significant illumi-
nation and viewpoint changes. Lowe uses a detector searching for local maxima
of the Laplacian scale space, yielding scale invariant dark and bright blobs, and
computes highly distinctive yet robust “SIFT” descriptors for these local im-
age patches. Subsequent developments brought detectors with invariance under
affine distortions for blobs and regions [2–4], which is favorable under very strong
viewpoint changes. Recently, a robust scale-invariant junction detector has also



been proposed [15]. All these detectors can just as well exploit the power of SIFT
descriptors for automatic correspondence analysis.

2 A System for Automatic Image Orientation

2.1 Image Orientation Strategy

We follow the scheme published in [9] which will be shortly summarized here. As
an input, we assume an unsorted set of N overlapping images with known intrin-
sics, along with a set of Kn local features each, i.e. Fnk = {xnk, ynk, θnk,dnk}
with 0 < n ≤ N and 0 < k < Ki. Here, (xnk, ynk) is the location of the k-th
feature in the domain of image n, and θnk is an additional geometric description
of the feature window, possibly its scale σnk or a matrix Ank containing com-
plete ellipse parameters. The 1×M -vector dnk is a distinctive description of the
feature, in our case a SIFT descriptor [1] with M = 128. It is computed over the
local neighborhood coded by θnk.

The procedure starts by comparing descriptors of all possible image pairs
(n,m), yielding sets Cnm = {(p, q) | 0< p <Kn, 0< q <Km} of initial corre-
spondences. As the intrinsics are assumed to be known, we compute the relative
orientation of each image pair using Nister’s 5-Point algorithm [16] embedded
into a RANSAC scheme [17, 18]. This computation step not only allows for ro-
bust approximate values for the pairwise epipolar geometries (denoted as EG’s
in the following), but also acts as a filter on the initial correspondences, usually
yielding updated sets Cnm with significantly reduced outlier rates.

Based on the filtered sets Cnm, we can now directly determine multiview
correspondences from the pairs through simple index propagation. The EG’s
for image pairs are then connected in an iterative manner, prioritized by their
quality, which is based on the number of valid coplanarity constraints. Note
that some 3-fold correspondences are required to determine the scale between
connected EG’s. The system only yields one set of connected image orientations:
In case that no further EG can be connected, the procedure stops, regardless of
another isolated EG cluster.

Subsequently, triplet tests are carried out for further elimination of invalid
EG’s: For each triple of connected orientations, the product of their rotation
matrices has to equal the identity matrix, and the baselines have to be coplanar.
After determining 3D object points from the multiview correspondences, the
whole block is optimized by a sparse bundle adjustment [19].

2.2 Applied Feature Detectors

Other than proposed in [9], we try different input feature sets Fnk. This is
motivated by the fact that the Lowe detector (denoted as Lowe in the following)
alone is not always the best choice, though most often a good one. Consider the
image pair in the bottom left of Fig. 1: The amount of texture is critically low
here, and it will turn out that the system is not able to successfully process



the whole dataset using only Lowe. We will therefore also present experimental
results obtained when using the popular Harris and Hessian affine detectors [2],
denoted by Haraf and Hesaf, and the Maximally Stable Extremal Regions
detector [3, Mser]. Furthermore, we use a scale-invariant junction detector as
recently proposed in [15]. Note that the junction features are only a subset of
the detector output, determined by restricting to α = 0 in [15, eq. (7)]. Lastly
we include a new detector based on information theory, which will be described
shortly in the following.

Maximum-entropy-detector (Entropy). The maximum entropy detector has
been proposed in [20]. It is motivated by the idea of good image coding: We
search for local patches of varying size, centered at each pixel position, with
locally maximal entropy. Therefore at each position (x, σ, τ) in the 3D scale
space obtained by fixing σ = 3τ , we compute

H (x, σ, τ) = k

√
λ2(M; τ, σ)
Vx(σ)

log2

(
Vx(σ)
Vn(τ)

)
(1)

Here, Vx denotes the variance of the image intensities within the patch, which
can be determined by averaging finite differences of the grayvalues, and Vn is the
noise variance at the respective scale level, which can be analytically determined
from a given noise estimate of the original image. The result is up to an unknown
factor k, which does not affect the maximum search.

3 Experiments

Image Data. We report results for six image datasets, providing a range of
different texturings and surface types:

1. The Entry-P10- and Herz-Jesu-P25-datasets provided by the authors of
[10], at reduced resolutions of 512×768 and 256×384 [pel], respectively (see
top row of Fig. 1). The datasets are provided with ground-truth projection
matrices. We included Herz-Jesu-P25 especially for having a dataset with
full 3D structure, following [21] who pointed out that this is a critical aspect
of detector evaluations.

2. Our own Empty-1- and Empty-2-datasets with a resolution of 512 × 768
[pel] showing indoor scenes with very low amount of texture (bottom left of
Fig. 1). These especially difficult datasets are a challenge for state-of-the-art
orientation procedures.

3. Two artificial datasets glCube-Texture and glCube-Coast resulting
from a 3D graphics simulation of a cube observed from inside, with natural
images as wallpaper textures, rendered at a resolution of 600×800 [pel]. For
the texturing we have chosen samples of well-known image datasets from
texture analysis and scene category recognition [22, 23]. One example pair of
each set is shown on the bottom right of Fig. 1.



Investigated feature sets. We computed results (i) for each of the detectors in-
dividually, (ii) for all possible pairs complementing Lowe and sFop, and (iii)
for some promising combinations of three or four detectors. The settings of the
orientations procedure were otherwise kept constant. The focus on Lowe and
sFop among the pairwise combinations is chosen due to the limited space in the
paper, considering that Lowe and sFop have shown to be most successful.

Indicators. After automatically computing the relative orientation of the images
with the system described in section 2.1, we analyzed the following key indicators
for each of the combinations and datasets:

1. The percentage PO of successfully oriented images w. r. t. the overall number
of images in a dataset, indicating success in calibrating the whole dataset.

2. The average standard deviation of observations σ̂x′ as estimated by the bun-
dle adjustment, reflecting the accuracy of observations.

3. The average number N I of 3D object points observed in an image, indicating
the stability of the estimated orientation for each particular image.

4. The average number NO of independent observations of the 3D object points
in overlapping images, indicating stability of the estimated camera poses.

5. The ratio C between the convex hull of observations and the image plane,
as an indicator for good coverage of the image with observations.

6. The average deviation DX0 of the estimated projection centers from the
ground truth, where available, giving insight into the quality of the estima-
tion.

Note that the differences DX0 are computed after a coordinate transformation
of the estimated frames into the coordinate system of the ground truth data,
using the least squares solution proposed in [24].

As the results vary due to the RANSAC component of the system, we show
average values over ten repeated estimates throughout the paper, along with the
corresponding standard deviations depicted by black markers.

4 Results

Overall Suitability for Image Orientation. From Fig. 2 we see that not all
datasets were successfully calibrated using separate detectors. Only the sFop
detector seems to handle all considered situations. Entropy at least solved the
problem for all but Empty-2. The Lowe and Mser detectors work well with
good and medium amount of texture, but yield incomplete results on the diffi-
cult Empty-2 and Empty-1 datasets. Both the Haraf and Hesaf detectors
yield incomplete results in all cases. Using combinations of two or three detec-
tors however, we were usually able to get complete estimates. Only for Empty-2
and Empty-1, either Lowe, sFop or Entropy were required for a successful
combination.

Using the combination of Lowe and Hesaf on glCube-Coast, only 80%
of the cameras were calibrated on average, although Lowe alone worked well.



Fig. 2. Percentage PO of successfully oriented cameras w. r. t. the overall number of
cameras per dataset for individual detectors. Throughout the paper, the coloured bars
show the mean over 10 repeated estimates, while the black bars denote the standard
deviation.

Fig. 3. Average number NI of observed object points per image for individual detectors
(top) and pairwise combinations (bottom).

Such negative interaction between two detectors is otherwise rarely observed.
We believe that this is due to the fact that both detectors are based on the
Laplacian, thus having highly redundant feature sets. One might hence conclude
that combinations of very similar detectors should be avoided.

Repeatability and Amount of Observations. The average number N I of object
points observed in an image is often highest for sFop among individual detectors
(Fig. 3), while usually some of the other detectors yield comparable scores on
particular datasets. On Herz-Jesu-P25 however, Lowe proves best. Hesaf
has the lowest score in many datasets. In case of pairwise combinations, the
N I approximately add as expected. The average number NO of independent
observations is significantly better for sFop junction points on Empty-2 and
Empty-1 (Fig. 4). It is an indicator for the repeatability, and underlines the
importance of junction points for processing images of such scenes with poor
texture. For combinations of detectors, we get mostly threefold points on average.

Average Accuracy of Observations. The average estimated standard deviation
σ̂x′ of the observations is worse for Entropy and Hesaf compared to that
of other detectors (Fig. 5). For Entropy this may be caused by the lack of a



Fig. 4. Average number NO of independent observations of 3D object points.

Fig. 5. Average estimated standard deviation bσx′ of observations for individual detec-
tors.

geometric model for the point location, as it is conceptually a window detector.
For Hesaf we believe that better accuracy could be achieved when using an
improved subpixel localization method, as the points are conceptually similar to
Lowe.

The accuracy of Mser features is noticeably strong on glCube-Coast and
glCube-Texture. This is especially interesting because a good performance
of Mser on planar surfaces has been reported in other evaluations as well. It is
also remarkable that the scores for sFop are among the best ones on Empty-2
and Empty-1, although the other detectors did only calibrate part of the images
here, usually the subset with less difficult texturings.

For combinations of detectors, the differences vanish due to the averaging.

Image Coverage. We see in Fig. 6 that sFop and Entropy best cover the image
with features in case of glCube-Coast, Empty-2 and Empty-1, which all show
rather poor texturedness. On the other datasets they are slightly outperformed
by Mser, while Lowe yields very similar results.

Accuracy of Estimated Camera Poses. Comparing the estimated projection cen-
ters to the ground truth poses for individual operators (Fig. 7 top), we see that
the overall best results are achieved by sFop and Mser, again with a special
suitability of Mser for the planar surfaces. Lowe also yields very good results,
but falls back on the smoothly textured glCube-Coast dataset, which also
relates to the low number of object points achieved here (Fig. 3). Taking also
into account its overall performance on Empty-2 and Empty-1, it seems that
the Lowe detector is more suited for images with high texturedness. Entropy
performs especially well on the Herz-Jesu-P25 dataset, which is quite surpris-
ing as neither the standard deviation σ̂x′ nor the number of object points N I



Fig. 6. Average area C [%] of the convex hull of image observations w. r. t. image area.

Fig. 7. Average squared distance DX0 of reconstructed projection centers
w. r. t. ground truth after a transformation into the coordinate system of the ground
truth data.

was noticeable here. A reasonable explanation for this might be good geometric
alignment of the features.

Combining detector pairs significantly improves the results, making them al-
most all acceptable. However, the pairwise combination of Lowe and Hesaf
is again conspicuous: While the poor results for Hesaf and Haraf (see the
top row of Fig. 7) are mostly compensated when combined with other detec-
tors, combining Lowe and Hesaf does not seem to be beneficial, especially on
glCube-Coast (see second row of Fig. 7 on the right). The triple combina-
tions however are all very stable, but combining Lowe with sFop and Mser is
noticeably the most promising setting.



5 Conclusion

The applied detectors showed quite different performance on the datasets. In
particular, the Empty-2 and Empty-1 datasets with small amount of texture
could not be successfully processed by most of the detectors individually, except
by the proposed sFop detector. The latter one showed overall best performance
in the sense that it yielded good results on all indicators and datasets.

Under medium or high texturedness of the images, Lowe, Mser, sFop and
Entropy are all suitable operators for the orientation problem considered here.
The Mser detector showed special strength on planar surfaces, where it deliv-
ered very good localization accuracy and repeatability. The Hesaf and Haraf
detectors however did not reach the same performance as other detectors in our
setting. Especially Hesaf gave rather weak scores under many indicators; how-
ever, from the close relationship to Lowe, we believe that an enhanced subpixel
localization and non-maximum suppression might improve the results.

The Entropy detector showed worse localization accuracy on the datasets
compared to others, but nonetheless yielded acceptable estimation results com-
pared to the ground truth data which may be due to good geometric alignment
of the points. This is also indicated by very good coverage of the image area
with observations.

Using combinations of features solves most of the problems observed in the
individual cases, especially allowing for complete successful orientations, with
few exceptions. The overall best results are achieved when combining sFop with
Lowe, possibly complemented by the Mser or Entropy detector. Besides com-
putational complexity, negative effects seem to occur only when combining very
similar detectors like Lowe and Hesaf, which are both based on the Lapla-
cian. This suggests that one should account for the complementarity of feature
detectors when combining them; a topic which has been recently addressed in
[25].
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