
Explicit Representation of Social Norms for Social Robots

Fabio Maria Carlucci1 and Lorenzo Nardi1,2 and Luca Iocchi1 and Daniele Nardi1

Abstract— As robots are expected to become more and more
available in everyday environments, interaction with humans
is assuming a central role. Robots working in populated envi-
ronments are thus expected to demonstrate socially acceptable
behaviors and to follow social norms. However, most of the
recent works in this field do not address the problem of explicit
representation of the social norms and their integration in the
reasoning and the execution components of a cognitive robot.

In this paper, we address the design of robotic systems that
support some social behavior by implementing social norms. We
present a framework for planning and execution of social plans,
in which social norms are described in a domain and language
independent form. A full implementation of the proposed
framework is described and tested in a realistic scenario with
non-expert and non-recruited users.

I. INTRODUCTION

Social robots are robots designed for effective social
interactions with humans in populated environments. This
research field is consequently gaining more and more atten-
tion in the areas of robotics and artificial intelligence.

Many approaches to develop social robots have been
considered. In [1], a survey of socially interactive robots
is presented, describing design methods and system compo-
nents of several realizations of social robots. In this survey
and in other recent papers about social robots, a lot of effort
is put in the design of the physical appearance of the robot
and in the development of low-level behaviors for human-
robot interaction (such as, speech, gestures, navigation in
public environments, etc.).

On the other hand, sociality of a robot comes also from
the definition and the application of social norms (or rules),
that define the modality of interactions with humans. In [2],
social norms are mentioned as a design feature for a social
robot, but no examples of architectures or robots explicitly
defining these social norms are described. Conversely, in the
community of multi-agent systems, the definition and explicit
representation of social norms for agents has been very well
developed (see for example, [3]).

In this paper, we address the problem of how the social
norms can be represented and used by a social robot to
execute a social behavior. We present a framework for plan-
ning and execution of social behaviors that has the following
properties: 1) it allows for a clear separation between the
specification of the domain and the specification of the social
norms; 2) social norms can be expressed in a language and

1 Department of Computer, Control and Management Engineering,
Sapienza University of Rome, Italy. Contact: iocchi@dis.uniroma1.it.
2 Institute for Geodesy and Geoinformation, University of Bonn, Germany.

This work has been partly carried out within the COACHES project
funded by CHIST-ERA 4th Call for Research projects, 2013, Adaptive
Machines in Complex Environments (AMCE) Section and by the European
Commission under the grant FP7-610603-EUROPA2.

domain independent manner (so they can be reused for other
tasks in other domains or with other reasoning formalisms);
3) the generation of social plans integrating domain descrip-
tion and social norms is completely automated; 4) different
kinds of social behaviors can be obtained by simply enabling
or disabling some social norms. The proposed framework has
been fully implemented and extensively tested on a mobile
robot in our department. The ability of producing different
kinds of social behaviors by just enabling/disabling some
norms allowed us to easily configure the system to test many
different kinds of social behaviors.

In the following, after a brief description of the related
works, our framework is presented, an example of the
application of the proposed algorithm is illustrated, then
implementation and experimental runs are described, while
conclusions are drawn in the last section.

II. RELATED WORK

Different studies (e.g. [1]) support the idea that a social
robot, in order to interact and collaborate with humans
in a natural and friendly way, should attempt to manifest
believable behaviors complying with the same social norms
as humans do. Over the last years, different systems have
been proposed to allow a robot performing some tasks in a
socially acceptable way in environment shared with humans.
However, most of them deal with specific behaviors for a
particular task and they are hard to generalize.

Many systems implicitly model social norms in the archi-
tecture: this approach, while functional, has some drawbacks.
For example, Partially Observable Markov Decision Pro-
cesses (POMDP) are used to model human-robot interaction
allowing the robot to act according to beliefs about the goals
of the people it is interacting with based on observations
[4]. In Human Aware Task Planner (HATP), social rules
are used to define penalties to situations that are then used
by the planning procedure to score different solutions and
choose the “best” plan [5]. Answer Set programming (ASP)
has been used to model an efficient planner for collaborative
house keeping robots [6]. This system automatically extracts
common sense information from the ConceptNet dataset and
exploits it to better perform the given task. Finally, Human
Aware Planning based on Constraint Based Planning (CBP)
allows the planner module to take into account social norms
when generating the plan [7].

In all these works, however, social norms are expressed
in a domain dependent and language dependent formalism,
i.e. they are embedded in the POMDP, HATP, ASP or CBP
specifications together with the specification of the domain
and of the task to be accomplished. Only in HATP, social
rules are defined in a separate element with respect to the

Fig. 1. Standard framework and social framework described in this paper. D: domain, AD : domain actions, S: social norms, M : domain specifications,
AS : social actions, π: plan, πS : social plan. Planner, Executor, D, and AD are not changed between the two frameworks.

domain/task description, but they are still domain dependent.
Thus, there is not a clear distinction between the domain/task
description and a set of domain-independent social norms.
In fact, the lack of explicit representation of the domain
independent social norms might hinder the maintenance and
the update of the social norms in these systems. Moreover,
if a new domain is considered, the domain dependent norms
must be rewritten.

In this paper, we address the above mentioned problems,
by presenting a framework for planning and execution of
social plans, in which social norms are described in a
domain and language independent form. We believe that
explicitly modeling general high level social norms allows
for providing different social behaviors, while accomplishing
different tasks, guaranteeing scalability to complex situations
and adaptation to different scenarios. Language independent
specifications of social norms could then be applied to
different reasoning systems (POMDP, HATP, ASP, CBP, etc.)
in order to generate social behaviors with different charac-
teristics and to better compare which models/languages are
most suited for the realization of cognitive social robots.

III. FRAMEWORK

In this section we describe the framework for explicit
modeling of social norms and the corresponding execution
model on a social robot.

We first describe the overall architecture depicted in Figure
1. We assume to have a classical planning + execution
framework (Fig. 1 a)) that includes: D: a domain description,
AD: the implementation of the actions described in D, a
PLANNER module that generates a plan π from the domain
description D and an EXECUTOR module that executes the
plan π activating the corresponding actions in AD. Several
formalisms for planning and execution can be used and they
are not described in this paper.

Starting from such a standard planning + execution frame-
work, we propose its transformation into a social frame-

work (Fig. 1 b)), in which the elements of the standard
framework are not changed. In particular, D and AD remain
unchanged in the social framework, as well as the PLANNER
and the EXECUTOR modules, as long as they provide the
requirements for applying the plan transformation algorithm
described later in this section. More specifically, in this paper
we describe an implementation of this framework in which
any planner can be used, while the the EXECUTOR module
in based on Petri Net Plans (described below).

The social framework contains some additional compo-
nents: S: a set of social norms (or social rules), including the
definition of social actions, that are domain independent and
language independent; M : a set of domain-dependent and
language-dependent specifications for applications of social
norms S to the domain D; AS : the implementation of the
actions described in S; PNPGENERATOR : a module that
generates a new social plan (i.e., a plan including social
actions), from the plan π generated by the planner and the
domain description augmented with the social norms and the
application specifications 〈D,S,M〉.

All the elements in the proposed social framework are
described in this section, focusing more on the elements that
are specific of the social framework.

A. Domain Description and Planning

In this paper, the domain description D and the PLAN-
NER module have been implemented using Answer Set
Programming (ASP) language and solver [8]. The proposed
framework does not rely on any particular feature of ASP,
so other formalisms for domain description (e.g., PDDL
languages) and other planners (e.g., STRIPS) could have
been used here. Our solution follows the approach used in
the context of a social robot by Erdem et al. [6], handling
action descriptions, static axioms, and frame problem in a
standard way as described by Lifschitz [9].

The domain description contains static and dynamic
knowledge about the capabilities of the robot, the environ-

(meet person, S greet)
(speak to person, S face)
(speak to person, S display text)
(person blocking ∧ person close, S stop)
(person blocking ∧ person close, S ask to pass)
(crowded, S stop)
(need help ∧¬ person close, S approach)
(approach person, S explain approach)
(need help ∧ person close, S say please)
(need help ∧ person close, S explain reason for help)
(received help, S thank)

TABLE I
LIST OF DOMAIN-INDEPENDENT SOCIAL NORMS.

ment, and the task to be accomplished. Static knowledge
holds information that is meant to be relatively stable:
common sense reasoning assumptions, domain constraints,
the definition of all the available actions in AD (with pre-
conditions and post-conditions) and the static information
on the environment (map topology and semantics). Dynamic
knowledge is generated on the fly by the system and repre-
sents the current goal and the sensor fluents characterizing
the initial state at plan generation time.

Notice also that, recalling the idea in [10], AD will include
both robot and human actions, where human actions are
defined as actions that will be performed by humans to help
the robot in achieving its goals. In this way, the PLANNER
will compute plans in which the human actions are abstracted
and explicitly represented. On the other hand, these actions
are then implemented with corresponding robot behaviors (as
described later and in more details in [10]), without the need
of introducing this complexity in the domain description and
in the planning module.

B. Petri Net Plans executor

The EXECUTOR module is implemented through the Petri
Net Plans (PNP)1 execution mechanism described in [11].
The input of the EXECUTOR module is a PNP, that contains
the necessary constructs to properly combine actions and
conditions. In particular, in the social framework, the PNP to
be executed is generated by the PNPGENERATOR module,
described later. The PNP engine is responsible for the execu-
tion of the plan represented in the PNP by properly activating
the actions and checking for the relevant conditions on the
basis of the PNP semantics. Moreover, the PNP-ROS bridge
allows for an easy integration within ROS applications.

C. Social norms

Representation formalisms for social norms have been
largely studied in the field of multi-agent systems These
formalisms are typically very powerful to express several
complex interactions among agents. In this work, the inter-
action between the robot and a user is not complex and long,
therefore we have chosen a simple representation of social
norms, as proposed in [12], based on propositional logic.

Given a propositional logic L defined on a set of atoms
∆, a social norm (as defined in [12]) is represented as a pair
(φ, ψ) ∈ L × L, with the meaning that if φ is true, then ψ
is mandatory, or, in other words, ¬ψ is forbidden. In this

1http://pnp.dis.uniroma1.it

paper, we consider a variation of this definition that refers
to explicit actions that the robot has to do as a consequence
of the application of the social norms. So, we consider a set
AS of social actions for the robot and define a social norm
as a pair (φ, a) ∈ L×AS , with the meaning that if φ is true,
then it is mandatory for the robot to execute the action a.

The list of social norms for the robot is thus defined as
S = {(φ1, a1), . . . , (φn, an)} ⊂ L × AS . Some examples
of social norms implemented in our system are illustrated
in Table I. Different norms would be required for different
situations and different configurations of the robot. Social
actions are denoted with an initial label S ∗ to distinguish
them from domain actions.

D. Specifications for application of social norms

M is defined as a set of specifications that relate actions
and conditions in D and in S. This is needed since the social
norms S are domain independent, and it is thus necessary to
related the symbols used in S with the ones used in D. This
is also needed because of our design goal of not modifying D
to accommodate the social norms. Other possible solutions
to integrate the social norms S with D would have been: 1)
modify D to add elements that are necessary to include S, or
2) make S dependent on D. However, both these alternative
solutions have drawbacks: 1) they requires the designer to
manually modify D to adapt it to S (or viceversa); 2)
they do not allow to use the same set of social norms for
different domains and the same domain under different social
norms. The solution presented in this paper avoid these two
drawbacks, by only requiring to define the specifications M
for applying a set of domain independent social norms S to
an already available domain description D.

In M , the following types of specifications can be in-
cluded, in which α is a logical formula over literals from
either D or S, p is a literal in either D or S, d is an action
in either AD or AS , and ai is an action in AS .

α =⇒ p α implies p
before(d) =⇒ α before executing d, α is true
after(d) =⇒ α after executing d, α is true
during(d) =⇒ α during execution of d, α is true
conflict(d, ai) actions d and ai are conflicting

The specifications of the first kind are grouped as MD ⊂
M . As described later, D ∪MD will be used for evaluating
logical formulas in the plan transformation algorithm. In
particular, in the implementation described in this paper,
these formulas are expressed in ASP.

Some examples of specifications for application of the
social norms to our example domain are illustrated in Table
II. Althoug these specifications are domain dependent, they
can be reused in similar domains (see also Sect. III-G).

E. PNP generator

The main component of our framework is the algorithm
described in this section that provides for the automatic
generation of the PNP that integrates the plan obtained
by planning in the domain and the applications of the

human =⇒ ¬ person close
person close =⇒ meet person
obstacle ∧ person close =⇒ person blocking
many people =⇒ crowded
before(H loadPaper) =⇒ need help
before(H openDoor) =⇒ need help
after(H loadPaper) =⇒ received help
after(H openDoor) =⇒ received help
after(S approach) =⇒ person close
during(S approach) =⇒ approach person
during(say) =⇒ speak to person
conflict(gotoDoor, S stop)
conflict(gotoPrinter, S stop)

TABLE II
SPECIFICATIONS FOR APPLICATION OF SOCIAL NORMS.

social norms. The PNPGENERATOR module is implemented
through Algorithm 1 described here.

The main procedure of the algorithm executes the follow-
ing steps: 1) generation of a linear PNP from the linear plan
π; 2) application of the social norms; 3) transformation of
the human actions in PNP instantiating the corresponding
templates; 4) new application of the social norms. The
apply social norms procedure is described in the remaining
part of the algorithm.

The application of the social norms is repeated at Step
4 in order to consider actions that are introduced at Step
3 for replacing the human actions. In this way, the social
norms can be applied both to the human actions (before
the transformation, since after that they are replaced) and
to the actions introduced by the transformation (that were
not present before the transformation).

In this algorithm, we use a queue Q of instances of actions,
i.e. of pointers to the beginning of instances of actions in
the plan being built. Notice that it is necessary to refer to
instances of actions since an action (in particular the social
actions) may occur several times in the plan. In practice this
is implemented by storing in Q the start place of the PNP
action. In the algorithm, di ∈ Q expresses both the particular
instance of the action di (used in the PNP * procedures) and
its name (used to verify specifications in M).

In the application of the social norms, we use prec(di) and
postc(di) to denote the formulas that describe respectively
the preconditions and the postconditions of action di, as
described in the domain description D. The navigation of
the list S in forward order for the ‘begin’ specifications and
in reverse order for the ‘after’ specifications guarantees that,
if multiple actions are applicable to a step in the plan, they
are applied in the order they compare in S. Other possible
solutions (not discussed in this paper) to consider the order
in which specifications must be applied are possible.

The application of the social norms is performed according
to the semantics of the specifications for the application
of the social norms. Thus, the ‘before’, ‘after’, or ‘during’
specifications add a new social action respectively before,
after or in parallel with the current action. This process is
better illustrated in the example in the next section. While the
‘conflict’ specifications add interrupts in the plan to interrupt
a domain action when a social norm requires it.

This algorithm uses a set of functions to manipulate PNPs
that are described in the following.

Algorithm 1: PNP generator
Input: π: plan generated by the ASP solver,
〈D,S,M〉: domain description and social norms
Data: Q: a queue of instances of actions
Output: πS : PNP integrating π with social actions

1 πS , Q← PNP genLinear(π);
2 πS ← apply social norms(D,S,M, πS , Q);
3 πS , Q← PNP transformHumanActions(πS);
4 πS ← apply social norms(D,S,M, πS , Q);
5 return πS ;
6

7 Procedure apply social norms(D,S,M, πS , Q) : πS
8 while Q 6= ∅ do
9 di ← pop(Q);

10 foreach ‘before(di) =⇒ α’ in M do
11 foreach (φj , aj) ∈ S (forward order), s.t.

D ∪MD |= α ∧ prec(di) =⇒ φj do
12 πS ← PNP addBefore(πS , di, aj);
13 push(Q, aj);

14 foreach ‘after(di) =⇒ α’ in M do
15 foreach (φj , aj) ∈ S (reverse order), s.t.

D ∪MD |= α ∧ postc(di) =⇒ φj do
16 πS ← PNP addAfter(πS , di, aj);
17 push(Q, aj);

18 foreach ‘during(di) =⇒ α’ in M do
19 foreach (φj , aj) ∈ S, s.t.

D ∪MD |= α =⇒ φj do
20 πS ← PNP addParallel(πS , di, aj);
21 push(Q, aj);

22 foreach ‘conflict(di, aj)’ in M do
23 B ← {di} ∪ {a ∈ πS |a in parallel with di};
24 // B = actions in parallel with di), (φj , aj) ∈ S

πS ← PNP addInterrupt(πS , B, φj , aj);
25 push(Q, aj);

26 return πS ;

πS , Q ← PNP genLinear(π) generates a linear PNP
with the sequence of actions in π by applying the sequence
operator in PNP and initializes the queue Q with all the
instances of the actions generated in πS .
πS , Q ← PNP transformHumanActions(πS) re-

places every human action in πS with an instantiated tem-
plate for making human actions executable, as explained
in [10]. This template realizes a human robot collaboration
scheme driven by the robot in which it waits and establishes
an interaction with a human, it asks him/her for help and it
waits until s/he perform the task s/he has been asked. This
procedure also initializes the queue Q with all the instances
of the actions added in πS .
πS ← PNP addBefore(πS , di, aj) adds action aj be-

fore action di using the sequence operator in PNP.
πS ← PNP addAfter(πS , di, aj) adds action aj after

action di using the sequence operator in PNP.

πS ← PNP addParallel(πS , di, aj) adds action aj in
parallel to action di using the fork-join operators in PNP. If
di is already in parallel with other actions, ai will be added
to the already existing fork-join construct.
πS ← PNP addInterrupt(πS , B, φj , aj) adds an inter-

rupt to all the actions in B controlled by the condition φj ,
adds the action aj after the interrupt φj , adds a transition
labeled with ¬φj after the action aj , and connect this last
transition with the node before the fork of the actions in B
or to the input place of di, if it is the only action in B.

As a result of this process the final plan πS , represented as
a PNP, obtained by the knowledge represented in 〈D,S,M〉
is sent to the PNP executor. Note that the algorithm may
not terminate if there are cyclic specifications. Although it
would be possible to detect this situation, in this paper we
will not consider this issue assuming acyclic specifications.

F. Action Implementation

AD and AS denote the actual implementations of the
actions considered in D and in S. Different solutions can
be adopted to represent action implementation. Here we use
the ROS actionlib2 specification to implement all the required
actions. This choice allows for a direct implementation on
the robot using the ROS framework.

G. Portability to other domains

The main feature of the proposed architecture is its porta-
bility to other domains. When a new domain is considered,
several elements of the current domain can be reused. A
domain is generally characterized by a description of the
robotic platform, of the environment and of the task to
be accomplished. Consequently, 〈D,S,M〉 contains rules
and specifications that refer to all these sub-components.
These rules are portable to another domain whenever there
is a common intersection in the characteristics of the robot,
the environment, or the task. For example, for executing a
different task with the same robot in the same environment,
all the rules in 〈D,S,M〉 that are not specific of the task
can be reused.

IV. EXAMPLE

In this section we provide a full example of the use of
the proposed framework. We consider a mobile robot with
no mechanical arms that has the task of delivering papers
output by a printer to a location that is behind a closed door.
The task can be accomplished only with the help of humans,
since the robot is not able neither to grab papers from the
printer nor to open doors.

The domain description D models this problem consider-
ing the following available actions: gotoPrinter, gotoDoor,
passDoor, H loadPaper, H openDoor. H ∗ actions are
human actions, i.e. actions that are executed by humans
to help the robot (as described in the previous section).
Given this domain description, the ASP planner is able to
generate a plan corresponding to the following sequence
of actions: π = 〈gotoPrinter,H loadPaper, gotoDoor,

2http://wiki.ros.org/actionlib

H openDoor, passDoor〉. This plan does not include social
actions as the ones described in Section III-C.

Let us now describe how the social norms described in
Tables I and II are applied to this plan (line 2). Con-
sider the domain action H loadPaper, the specification
‘before(H loadPaper) =⇒ need help’ in M , and the
social norm ‘(need help ∧¬ person close, approach)’ in
S (line 11 of the algorithm). Here, the logical entailment
D∪MD |= α∧prec(di) =⇒ φj is true. Indeed the formula
‘need help ∧ human =⇒ need help ∧¬ person close’ can
be derived by D ∪ MD (in particular, from the statement
in MD ‘human =⇒ ¬ person close’). Consequently,
according to the social norm, the social action S approach
must be executed before the execution of H loadPaper and
thus this action is added in the plan πS and in the queue
Q of actions to be processed (lines 12–13). When the algo-
rithm will consider the specification ‘after(H loadPaper)
=⇒ received help’ and the social norm ‘(received help,
S thank)’ (line 15), then the social action S thank will
be added after H loadPaper (line 16).

At some later stage of the execution of the algorithm,
the action S approach will be extracted by the queue (line
9) and processed. Let us consider now the specification
‘after(S approach) =⇒ person close’ in M and the
social norm ‘(meet person, S greet)’ in S. The logical
entailment D ∪ MD |= α ∧ postc(di) =⇒ φj (line
15) is true. Since ‘person close =⇒ meet person’ is
actually present in MD, the action S greet is added after
S approach (line 16). This is repeated also for the so-
cial norms ‘(need help ∧ person close, S say please)’ and
‘(need help ∧ person close, S explain reason for help)’
that are enabled after S approach and thus the correspond-
ing social actions are also added after S approach. As ex-
plained before, visiting the social norms in reverse order for
the ‘after’ specifications guarantees to maintain the correct
order of the corresponding social actions in the plan. In this
case S greet will precede S say please that will precede
S explain reason for help. Similarly, when the specifica-
tion ‘during(S approach) =⇒ approach person’ in M and
the social norm ‘(approach person, S explain approach)’
in S are considered (line 19), the algorithm will add the
action S explain approach in parallel with S approach
(line 20). The same process will be performed for applying
the social norms to the other actions of the linear plan
generated by the ASP planner.

After transforming all the human actions in PNP using
the template defined in [10] (line 3), the process of apply-
ing the social norms is repeated to consider actions that
are introduced by the template (line 4). For example, the
action say is in the template of the human actions to ask
for help to a human. For all the instances of the action
say, the specification ‘during(say) =⇒ speak to person’
in M enables two social norms in S, ‘(speak to person,
S face)’ and ‘(speak to person, S display text)’ and thus
the corresponding actions S face and S display text are
added in parallel with say.

At the end of this process, a PNP that implements all of
the social norms listed in Tables I and II is generated.

V. IMPLEMENTATION AND EXPERIMENTS
The framework described in this paper has been fully

implemented and tested on a robot executing tasks in our
Department. The task used in the experiments is the one
illustrated in the previous example.

For this task, the robot is able to navigate in the envi-
ronment (using standard navigation tools), to detect people
close to it (through the analysis of laser scans), to detect
if a white paper is placed on a black tray (through an
easy image processing procedure), to detect if a door is
open (again through laser analysis), and to speak to the
persons. At this moment, in order to eliminate any bias due
to the performance of the speech understanding system, the
utterances of the users were confirmed by an operator.

The users participating in the experiments were not se-
lected from us before, but they were just people passing
in the corridor of our Department. The motivation for this
choice is that it is likely that a user accepting to participate to
the experiment would have been biased towards doing what
the robot was asking for. Therefore, users were not instructed
about what to do and not even told that they would have been
asked to do something by the robot. In this way, we obtained
results in a realistic scenario and indeed we experienced that
many people did not want to interact with the robot. Since
the start of the test was controlled by us, we have tried to
avoid repetition of the test with the same person. 3

A total number of 70 runs during three days of experiments
have been executed with different configurations of the social
norms. The evaluation of each run has been done by an
operator by assigning to it one of the values reported below.
The table includes also the percentage of runs for which we
obtained this outcome.

A Successful execution of the task
with human help 42 %

B Unsuccessful execution of the task,
but user was willing to help 6 %

C User answered that s/he
was not willing to help 10 %

D No answer to the robot’s request
42 %

These results clearly do not allow for an assessment of
the effectiveness of the social norms, which indeed was not a
goal of these experiments. Instead the execution all these runs
demonstrate the flexibility of our system to easily produce
different social behaviors.

Plan Actions Places Transitions Edges
π 12 37 38 76
πS 34 123 110 248

As for the complexity of the generated plans, the above
table shows the size of the PNP described in the example,
before and after the application of the social norms. It is
evident that the size (and thus the complexity) of the resulting

3Videos and implementation details are available in
https://sites.google.com/site/socialrobotplanning/.

PNP, being about 3 times bigger, would have made the task
of manually writing and maintaining it very ineffective.

This example demonstrates that our system can generate
very complex plans and, accordingly, execute complex and
robust robot social behaviors. Moreover, our system can
automatically generate many variations, by applying different
norms, to test different behaviors of the robot. Finally, the
system is ready-to-use and non-expert users can easily ran a
robot task through a simple GUI.

VI. CONCLUSIONS
In this paper we have described a framework for planning

and execution of social plans, in which social norms are
described in a domain and language independent form. A
full implementation of the proposed framework is described
and it gave us the possibility of making several tests in a
realistic scenario with non-expert and non-recruited users.

The proposed framework allows for extensive user studies,
where different social norms are enabled/disabled in order to
evaluate their effectiveness for the task under test. This eval-
uation is certainly an important future direction of our work.
Moreover, the application to multiple different scenarios, as
well as the implementation of the proposed idea to other
cognitive architectures, would allow to extend the approach
and to improve in general the development of social robots
with explicit representation of social norms.

REFERENCES

[1] T. Fong, I. R. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” Robotics and Autonomous Systems, vol. 42, no.
3-4, pp. 143–166, 2003.

[2] C. Bartneck and J. Forlizzi, “A design-centred framework for social
human-robot interaction,” in Proceedings of the Ro-Man2004, 2004,
pp. 591–594.

[3] G. Boella, L. van der Torre, and H. Verhagen, “Introduction to
normative multiagent systems,” Computation and Mathematical Or-
ganizational Theory, vol. 12, no. 2–3, pp. 71–79, 2006.

[4] F. Broz, I. R. Nourbakhsh, and R. G. Simmons, “Planning for
human-robot interaction using time-state aggregated pomdps,” in
Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008,
2008, pp. 1339–1344.

[5] S. Alili, R. Alami, and V. Montreuil, “A task planner for an au-
tonomous social robot,” in Distributed Autonomous Robotic Systems
8, 2009, pp. 335–344.

[6] E. Erdem, E. Aker, and V. Patoglu, “Answer set programming for
collaborative housekeeping robotics: representation, reasoning, and
execution,” Intelligen Service Robotics, 2012.

[7] S. Tomic, F. Pecora, and A. Saffiotti, “Too cool for school - adding
social constraints in human aware planning,” in Proc. of 9th Interna-
tional Workshop on Cognitive Robotics, 2014.

[8] V. Lifschitz, “Answer set programming and plan generation,” Artificial
Intelligence, 2002.

[9] ——, “What is answer set programming?.” in AAAI, vol. 8, 2008, pp.
1594–1597.

[10] L. Nardi and L. Iocchi, “Representation and execution of social plans
through human-robot collaboration,” in Fifth International Conference
on Social Robotics (ICSR 2014), 2014, pp. 266–275.

[11] V. A. Ziparo, L. Iocchi, P. U. Lima, D. Nardi, and P. F. Palamara,
“Petri net plans - A framework for collaboration and coordination in
multi-robot systems,” Autonomous Agents and Multi-Agent Systems,
vol. 23, no. 3, pp. 344–383, 2011.

[12] G. Boella, G. Pigozzi, and L. van der Torre, “Normative framework for
normative system change,” in Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), 2009.

