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ABSTRACT

This paper describes an approach for building extraction using Digital Surface Models (DSM) as input data. The first task
is the detection of areas within the DSM which describe buildings. The second task is the reconstruction of buildings for
which we apply parametric and prismatic building models. The main focus is on the detection, namely on the use of height
and differential geometric information to discriminate building and vegetation areas. Furthermore, recent results for the
extraction of roof structures as first step towards the extraction of polyhedral building descriptions are presented.

1 INTRODUCTION

During the last years the increasing need for 3D data of ur-
ban areas und its update led to research efforts with the
aim to set up automatic or at least semi-automatic tools
for the acquisition of such data. Besides digital aerial im-
ages Digital Surface Models (DSM) are used as input data.
DSM do not only contain information about the topographic
surface like Digital Elevation Models (DEM), but also about
buildings and other objects higher than the surrounding to-
pographic surface, e.g. trees. The use of DSM for build-
ing extraction is motivated by the fact, that DSM already
provide a geometric description of a scene derived from
aerial imagery or airborne laser scanner data. Previously
published approaches often use DSM for building detection
only (e.g. Baltsavias et al., 1995). The inherent potential of
DSM with respect to building reconstruction was explored
only by a few authors, but either restricted to simple mod-
els (Haala, 1995) or by using additional input data (Jaynes
et al., 1996). In our approach (c.f. Weidner and Forstner,
1995) we focus on the exclusive use of DSM in order to in-
vestigate the potential and — of course — limitations of DSM-
analysis.

The applied criteria for building detection allow the separa-
tion of the two tasks of building detection and reconstruc-
tion. In the following, we therefore describe our approaches
for both tasks focussing on new extensions: the discrimina-
tion of buildings and vegetation by use of differential ge-
ometry and the extraction of roof structures as first step
towards the extraction of polyhedral building descriptions.
In each section, we present the approach and also give ex-
amples of the results.

2 DISCRIMINATION OF BUILDINGS AND
VEGETATION

Our approach for building detection exploits the fact, that
the normalized DSM, i.e. the difference between DSM and
Digital Elevation Model (DEM) describing the topographic
surface, provides information about buildings approximately
referenced to a plane. Therefore, the algorithm starts with

Figure 1: DSM RAVENSBURG

the use of mathematical morphology to derive an approx-
imation of the topographic surface, i.e. a DEM, from the
DSM-data (Fig. 1'). The subsequent steps are to com-
pute the normalized DSM, to binarize this data set using
a global threshold yielding an initial segmentation &, and
to adapt the threshold based on local height information,
which leads to the refined segmentation § (Fig. 2). From
these segments valid segments are selected based on their
size in order to reject spurious segments, e.g. due to single
trees (c.f. Weidner, 1997a for details). The size criterion for
the selection is not sufficient for larger vegetation areas or
vegetation areas close to buildings and probably melted to-
gether with these in the DSM. Assuming the geometric de-
scription provided by the DSM to be the only input data, cri-
teria to classify vegetation areas must be geometric ones.
A possible criterion is the roughness of the surface mea-
sured by differential geometric quantities, like gradients or
curvatures. We exploit this information by computing step
edges and the variance of surface normals as indicator for
crease edges (Figure 3). This information is used via a bi-
nary classification scheme or Bayesian nets.

1 The DSM RAVENSBURG was provided by TopoSYs, Ravensburg.



Figure 2: Segments

Figure 3: Variances of surface normals

Figure 4: Detected vegetation areas V
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Figure 5: Binary Classification

2.1 Binary Classification Scheme

The detection of vegetation areas V within the DSM is an
extension to the approach to building detection briefly out-
lined above. In the example vegetation areas can be easily
recognized in the data sets of the step edges and crease
edges (variance of surface normals, Figure 3). The first ap-
proach uses this informaton for a binary classification pro-
cedure (c.f. Figure 5). Besides the height information of
the normalized DSM (dashed rectangle in Figure 5), the
step and crease edge information is extracted (c.f. Weid-
ner, 1997b for details) and classified using the expected
roughness of vegetation as threshold. The entire procedure
consists of binarizing the data sets, applying morphology in
order to derive closed areas, and selecting valid vegeta-
tion segments V' by size evaluation. Figure 4 displays the
detected vegetation areas. These areas can be excluded
from the initial segmentation S, thus replacing § by § \ V.

The main drawback of the described approach is the use
of fixed thresholds. This drawback can be overcome by
using Bayesian networks for the classification instead of the
binary classification scheme.

2.2 Bayesian Networks for Classification

In this section an approach for building detection and vege-
tation discrimination using Bayesian networks is proposed
and evaluated. The approach is an extension of the work
presented in Brunn et al., 1997, now using three different
features: the height information from the normalized DSM
Ah, the step edge magnitudes StepFE and the variances of
surface normals NVar. For the description of the approach
we will first focus on a subpart of the entire network circum-
scribed by the dashed rectangle in Figure 6, thus only con-
sidering the height information. It can replace the detection
scheme briefly sketched at the beginning of this section. In
a second step, the entire network is discussed.

Based on the features, pyramids of random variables b; =
bi(r, ¢, f) are generated, where r, ¢ denotes the position,
the used group of features or the feature f, e.g. variance
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Figure 6: Bayes Classification

of surface normals, and [ the level of the pyramid with [ =
0 the original resolution of the data set. The probability
that a point is member of a building region is denoted with
P(bi(r,c) = T), the probability P(bi(r,c) = F), thus the
probability of the complimentary event, is given by

P(bl(rv c) = F) =1- P(bl(rv c) = T) 1

The priori probabilities within the uni-directional Bayesian
network are derived from the information of the next higher
pyramid level, except for the highest level for which the pri-
ori probability must be given. The use of pyramids leads to
regularization of the results. Furthermore, the influence of
the selection of the priori probability for the highest level is
reduced. For details of the computation of probabilities and
the use of pyramids c.f. Brunn et al., 1997.

2.2.1 Using Height Information of Normalized DSM In
case the height of normalized DSM Af is used as feature,
the probability P(&:(r, ¢) = T), i.e. the point (r, ¢) is member
of a building segment, follows from

P(bi(r,c) =T) x
E P(bi(r,c) =T|big1(r, ) = S1,bi(r,c, Ah) = 82) (2)

(51,52)

P(bl+1 (T‘, C) = Sl )P(bl(f‘7 C, Ah) = S2:)

where the tupel (S1, S2) has the values {(T, T), (T,F), (F, T),
(F,F)}. P(bi4:1(r,c) = T) denotes the posterior probability
derived on the I + 1-th level of the pyramid, P(bi(r,c, f =
Ah)) the probability derived taking the feature on the I-th
level into account, and P(bi(r, ¢)|bi41(r, ¢), bi(r, ¢, Ah)) the
conditional probability. The probability P(b:(r,c,f) = T|OQ)
that a feature vector belongs to the region © in the feature
space a priori defined by 6 and a covariance matrix C is
calculated by
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Figure 8: Classification of building segments

assuming normal distribution. For a single feature, e.g. Ah,
and C = 03,1, we obtain
-6y
_( 5 ) (4)

204,

P(b(r,c)) = 7\/21—2/®6l‘p (
o,

Thus, 4 and %, have to be defined instead of a threshold
for the approach described above. The first parameter can
be set analogously to the threshold based on object knowl-
edge, the second taking the sensor model into account.
The conditional probabilities P(A|B) have to be fixed by
the user and express the belief in A under the assumption
that B is given. For the results displayed in Figures 7 and 8
we used

P(bi(r, c) = T|big1(r,c) =T, bi(r,c,Ah) =T) = 1.00

P(bi(r,¢) = T|big1(r,c) =F,bi(r,e, Ah) =T) = 0.50

P(bi(r, c) = T|bl_|.1(7"7 ¢)=T,bi(r,c,AR)=F) = 0.50
(%)

and zero for the last of the conditional probabilities in (2)
expressing belief only if both random variables are true T.
Based on the probability of buildings (Figure 7, white: high
probability) the classification with Py.iia > 0.5 for the last
pyramid level, i.e. the original resolution, yields the building
segments (Figure 8, black) leading to almost the same re-
sults as the detection scheme described at the beginning of
this section, but already rejecting smaller areas due to the
use of pyramids and the inherent smoothing and delivering
also information about the probabilities.
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Figure 9: Probability of building segments using normalized  Figure 10: Classification Sp of building segments using
DSM and differential geometric properties normalized DSM and differential geometric properties

2.2.2 Using Height Information and Differential Geo-
metric Properties Taking the binary classification scheme
described in Section 2.1 as starting point, a Bayesian net-
work for the discrimination of building and vegetation areas
can be formulated as presented in Figure 6. The equations
for the probabilities follow analogously to (2). The probabil-
ities Psiepr and Pnvar Of the I-th level for each point are
computed as median probability within a 3 x 3 neighbour-
hood which can be compared to the use of mathematical
morphology in the binary classification scheme. The strict
thresholds within the binary classification are replaced by
the parameter vector € and its covariance matrix C. In our
experiments we assumed uncorrelated sources, thus C is
a diagonal matrix with entries a?l. The conditional prob-
abilities express the belief and can be used to put more
emphasis on a specific source of information. The main
advantage of the Bayesian network is the fact, that infor-
mation about the probability of classification for each point
is provided.

For the computation of the probability Py.i1a, (C.f. Figure
6) the conditional probabilities given in (5) are used. The
conditional probabilities used for the computation of Pyyiia,
are selected analogously but also taking the number of vari-
ables b = T and the belief in differential geometric proper-
ties of a higher level into account. The same holds for the
conditional probabilities for the computation of Pyu;1a. De-
tails are given in Brunn and Weidner, 1997.

Figures 9 and 10 display the probabilities Py.i:4 and the re-
lated classifications for several pyramid levels. For compar-
ision the result § \ V of the binary classification scheme is
given in Figure 11 and the difference of the classifications is
presented in Figure 12. Within this data set white segments
represent building segments which are not detected using
the binary classification scheme but using the approach
based on the Bayesian network. Black regions represent
just the opposite cases and grey regions mark regions with ) ] - - ~
no differences. The Bayesian approach leads to the detec- Figure 12: Differences of S \ V and Sz




tion of buildings with low heights in backyards (e.g. white
segments in NW part of data set), which are not detected by
binary classification due to the strict thresholding. In case
the Bayesian network scheme is used, the threshold used
in the binary scheme — which is set also to avoid detec-
tion of vegetation (bushes) — can be relaxed. Furthermore
segments in the SE part are correctly rejected. Differences
along segment borders are of minor significance.

For the example the Bayesian approach is superior to the
binary classification due to the mentioned characteristics.
Both approaches require high quality data, i.e. minor ef-
fects due to regularization. A counter example for the ap-
proaches is given by the DSM AVENCHES (Figure 13): a
group of trees (NE part of data set) appears as smooth as
building segments (Figure 14). Therefore, the probabilities
Pyuira, are almost constant and > 0.9 indicating that in this
case the differential geometric properties do not carry any
significant information for the discrimination between build-
ing and vegetation areas and leading to the result shown in
Figure 15. This result does not significantly differ from the
result obtained using the height information of the normal-
ized DSM only (Figure 16).

3 EXTRACTION OF ROOF STRUCTURES

In our previously published work on building extraction us-
ing DSM as input data we only applied parametric and pris-
matic building models. These models are not sufficient with
respect to complex scenes like downtown areas with com-
plex buildings. Therefore, we will integrate polyhedral mod-
els in our approach. This integration does not change the
general framework, because the models applied up to now
are subclasses of polyhedral models derived by imposing
restrictions on the topology and/or metric. The first step to-
wards the extraction of polyhedral models is the extraction
of roof planes.

The principle idea is to extract homogeneous, i.e. planar,
regions within the detected building segments. Like most
approaches to range image segmentation (c.f. Arman and
Aggarwal, 1993), we also focus on the extraction of regions.
The data D consist of points which either belong to mutu-
ally exclusive homogeneous regions R = {R1,...R-} and
Vi £ 3 RiNR; = or to the set £ of non-homogeneous
regions, i.e. edges or discontinuities. Thus,

D=RUE (6)

The discontinuities — borders of planar patches — are indi-
cated either by depth changes in surface normal direction
or high curvature, which is related to changes of the sur-
face normals. Therefore, we start with the computation of
the surface normals n;. with i € {1, 2,3} denoting its com-
ponents in z, y and z. Filtering of these surface normals
is necessary in order to reduce the influence of noise on
the results of following steps. The use of linear filters — as
e.g. included in Hoffman and Jain, 1987 — leads to deterio-
ration of information about discontinuities. Therefore, adap-
tive techniques should be applied. We have chosen a filter
based on adaptive masks using a maximum homogeneity
criterion. It is a modification of the filter presented by Na-
gao and Matsuyama, 1979 using the variance of surface
normals as homogeneity criterion, thus quite similar to the
USF-segmenter included in Hoover et al., 1996 with respect
to the used neighbourhoods. Figures 17 and 18 display
the discontinuity maps computed based on the unfiltered

Figure 13: DSM AVENCHES

Figure 14: Variances of surface normals

Figure 15: Probability of building segments using normal-
ized DSM and differential geometric properties

Figure 16: Probability of building segments using normal-
ized DSM
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Figure 21: Non-recovered areas
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Figure 22: Selected roof labels

and filtered surface normals. Binarization of the disconti-
nuity maps vyields the significant discontinuities (Fig. 19).
For this binarization thresholds have to be fixed. These
threshold can be derived using knowledge about objects
and considering the requirements of a special task. Exam-
ples for user specifications are height differences between
roof parts and for knowledge the expected minimal slope of
roofs, which can be used to compute an expected variance
of normals at ridges. The detected discontinuities define
set £ in (6). The planar segments are the complimentary
set, thus R = D \ £. If the buildings are already detected,
the set D may be replaced by the set of selected building
segments &, thus R are the detected roof segments. The
result of segmentation is a classification of points. These
points can be grouped by determining connected compo-
nents and labelled. From the detected initial roof segments
R (Fig. 20, left) valid segments R are selected based on
their size — at least 3 non-collinear points — and their slope
(Fig. 20, right). The slope criterion is used to reject areas
due to round offs within the DSM. Due to the rejection of de-
tected segments, areas within the building segments which
are not covered by valid planar roof segments R may occur.
These areas R* are detected by analysis of the distance
image (Fig. 21) and may consist of higher order surfaces.

Up to now the parameters for each detected valid roof seg-
ment R; are estimated separately. Note that the afore men-
tioned filtering is used as preprocessing in order to obtain
hypotheses about roof segments. The evaluation of these
segments is performed using the original data. Based on
the neighbourhood relations and the estimated parameters
hypotheses about regularities are derived locally (c.f. Tab.
1 for the example displayed in Fig. 22). Examples for such
regularities between two planes A and B are the slope

dt) = ngp —n3a=0 @)
and the orientation, thus parallel

dgp. ) = nZ.B - nZ.A = Oa. (8)
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Figure 23: Reconstructed roof structure

Figure 24: Data and prismatic model
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These hypotheses will be integrated in a global robust ad-
justment and evaluated analogously to the approach for
polygon reconstruction of the building outlines (Brunn et
al., 1995). The segments R* are up to now described by
planes with constant heights (Fig. 23). Further refined re-
construction is necessary, e.g. using higher order surfaces
(Leonardis, 1993).

4 CONLUSIONS AND FURTHER WORK

In this contribution we focussed on new extensions of our
approach for building extraction from DSM, namely the dis-
crimination of building and vegetation areas using differen-
tial geometric properties of the surfaces and roof extraction
as first step towards the extraction of polyhedral building
descriptions.

We presented two schemes for building detection including
detection of vegetation in DSM. The first scheme is based

Figure 26: Probabilities Pyyiia,, Invaer = 0.1

on a binary classification scheme, the second on Bayesian
networks. Both approaches take the height information and
differential geometric properties of the surface into account.
Therefore, both require high quality data with respect to the
differential geometric properties. These requirements are
not always fulfilled. Nevertheless, the investigations indi-
cate that different sources of information can be analysed
by use of Bayesian networks as common framework. In
order to discriminate between building and vegetation ar-
eas, the Bayesian network can be extended by integrat-
ing other sources of information, e.g. reflectance properties
derived by analysis of the intensity of returned laser sig-
nals (c.f. Hug, 1997) and information from digital images,
e.g. texture and/or colour (c.f. Eckstein and Munkelt, 1995).
Further work in this field may also extend to roof plane ex-
traction using the Bayesian net for their detection. Figures
25 and 26 show the probabilities Py.i4, related to two dif-
ferent parameters fnvaqr. In the first case fnva., Was set
in order to reject vegetation areas, in the second case with
respect to detect planar surfaces. For this purpose the fil-
tered surface normals may be used for the computation of
step edges and the variance of surface normals. Further
investigations are necessary.

The presented approach for roof extraction from DSM aims
at the extraction of polyhedral building descriptions. The
task consists of two subtasks: roof plane detection and roof
plane reconstruction. The roof plane detection is focused
on detected building segments and uses differential geo-
metric properties to detect depth and normal discontinu-



Figure 27: Semi-automatically measured building model

ities. The derived discontinuity maps are combined with the
building segments. This combination yields the initial roof
segments R. Geometrical criteria, i.e. number of points and
slope, are used to select valid roof segments R, which are
used for the reconstruction.

The first step for the reconstruction is the estimation of
parameters for each plane. Based on these parameters
hypotheses about regularities are automatically detected.
These regularities deliver constraints for further reconstruc-
tion applying a global estimation with constraints.

Up to now, the roof segmentation and the roof reconstruc-
tion including the first parameter estimation and the deriva-
tion of hypotheses are implemented. The obtained results
are promising. Further work will focus on robust estimation
of plane parameters without and with constraints. Further-
more, consistency checks of the hypotheses with respect to
the object model should be investigated in order to detect
contradictory and inconsistent hypotheses. This also in-
cludes the use of groundplan information, either extracted
from the DSM or provided by GIS (c.f. Haala and Brenner,
1997).

Using polyhedral models and thereby planes for roof extrac-
tion is limited, which is indicated by the examples. There-
fore, regions of the building segments, which are not cov-
ered by the extracted roof planes, must be treated sepa-

rately, e.g. using higher order surfaces (c.f. Leonardis, 1993).

Automatic procedures may fail in recovering the correct in-
formation due to the complexity of the task. Therefore, in-
teractive tools for editing the results are necessary. For this
purpose our approach to semi-automatic building extrac-
tion from digital images will be extended for DSM (Giilch,
1997). A first result — an overlay of extracted model and
original data — is shown in Figure 27.
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