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Abstract

The paper discusses an automatic procedure for color edge extraction. It contains
a procedure for robustly estimating the signal dependent components of the noise
which is assumed to be influenced mainly by the Poisson statistics of the photon
radiance. This allows to mutually weight different channels of a multispectral image.
Except for a significance level no other tresholds are required.

1 Introduction

The essential first step in data reduction for automatic image interpretation is the des-
cription of images by elementary image structures such as characteristic points, edges or
homogeneous areas. Among these, edges will be the subject of the following discussion.
We will comprehend edge extraction as the transition from a digital gray-level image to
a digital binary representation, only containing potential edge pixels, and finally proceed
to a symbolic image description with lists, graphs and relations.

The majority of known edge detection algorithms treats edge extraction in gray-level
images (cf. e.g. YAKIMOVSKY 1976, CHEN 1981, DE Souza 1983, HsU /NAGEL/REKERS
1984, SUuK 1984, SH10ZAKI 1986, TORRE 1986). Transfering ideas of such algorithms to
multichannel images might be useful because adding color information may facilitate scene
reconstruction. E.g. imagine you want to extract house contours out of a gray-level image.
Then the edge detection algorithm not only determines the house contours but also its
shadow outlines. Color information would obviously help to seperate house and shadow
outlines (cf. NEVATIA 1977, SOLINSKY 1985, DREWNIOK 1988).

In image analysis and especially edge detection one always must take into account the
effect of noise. It is caused by various disturbing effects of the imaging process and creates
random fluctuations in image intensities. The question now is whether detected gray-level
differences appear due to noise on the one hand or due to real edges on the other hand.
To solve this problem usually a treshold is introduced to seperate noise and edges. This

approach actually is a hypothesis test to check the significance of local changes in image
structure.
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For this purpose the signal and noise characteristics have to be known as reliable as
possible. It is common practice to parametrize signal and noise characteristics and to
derive the unknown parameters from the image content, thus adapting the image model
to the actual data. Whereas models and estimation procedures for image signals are quite
advanced, models for image noise as well the corresponding estimates are still very simple,
usually restricted to white noise with signal independent variance. This paper, therefore,
mainly deals with extending the noise model, deriving automatic procedures for estimating
the main parameters and uses it for the problem of color edge extraction as one example
for application.

Section 2 discusses the assumed image model, especially the statistical properties of the
noise component containing the photon noise which is Poisson distributed and therefore
leads to a signal dependent noise variance. In section 3 a robust procedure for estimating
the variance-components of the noise in presence of disturbing edges or limited texture.
Section 4 describes how this technique may be used to weight the channels of a mul-
tispectral image with respect to each other during color edge extraction, generalizing the
approach of CUMANI (1989).

2 Models

In order to arrive at a procedure for color edge extraction which can be evaluated we need
to specify the assumed model. It is based on an image model which under certain conditi-
ons may be derived from an object model using geometric and physical properties of the
imaging process. The statistical properties of the observable image intensities are essen-
tial for fixing illumination and reflectance independent tresholds in the edge extraction
process and properly weighting the information of the different channels.

2.1 Object model
We assume the world to consist of objects which have the following properties:

1. The objects are bounded by piecewise smooth surfaces which themselves are boun-
ded by piecewise smooth lines.

2. The reflectance properties vary piecewise smoothly.

This model excludes objects with — compared with the image resolution — rough surfaces
or very irregular texture. A formal description of the smoothness requirements is given in
the image model.

2.2 Image model

The image then can be described in the following way (cf. e.g. CHEN/PAVLIDIS 1987).
Let the image I be composed of mutually exclusive segments of homogeneous regions
R={R;},i=1,...,n and of boundary regions B = {B;}, j = 1,...,m with

I=BUR={B}U{R;}. (1)
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The segmentation thus requires a homogeneity measure h. In case of edge free areas this
measure should be governed by the noise component alone allowing to robustly estimating
the noise variance.
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Figure 1: Image Model

Thus the segmentation may be interpreted as a hypothesis test with the hypothesis:
Hq: point x belongs to a homogeneous region’
H,: point x does not belong to a homogeneous region (boundary region)

Thus boundary regions are defined in a negative manner. A, possibly vector valued, ho-
mogeneity measure h may be used to test Ho against H,. According to NEYMAN and
PEARSON (1933) a most powerful test would discern Hop and H, by fixing the probability
a for a type I error (erroneously rejecting Hp) and choosing a critical region for h which
minimizes the probability 1 — 3 for a type II error (erroneously accepting Hy). In order
to develop such a test one needs the statistical properties of the data from which the
distribution of h may then be derived.

2.3 Signal and noise model
We assume the observed image intensities g to be a contaminated version of the true
signal f

g(x) = £(x) + n(x) (2)
The Nj spectral components k = 1,..., Ni of g(x),f(x) and the noise n(x) are denoted
by g, (x),fi(x) and n,(x)?. We assume the true function f to vary smoothly almost

Ix= (31,4'.2] = (l", c)
2stochastical variables are underscored
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everywhere, namely at edges or possibly in a few textured areas. The smoothness may
be measured either by the first or the second derivatives. In both cases we assume on an
average the expectation of the derivatives to be zero and the variance of the derivatives
to be small compared with the variance of the corresponding derivatives of the noise.

of A
Model A: 5:1:2 — 0
3}" on > z€R (3)
o f )
Model B: E (3 5 ) == 0
f e (4)
2 (6:::‘-5:1:,-) < D (8::.-3:,—) 7

where the derivatives have to be interpreted as the discrete approximations using an
appropriate convolution kernel.

No assumption on the correlation between neighbouring f(x) is made. No specification in
the boundary areas is made for the noise estimation process. The color edge extraction
process however needs a model for the boundary regions. As our main concern in this
paper is the identification of the noise characteristics and the automatic edge detection,
not the edge location as such, we apply a simple edge model: neighbouring homogeneous
regions are assumed to be linked by a blurred step edge, where the kernel of the blurring
filter is a symmetric bellshaped function (cf. section 4).

We assume the noise component n to be statistically independent on f and white, thus
being spatially uncorrelated with E(n) = 0. It can be assumed to be additively composed
of two independent components

n=n"+n®, (5)

n) having a signal independent variance
Tn=A (6)
covering electronic noise or rounding errors. n(®) may be written as
n?=M:s (7)
where s are n, independent noise sources and M some influence factors. Then
2p=M-3,-M'". (8)

The determination of the number n, of noise sources of the influence matrix M and of A
has to be determined by a proper calibration of the camera. In case the noise sources s are

the photon fluxes in the N channels, M can be assumed to be diagonal M = Diag(my)
which results in

222 s Diag(m;c y O'i) (9)
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with o, proportional to si = fi due to the Poisson distribution of the number of photons
received. This leeds to

Znn(x) = A + Diag(bs - f,(x)) = A + B(£(x)) (10)

or, if the channels are independent,

a:k(x)=ak+bk-£k(x), kE=1,...,. N (11)

For large enough numbers of photons the Poisson distribution may reliably be approxi-
mated by a Gaussian distribution. Thus we finally have the noise distribution

n(x) ~ N(0,A + B(f(x))) (12)

or with independent noise components

ni(x) ~ N(O, ag + by - -_L:(x)) (13)

For practical purposes always fi = g; can be assumed. Observe that this model contains
the assumed dependency of the noise variance on both the channel and the location within
the image.

2.4 Homogeneity measures and their statistics

The homogeneity measure used for the segmentation has to fulfill three criteria:

a) It should not be influenced by the local variations in the smooth areas.

Using the signal models A and B, this requires to base the homogeneity measure
on deviations from a horizontal or tilted plane through the intensities of a small
neighbourhood. This is closely related to the facet model (cf. HARALICK 1981, DE
Souza 1983, Hsu/NAGEL/REKERS 1984).

b) It should not be influenced by edges or other strong deviations from the assumed
model.

This requires a robust estimation procedure for the variance components A and B,
which will be discussed in the next section.

c) Its statistical properties should be derivable at least approximately.

In case the homogeneity measure would be based only on homogeneous regions its
distribution should be determinable rigorously.

We therefore use the following kernels for deriving the homogeneity:

0 1 0
oW=10 0 0 (14)
0 -1 0

oo o
[ T e |

0
model A: uld) = ( -1
0
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1 0 =1 0 1 0
model B: u'B) = 0 0 0 B =1 -1 0 -1
O T | 0 1 0

In both cases (* = symbol for convolution)
E(uxg(x)) =E(v*g(x))=0, x€R.
holds. The variances are
model A:  V(ux*g(x)) = V(v*g(x)) = 28..(x) = 2(A + B(f(x)))

model B:  V(u*g(x)) = V(v+*g(x)) = 4Z..(x) = 4(A + B(f(x)))
and
Cov(u*g(x),v*g(x)) =0
for both models. Therefore the homogeneity measure
B¥(x) = |lu=g(x)[l5, + [lv * g(x)|1%
with ||a]|2, = a"Wa and
W = [t/2 Zon(x)]
is x3y, distributed with

t=4  model A
t=8 model B
in case X € R and in case of N; spectral channels involved. Thus
E(R*(x)) = 2N
Vo) - a0 <R

for both models. In case of a single channel we could simplify to (N, = 1):

E(Jluxg)|*+[lvxgx)I?) = t(a+ bi(!t))g
V(llux g +lloxgx)I?) = t*(a+bf(x))"

Eq.(25) is the basis for the estimation of @ and b discussed in the next section.

X € R.

3 Noise estimation

(15)

(16)

(17)
(18)

(19)
(20)

(21)

(22)
(23)

The estimation of the noise variance parameters A and B can be based on eq. (16-19). In
case of correlated channels this would require the estimation of variance components in
a multivariate model. We want to restrict the discussion to the case where the channels
are uncorrelated. Then eq. (25) can be interpreted as a nonlinear GauB-Markov—Model

(GMM):
E(y) = (1 f(x))- (B B2)"
Vig) = o , i€ER
with BT = (i B) =t(abd)’
¥, = (llue*g(x)l? + [lo* g(x:)|I?)

o = 2B +h f(x)’.

(26)
(27)
(28)
(29)
(30)
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Comparing eq. (20) and (29) shows Yy, = h(xi)/y/w(x;). Eq. (30) reveils the model being
nonlinear as the variance depends on the unknown parameters. A second nonlinearity
results from the fact that f(x) is not known but has to be predicted from g(x). We use
the approximation f(x) a g(x) in the following.

As the model eq. (26, 27) only refers to pixels in the homogeneous regions {R;} a robust
estimation for §; and f; has to be developed. We apply the following steps:

1. Determination of robust initial values A(°) and extracting the 50% most homoge-
neous pixels.

2. Estimating the parameters B(*) using these best pixels based on the GMM and
correcting for bias due to truncation of the distribution.

This procedure is a generalization of the one given by FORSTNER (1991) for the constant
noise case. It is applied to the channels individually.

3.1 Approximate values for
The approximate values should be

a) accurate and
b) robust with respect to edges in the image.

This can be achieved by using the §, say 10%, smallest and largest intensities and deter-
mining the median both for g; and y; within both groups, leading to

9 = meds(g;)  S={i|g <gs} (31)
Yo = medS(y.f) (32)
and g = medy(g;) L={i|g>g-s} (33)
yi = medy(y;) (34)

with g5 being the §-point of the distribution of g. This leads to the approximate values

(0 _ YI—Ys 35
i gt —gs (35)
1:0) = Ys— b . gs - (36)

Using the extrema of the histogram results in a stable solution, especially for g‘” . Using
the median, both for g and y, results in robustness against both, single extreme values g;
in the histogram and inhomogeneous pixels.

Remark: Using § = 0.5 lead to difficulties in images with a small homogeneous object
on a homogeneous background, as the medians g, and gs were very close, resulting in
instabilities of 3.

In order to reliably eliminate edge pixels from the estimation process the homogeneities
y: are compared with their corresponding standard deviation, derivable from (27). We
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Figure 2: Scatter diagram of (g;, ;)
therefore obtain the set H of homogeneous pixels from
H = {i|yfoy, < med;(y;/0y,)} (37)
= {i|A} < med_,-(hf)} (38)
with o2 = A4 80.¢(x) (39)

and h? from eq. (20). Thus the set H contains the 50% most homogeneous pixels. It is
assumed that all major edge pixels are eliminated this way, and the edge pixels with very
low contrast will not deteriorate the following fine-estimation process.

3.2 Estimating the noise variance parameters

The final estimation of the noise parameters is based on the 50% most homogeneous pixels
using the GMM eq. (26, 27). It leads to the normal equations

N®. g+ =h®,  y=o,1,... (40)
ook 9(xi)
with N® — E‘ tz(ﬁ}v) + 18£y’9(xi))2 Z (181"J -+ ﬁzy) xi)) (41)
T 9(x:) g*(x:)
(6 + B0x) (P + A g(x,)’
D 2(aW) yi(i') 2)2
b — . (B, ;gﬁ(?x')y(x')) el @2)

i tg( g”) (") x'))
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The variances of B may be determined from

£33 = 63-N7° (43)
with 62 = S [ui— (B + 52 0(2)]"/ (1H|-2). (44)

The iterations process usually converges quickly, two iterations in almost all cases have
shown to be sufficient. The results of this iteration process are the estimates 3 .
The parameters B are biased for two reasons:

a) only the best 50% of the data is used

b) the true percentage of non homogeneous pixels is not known.

We therefore first compensate for using only half the data:

ﬂ(h) 3 Cl.ﬁ(gl (45)
with e = 1/(1—In2). (46)

The estimates B*) are not influenced by non-homogeneous regions, but the correction
factor ¢; is too large, as the non-homogeneous pixels are assumed to solely consist of

(large) noise. Therefore, we estimate the percentage 1 — o of homogeneous pixels using
the estimates B(*):

H(a') = {i | yi/ow < X2 1-a} (47)

with x3,_,, being the (1—a')-point of the x3-distribution, e.g. o’ = 1% leads to x3 ,_o» =
9.2. Then
H(d)

e=l="N - A8

with N being the number of all pixels involved. We now obtain a better compensation for
the bias of 819 namely

B = ¢ pw (49)
1
1 = : 0
it 2 14+ (1/a=1)In(l —a) (50)
(reducing to 1/(1 — In2) for a = 0.5, eq. (46)).
Remark: In principle this compensation process needed to be iterated until @/ = a, as

H (') depends on the approximate values (%) . However usually only one iteration turned
out to be necessary.

The final values for a and b are (cf. eg. (28))
a=pH/t, b=pt (51)

with their variances
V(@)= ;f: VE), V)= ? v(6) (52)

For purposes of illustration we also determine the standard deviation o, and o; of the
noise at the positions g, and g; (cf. eq. (11) and (31), (33)):

Go=1\Ja+bg, Gi=1/a+ba (53)

and their standard deviations o;, and o3,
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3.3 Experimental results

In order to verify the success of the preceding introduced noise estimating process we first
tested it by artificially generated data. A random-number generator creates a set of 10000
equal distributed gray-levels g; and a second random-number generator the corresponding
¥i as x3-distributed values with signal dependent expectation values E(y;) = a+bg;, where
a and b can be chosen. Then a certain percentage of y;, e.g. 20% as in the first example
(table (1)), is replaced by much higher values embodying edge pixels in the following way:

Vitedge) = Sf*(a+ bg;) (54)
with  f € {fmin <f < fmaz}- (55)

f as equal distributed factor fixes the contrast of an edge, whereby f.in can be chosen
(we use: frin = 10) and f,... depends on the used convolution kernels. Table (1) shows
for varying noise parameters a and b the differences da® = |a — a®)|, db© = |5 —
5| between given parameters and approximate values as well as the differences da(!) =
la —aM|,  db® = |b— )| between given parameters and final estimates. Note that
every experiment is repeated ten times with varying initial values for the random-number
generators to receive mean values.

(a1 b [ da® (o] | 6 (%] | da™ ] | a0 o] |
1(01[199+58(40.7+19([150+34[5.4+0.7
2102271 +48|4414+23|185+55|81+1.1
4(04 (254 +£51|365+18|108+25/|51+0.7

Table 1: Results from generated data
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Tables (2) and (3) show some results of the noise estimating procedure on artificially
generated images (figure (4): 9600 pixels, figure (5): 15800 pixels) which are disturbed with
signal dependent noise, SNR is the signal-to-noise-ratio (04/0). Finally, the procedure
is applied to real data, namely to the three color channels which are obtained by digitizing
two aerial images with a red-, green- and blue-filter. (Size of the aerial images: 54000
and 62000 pixels). Table (4) illustrates the remarkable differences of noise in the three

channels as well as its location dependency.

a | b [SNR] da® %) | O[5 | da™ %] [ a6 (%] ]

~ 20
~ 15

~8

1101
2 102
30 [ 0.4

17.5 £ 5.1
38.1 £+ 7.5

172 + 4.0

22.0 + 2.3
13.1 £ 2.7

13.2 £ 2.7

26.6 £ 4.5
282 £ 54

7.2+ 28

5.2+ 0.9
3.3+09
56 + 1.8

Table 2: Results from the generated image figure 4

La | b [SNR] da® [%] | &6 [%] | da™ [%] T db™ [%] |

1 (0.1
2 (0.2
30 ] 0.3

~ 16
11

~ T

28.8 + 2.3
24.0 £ 6.2
143 £ 2.7

2.7 £ 7.3
151+ 1.4
87+25

25.1 £ 7.1
15.4 £ 5.5
85+ 14

5.7+ 1.6
5.0 £ 0.9
6.6 + 1.3

Table 3: Results from the generated image figure 5

Figure 4:
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| [channel [SNR] & [ b [ 6, [ & [ 0, | 06 |
red ~8 | 4530.25]3.40 6.93[0.07]0.32]
image 1 | green ~9 | 025(029|320| 7.82]|0.07|0.34
blue ~3 |33.73]0.80|9.11 | 13.00 | 0.54 | 1.12

red ~14 | 1.420.18 2.73‘[ 6.55 | 0.04 | 0.21

image 2 | green ~21 | 2.34(0.09|242 | 4.85]0.03 [ 0.12
blue ~5 [62.98 | 0.59 | 9.59 | 13.70 | 0.49 | 1.12

Table 4: Estimated noise in 2 color images

4 Color edge extraction

Extracting edges from color images has to solve the problem how to merge the edge infor-
mation in the different channels. This may be achieved by individually extracting edges
from the individual channels and then joining this information using some logical opera-
tions, such as assuming an edge if one of the channels reveils an edge. Or the magnitude
of the gradients of the different channels are added (cf. DREWNIOK 1988, CUMANTI 1989),
leading to an image which then may be handled as if resulting from a single channel
image. The problem with both approaches is the ad hoc decision of the merging, as the
possibly different significance of the individual channels is not taken into account.
Following the reasoning for the noise estimation, we assume the decision whether an edge
is present or not as a hypothesis test: Only pixels being significantly non-homogeneous are
candidats for edge pixels. This immedeately leads us to a mutual weighting of the different
channels, which in principle may even take correlations between the channels into account.
The essential conclusion from this assumption is: The channels are weighted according to
the in general spatially varying noise (co-)variance, not according to the signal variance.
We therefore want to use the homogeneity measures for the two homogeneity models A
and B, discussed in section 2, adapt them to the task of edge or line extraction, apply
them to RGB-color images and compare the results with respect to the influences of the
location and channel variant noise variance.

4.1 Weigthing channels of multispectral images for edge ex-
traction

We generalize the classical scalar measures used for monochrome images. In case of image
model A, namely zero local slope nearly everywhere, the squared gradient

R = g2 4 g2 (56)

is oftenly used. It may be written

B2 A)(x) = tr( Vg(x) Vg(x)T)=agi):)'agit)'éij_s i,j€{1,2}  (57)
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using x = (r,¢) = (z1,22) and Einsteins sum convention, summing over common indices.
In order to compensate for spatially varying noise variance we need to normalize with the
weight
w(x) = 1/07(x) (58)

and obtain the normalized homogeneity measure for monochrome images:

hz{n)(x) = 6g(x) 2 Bg(x) b

dz; 6:!:,'

which is comparable to eq. (20) except for the used convolution kernels which are not
specified here. In case g(x) = (gk(x)) is vector valued with k = 1,... , Ni. channels we
easily may generalize to the normalized homogeneity measure for multispectral images

R24)(x) = dgx(x) ) dgi(x) s

ij + w(x), (59)

;j-w;,;(x); 1,] € {112}; k,l € {la---st} (60)

dz; dz;
with the spatially varying weight matrix (eq. (10))
W(x) = (wi(x)) = [Emx)] " = [A+B(fx)] ™ - (61)
In the special case of uncorrelated channels with wyx = wi we obtain explicitely:
Ni
h? (‘“(x) = z tr( Vgi(x) Vgr;,(x)-r)/(a;c + bkik(x)) ; (62)
k=1

which reveils the simplicity of the generalization of eq. (57).

In a similar manner we may generalize a homogeneity measure under image model B,
namely zero local curvature nearly everywhere. We use the generalization of the quadratic
variation (GRIMSON, 1981)

KB = g% + 297, + gz - (63)
It may be written as the trace of the square of the Hessian H(x) = (9%g(x) /0z:0z;):

: . - 3*g(x) &g(x)\] _ g(x) g(x)
B ax) = tr{H(x) HT(x)) Sl [(83;33,-) . (63:533:“)] "~ Oz;0z; ' dzr;0z, & (64)

Again normalizing leads to
dg(x) 0%(x)
32(B)(5) = . .
(x) 3.‘1:"6:1:,‘ a&'jaz“ g

and in case of multispectral images results in

Pgr(x) *g(x) 2k
2(B) — . o S
h (x) 6::.-6:::,— 31‘-‘533,.. bin w;,;(x) ~ ,7,n € {1,2}, k,f (S {1,...,Ng} (66)

with the same weight matrix eq. (61) as above. In case of uncorrelated channels this may
be written as

in * w(X) (65)

N
RE(x) =3 (62,4(%) + 207 1 (%) + g1 (%)) / (@ + bef (%)) (67)
k=1

The homogeneity measure eq. (67) thus is a weighted quadratic variation, the weights
depending on the spatially varying noise variance.
We only use image model A in the following.
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4.2 Edge extraction procedure

The edge extraction procedure used for color images in the following experiment consists
of the following steps:

1. determining the gradients and noise parameters of the individual channels

2. calculating the normalized homogeneity measure h?(4)(x) (cf. eq. (62)) at each pixel
position

3. thresholding operation with the x3,_,—fractil of the xZ-distribution (a = 1% leads
to x2,_, =~ 16.81) since the normalized homogeneity measure in case of three chan-
nels is yZ-distributed, leading to homogeneous and boundary regions

4. non-maximum-suppression (according to CANNY (1986)) yielding local maxima as
most probable edge pixels within the boundary regions

5. thinning algorithm (according to ROSENFELD and KAK (1981)) yielding a definite
topology and a gridded binary image containing edge pixels.

4.3 Experimental results

In order to show that the above introduced color edge procedure is able to detect edges
where a gray-level algorithm fails, we have digitized a picture of VASARELY containing
color edges (from green to blue) with nearly the same intensities and a picture composed of
colored paper areas. The figures (6)—(10) and (11)—(15) illustrate the different capabilities
of both edge extraction procedures by showing the squared gradients as homogeneity
measure of the individual channels and the intensity image (gray-level image) (cf. eq. (56))
as well as the normalized homogeneity measure of the color image (cf. eq. (62)). Observe
the usefulness of the color information. Figure (8) shows very strong blue gradients because
the picture of VASARELY contains edge information mainly in the blue spectral band. But
the blue channel is the noisiest one so that it receives a small weight. That is the reason
why the color gradients in this case are less strong than the blue gradients.

Figure 6: red gradients Figure 7: green gradients Figure 8: blue gradients
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Figure 9: color gradients Figure 10: grey gradients

Figure 11: Figure 12: Figure 13:
red gradients green gradients blue gradients

Figure 14:
color gradients grey gradients
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Figure 17:
fixed threshold b
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Figure 18: Figure 19:
fixed threshold c variable threshold

Fig. (16)-(18) show a sequence of edge images derived from a color image using a fixed
threshold in each image. Though by searching an acceptable threshold may be found, the
result of the noise estimation in the three channels immediately leads to the edge image
in fig. (19), demonstrating no interactivity to be necessary, also in this complicated case.

5 Conclusions

The paper presented a model for the noise variance based on the Poisson statistic of the
photon flux and additional signal independent noise components. A procedure has been
developed to robustly estimate the variance components in the presence of edges. The
accuracy of the estimated standard deviations of the noise variances are in the range of
5-20%, which is fully sufficient for automatically adapting tresholds to the image depen-
dent noise characteristics. The estimation process also yields an internal estimate for the
achieved precision.

The applicability of the approach has been demonstrated with simulated and real mono-
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monochrome and color images. No thresholds have to be provided once a significance
level has been fixed, allowing to handle single multispectral images with unknown noise
variance components. The pocedure has to be supplemented by a test on the suitability of
the assumed linear variance model, in case the sensor has to be expected to have nonlinear
(e.g. logarithmic) transfer characteristic.

Further research is necessary to model the joint noise properties of digital images resulting
from scanned photographic film.
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